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Abstract: Two different operational procedures are proposed for evaluating and predicting the onset
of epileptic and eclamptic seizures. The first procedure analyzes the electrical activity of the brain
(EEG signals) using nonlinear dynamic methods (the time variations of the standard deviation, the
variance, the skewness and the kurtosis; the evolution in time of the spatial–temporal entropy; the
variations of the Lyapunov coefficients, etc.). The second operational procedure reconstructs any
type of EEG signal through harmonic mappings from the usual space to the hyperbolic one using
the time homographic invariance of a multifractal-type Schrödinger equation in the framework of
the scale relativity theory (i.e., in a multifractal paradigm of motions). More precisely, the explicit
differential descriptions of the brain activity in the form of 2 × 2 matrices with real elements disclose,
through the in-phase coherences at various scale resolutions (i.e., as scale transitions), the multitude
of brain neuronal dynamics, especially sequences of epileptic and eclamptic seizures. These two
operational procedures are not mutually exclusive, but rather become complementary, offering
valuable information concerning epileptic and eclamptic seizures. In such context, the prediction
of epileptic and eclamptic seizures becomes fundamental for patients not responding to medical
treatment and also presenting an increased rate of seizure recurrence.

Keywords: brain activity; epilepsy; epileptic seizure; electroencephalogram; fractal model; signal;
skewness and kurtosis

1. Introduction

Epilepsy represents a chronic brain pathology with different etiologies, in which repeated
seizures appear more than 24 h apart due to an excessive neuronal discharge or synchronic
neuronal hyperexcitability. The pathogenesis of epilepsy includes around 1000 genes that can
be involved, the imbalance between mediated inhibition of γ-aminobutyric acid (GABA) and
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mediated excitation of glutamate, the link between neurotransmitters and drug abuse and
other specific pathophysiologic drawbacks linking to epilepsy at different levels of brain
functionality. Epilepsy can be further arranged into focal, general or unknown onset. The
diagnosis of epileptic seizures is suggested by a patient‘s history, family declarations, and
semiology of epileptic seizures. Electroencephalogram (EEG) represents the primary tool
for epilepsy, which helps classify the seizures between focal or generalized and can bring
important information regarding epileptic syndrome features described by the patient.
Video-EEG monitoring can confirm the type of the seizure and contribute to localizing
the epileptogenic zone when neuroimaging is normal and surgery is a treatment option.
Magnetic resonance imaging (MRI) helps in finding the etiology and allows the patient‘s
evaluation before surgical treatment. It is commonly employed in focal epilepsy assessment
under specific protocols that consider the clinical onset and EEG findings [1]. Genetic
testing by microarray analysis, single-gene testing, karyotyping, gene panel testing, whole
genome sequencing, and whole exome sequences raise the probability of finding epileptic
causes but present low availability and high costs [2]. Epilepsy is a common neurological
condition, affecting patients of all ages, having a negative impact on social life, health,
behavior and economic factors for the patient and their family. Treatments offer a normal
life for most patients but about 20–30% of them are non-responsive to conventional anti-
epileptic drugs [1].

Various situations have been suggested as primary or secondary causes in epilepsy
onsets. Out of all the causes we can name brain damage, foreign-body swallowing, drown-
ing or infection of the central nervous system. The onset of epilepsy can occur for a normal
healthy child with no other risk factors associated. Due to this, various prevention and
control measures have been developed especially for secondary factors that may lead
to epilepsy development [3]. Epilepsy does not have a known cure, but seizures can be
controlled with medication in about 70% of cases. In the cases where seizures do not
respond to medication, surgery, neurostimulation or dietary changes may be considered.

In the case of epileptic seizures, due to structural or functional problems in the brain, a
group of neurons discharges in an abnormal, excessive and synchronized manner. Seizure
prediction can play a particularly important role and refers to the attempt to predict epilepsy
seizures based on EEG. The aim of a significant volume from the literature, as is the aim
of the present paper, is to develop ”procedures” through which not only the prediction
but also the type of epilepsy can be established. Although the first electroencephalograms
(EEGs) were recorded 143 years ago, progress in interpreting them is extremely slow. As
of now, there is no classification of the structures that appear in an EEG, nor is there a
correspondence between these features and the activity of the brain.

Let us consider a particular pathology: the tonico-clonico seizure also known as
eclampsia. Eclampsia represents a medical emergency during pregnancy, being associated
with increased morbidity and mortality for both mother and child. Pregnancy hypertensive
disorders, such as chronic hypertension and gestational hypertension, represent primary
criteria for eclamptic seizure onset. The mechanism beyond this pathology refers to en-
dothelial damage, during the abnormal placentation in the first trimester, which leads to
abnormal blood supply with high arterial resistance and vasoconstriction. Following this
mechanism, increased levels of cytokines and free radicals are released and determine
endothelial damage at the uterine and cerebral sites, accompanied by neurological dis-
orders. Eclampsia is characterized by generalized tonico-clonic seizures in women with
preeclampsia and may occur during antepartum, intrapartum or postpartum periods. The
prevention of maternal complications in patients with preeclampsia represents fetus and
placenta delivery. The delivery time is decided according to clinical evaluation and gesta-
tional age. Common neurologic symptoms like headache or changes in visual functions
may reflect brain impairment. EEG may detect brain damage before symptoms appear and
before ischemic conditions may determine irreversible brain dysfunction. The prediction of
eclamptic seizures using artificial intelligence may improve maternal and fetal outcomes,
offering extra time for case management [4].
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The clinical interpretation of electroencephalograms is mainly performed by visual
recognition of certain structures and by associations made by the specialist physician [5].
The Fourier analysis cannot be applied because the signals associated with the electroen-
cephalograms are not stationary. The signals are extremely weak, in the domain of micro-
volts, and are “submerged in high noise” [6]. For this reason, special attention must be paid
to the quality of the electrodes used and their positioning. In addition, the identification
and analysis of artifacts should not be underestimated, as they may occur due to slight
movements of the electrodes, or contraction of the muscles below the electrodes.

In the present paper, two complementary operational procedures are proposed for
evaluating and predicting the onset of epileptic and eclamptic seizures. The first procedure
analyzes the electrical activity of the brain (EEG signals) using nonlinear dynamic methods,
while the second one reconstructs any type of EEG signal based on the scale relativity
theory (SRT). An approach based on the fractal paradigm within the SRT is presented here
for the first time.

2. Analysis of Epileptic and Eclamptic Seizures by Applying Non-Linear
Dynamics Methods

In this work the analyzed EEG signals were taken from the Physionet database.
The data used corresponds to an epileptic patient aged 11 years on which we employed
statistical and nonlinear procedures (standard deviation and variance, spatial–temporal
entropy, Lyapunov exponents, etc.). The signals were collected on 23 channels with 16-bit
resolution of each signal and a sampling time of 4 ms. The overall duration of the signal
was 60 min while the duration of the epileptic seizure was of 40 s.

Figure 1 depicts the signal recorded on channel FP9-F10. It can be observed that
neuronal activity does not have regular dynamics. The brain’s operating period can be
divided into four areas of interest. The normal activity area of the brain (range 0–1800 s)
is characterized by a chaotic dynamic, with a relatively high signal amplitude. The pre-
epilepsy area (range 1800–3000 s) is characterized by a decrease in signal amplitude. In
the epileptic seizure situs (range 3000–3040 s), the amplitude of the signal reaches its
maximum value in a very short period of time, having more regular behavior due to the
synchronization of the neurons’ activity. Lastly, the post-seizure zone (range 3040–3600 s)
is where the signal amplitude decreases to a relatively small value but increases to the
value corresponding to the area of normal neuronal activity.
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Figure 1. Graphical representation of the signal recorded on channel FP9-F10. 

Figure 1. Graphical representation of the signal recorded on channel FP9-F10.

Neuronal activity (sequences of epileptic seizure) highlighted during the EEG signal
from Figure 1, in the form of normal functioning of the brain, pre-epileptic seizure, epileptic
seizure and post-seizure periods, are presented in Appendix A. The corresponding signals
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were analyzed with a series of statistical and nonlinear dynamics methods and only those
results that allowed us to extract some information of interest are described. The graphical
representation of the standard deviation (Figure 2a) shows that, before the pre-seizure, its
value drops sharply (approximately until second 1800) and remains approximately constant
until near the seizure (second 3000). During the epileptic seizure, the standard deviation
presents an accentuated maximum. Since the standard deviation is an indicator of data
dispersion, the fact that it remains at a small, approximately constant value during the pre-
seizure period denotes that the recorded potentials have small, relatively equal values, so
the nerve impulses at the neuron level are of small amplitude and have a “quiet” dynamic.
During the seizure the values of the potentials deviate strongly from the average value.
The same result, but much better outlined, is obtained from the graphical representation of
the variance in time (Figure 2b).
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Figure 2. Variation in time of the standard deviation (a), variance (b), skewness (c) and kurtosis (d), calculated for the
component signals of the electroencephalogram.

Figure 2c,d show the time variations of skewness and kurtosis, parameters that
indicate the deviation from a normal Gaussian distribution. In Figure 2c it can observed
that skewness has an average value close to zero, with the exception of pronounced positive
maxima that appear in the pre-seizure and seizure regions, but only on a few channels
(FP1-F7 and FP1-F3), which is an indication that the epileptic seizure is most likely a focal
one, located in the part of the brain that is in the immediate vicinity of the FP1 electrode.

Regarding kurtosis, it has positive average values, but these are lower than 3, except for
high values on channels FP1-F7, FP1-F3 and FP2-F4, correlated with the maximum observed
for skewness. The behavior of this parameter confirms that, most likely, we are dealing
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with a focal epileptic seizure. The recurrence map will give us global information about the
dynamics of the brain and, for this reason, we will not obtain information about the focal
or global characters of the epileptic seizure. The recurrence maps obtained with visual
recurrence analysis software for the signal recorded on channel FP1-F7, corresponding
to the normal functioning of the brain, the pre-seizure period and the seizure period are
represented in Figure 3.
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Figure 3. The recurrence map corresponding to the normal functioning of the brain (a), the pre-seizure period (b) and the
epileptic seizure (c).

The lack of homogeneity of the maps indicates the existence of a non-stationary signal,
and the single points, isolated, indicate strong fluctuations in the system. During the
epileptic seizure, the regular component of the system dynamics is much more evident, in
agreement with previous observations.

For a more detailed quantitative analysis, the variation in time of the spatio-temporal
entropy for 5 channels is represented in Figure 4a. It decreases until the beginning of the
pre-seizure period, when it shows rapid growth, remaining at a high value throughout the
pre-seizure and seizure periods. On some channels (FP1-F7, FP1-F3 and F7-T7) the existence
of several minimums is observed, the spatial–temporal value of entropy decreasing to
values close to the regularity limit. In this case, the decrease in the entropy value occurs
exactly during the epileptic seizure. Figure 4b shows the time variation of the largest
Lyapunov exponent, calculated for 10 channels of the electroencephalogram using the
subroutine “Largest Lyapunov exponent” extracted using Santis software. It was found
that the largest Lyapunov exponent is positive, with an average value of about 0.09. This
means that the brain dynamics are chaotic. During the seizure and the pre-seizure, the
largest Lyapunov exponent shows some sharp decreases to values close to zero, i.e., to the
regularity limit.
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3. The Reconstruction of EEG Signals through Scale Relativity Theory

Common models used to describe neural system dynamics are based on a combination
of basic theories derived especially from physics and computer simulations [7–10]. As
such, the description of neural system dynamics implies both computational simulations
based on specific algorithms [10–12], and developments on usual theories of biophysics,
concerning classes of models, developed either on spaces with integer dimensions (differ-
entiable class of models) or on spaces with fractional dimensions and explicitly written
through fractional derivatives (non-differentiable class of models) [5,11,12].

A new class of biophysical models can be developed, based on scale relativity theory,
either in the monofractal dynamics as in the case of Nottale [13], or in the multifractal
dynamics as in the case of the multifractal theory of motion [14]. These models can be used
for both simulating and analyzing the EEG signals and can help in their interpretation. To
the authors’ knowledge this is the first attempt at representing the information transfer at
the neural system level in a multifractal paradigm of motion.

According to the scale relativity theory (Nottale’s model [13] and the multifractal
theory of motion [14]), it is supposed that a neural system can be structurally and func-
tionally assimilated to a multifractal object. Then, its dynamics may be described through
motions of the neural system’s structural units on continuous and non-differentiable curves
(multifractal curves). This means that, in such descriptions, instead of “operating” with a
single variable described by a strict non-differentiable function, it is possible to “operate”
only with approximations of this mathematical function, obtained by averaging them on
different scale resolutions. Consequently, any variable purposed to describe the neural
system dynamics will perform as the limit of a family of mathematical functions, this being
non-differentiable for null scale resolutions and differentiable otherwise.

Since for a large temporal scale resolution with respect to the inverse of the highest
Lyapunov exponent [15,16], the deterministic trajectories of any structural units belonging
to the neural system can be replaced by a collection of potential (“virtual”) trajectories, the
concept of definite trajectory can be substituted by the one of probability density. It was
noted that various applications of this model have been described in [17–29].

With all the above considerations taken into account, the multifractality expressed
through stochasticity, in the description of the neural system dynamics, becomes opera-
tional, as we will show in the following.

Therefore, assuming that any neural system can be assimilated to a multifractal
object, the dynamics of the neural system’s structural units in the multifractal theory
of motion are described through continuous but non-differentiable curves (multifractal
curves). According to [14], the following covariant derivative:

d̂
dt

= ∂t + V̂ l∂l + Dlp∂l∂p (1)

where
V l = V l

D − iV l
F (2)

Dlp =
1
4
(dt)

2
f (α)−1

(
dlp + id

lp
)

(3)

dlp = λl
+λ

p
+ − λl

−λ
p
− (4)

d
lp
= λl

+λ
p
+ − λl

−λ
p
− (5)

f (α) = f [α(DF)] (6)

∂t =
∂
∂t

, ∂l =
∂

∂Xl , ∂l∂p = ∂
∂Xl

∂
∂Xp , i =

√
−1, l, p = 1, 2, 3 (7)

becomes operational in the writing of motion laws.
In Equations (1)–(7), t is the non-multifractal time with the role of affine parameter of

the motion curves, Xl are the multifractal spatial coordinates, dt is the scale resolution, V̂ l is
the complex velocity field, V l

D is the differentiable part of the velocity field independent of
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scale resolution, V l
F is the non-differentiable part of the velocity field and is dependent on

the scale resolution; λi
± are constant coefficients associated to differential-non-differential

transition, f [α(DF)] is the singularity spectrum of order α, α is the singularity index and
DF is the fractal dimension [30] of the “movement curves”.

There are many modes for defining the fractal dimension. Thus, several fractal
dimensions may be employed, but the fractal dimension in the sense of Hausdorff–
Besikovitch [30] or the fractal dimension in the sense of Kolmogorov are the most commonly
used. In the case of many models, selecting one of these definitions and operating it in the
context of any neural system dynamics, the value of the fractal dimension must be constant
and arbitrary for the entirety of the neural system’s dynamics analysis; for example, it is
regularly found that DF < 2 for correlative processes in the dynamics of any biological
system and DF > 2 for non-correlative processes.

In the case where, in the description of neural system dynamics, we operate with
f [α(DF)] (i.e., operating simultaneously with several fractal dimensions, on multifractal
manifolds, as in the multifractal theory of motion [14]) instead of DF (i.e., operating with a
single fractal dimension, on monofractal manifolds, as in the case of Nottale’s model), a
number of advantages can be highlighted: the areas of neural system dynamics that are
characterized by a certain fractal dimension, the number of areas in the neural system
dynamics, for which the fractal dimensions are situated in an interval of values, and also
the classes of universality in the neural system dynamics, even when regular or strange
attractors have various aspects.

Now, accepting the scale covariant principle in the description of neural system
dynamics, the conservation law of the specific momentum (i.e., geodesic equations on a
multifractal manifold) takes the form [14]:

d̂V̂i

dt
= ∂tV̂i + V̂ l∂iV̂i +

1
4
(dt)[

2
f (α) ]−1Dlp∂l∂pV̂i = 0 (8)

The explicit form of Dlp depends on the type of multifractalization used. It can be
admitted that the multifractalization process can take place through various stochastic
processes. Amongst the commonly used stochastic processes, the following are mentioned:

(i) Markovian (thus, memoryless) neural processes. This is the case of scale relativity
theory in Nottale’s sense, referring to neural dynamics on monofractal manifolds
(with fractal dimension DF = 2 [13]);

(ii) Non-Markovian (thus, exhibiting memory-like qualities) neural processes. Since neu-
ral processes usually display some sort of memory-related traits, it is then necessary
to operate with mathematical procedures vastly different than the ones mentioned at
point (i). This is the case of the multifractal theory of motion, referring to neural dy-
namics on multifractal manifolds (with various fractal dimensions DF, simultaneously
operating) [14].

In this case, wherein it is possible to generalize many of the previous results [17–29],
the following constraints are admitted:

1
4 (dt)[

2
f (α) ]−1dlp = aδlp,

1
4 (dt)[

2
f (α) ]−1d

lp
= bδlp

(9)

where a and b are two constant coefficients of multifractal type associated to the differential-
nondifferential transition, and δlp is Kronecker’s pseudotensor. Thus, (8) with the restric-
tion (9) yields:

∂tV̂i + V̂ l∂iV̂i + (α + iβ)∂l∂
lV̂i = 0 (10)

If the complex velocity field (2) is expressed in the form

V̂ l = −2iλ∂l lnΨ (11)
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with
λ =

1
4
(a + ib)(dt)[

2
f (α) ]−1 (12)

where Ψ is the state function of multifractal type, (10) becomes:[
∂t −

(
2iλ∂lln Ψ∂l

)
− iλ∂l∂

l
](
−2i∂iln Ψ

)
= 0, i =

√
−1 (13)

In the usual case [13,14], we could not even write this equation because Ψ is non-
differentiable and therefore its derivatives are formally infinite. However, as we have
shown above, the fundamental tool used in scale relativity, which actually aimed to find
a solution for such a problem (at the multifractal space–time coordinate level), can now
similarly be used at a state function level. Specifically, in terms of a multifractal scale-
dependent state function Ψ(λ, t, dt), the various terms of (13) remain finite for all values
of dt 6= 0. We are thus in the same conditions as in the previous calculations involving a
differentiable state function, so that it can finally be integrated in terms of a multifractal
Schrödinger equation that maintains the same form as the differentiable state function:

λ2∂l∂
lΨ + iλ∂tΨ = 0 (14)

This multifractal-type Schrödinger equation has differentiable solutions that come as
a direct consequence of the multifractality of space. Such a result agrees with Berry’s and
Hall’s phases, also similar findings obtained in the framework of usual quantum mechan-
ics [31–33]. In the particular case of fractalization through a Markov-type stochasticization,
i.e., for motions on Peano-type curves at Compton scale resolution:

f [λ(DF)]→ 2, λ =
1
4
(a + ib)(dt)[

2
f (α) ]−1

(a→ 0, f [α(DF)→ 2])→ }
2m0

(15)

with } the reduced Planck constant and m0 the system’s structural unit rest mass, (14) is
reduced to the standard Schrödinger equation:

}2

2m0
∂l∂

lΨ + i}∂tΨ = 0 (16)

Let us note that, although (16) is fundamental in quantum mechanics, and, through it
many neural dynamics can be explained (see [33]), the current context imposes approaching
neural dynamics in a much wider framework, namely the one based on the multifractality
concept.

Now, let us rewrite (14) for the complex conjugate of Ψ, i.e., Ψ, in the form

λ2∂l∂
lΨ + iλ∂tΨ = 0 (17)

By multiplying (14) with Ψ and (17) with Ψ and subtracting them we can obtain the
multifractal-type state densities conservation law:

∂tρ + ∂l

(
ρjl
)
= 0 (18)

where
Ψ Ψ = ρ, jl = iλ

(
Ψ∂lΨ−Ψ∂lΨ

)
(19)

In (18) and (19), ρ is the multifractal-type state density and j is the multifractal-
type state current density. Therefore, in accordance with the above obtained results, the
probability density can become a fundamental concept in the neural dynamics analysis,
substituting thus the concept of definite trajectory.

In the following let us first observe that the multifractal-type Schrödinger equation,
which is a motion equation for the multifractal-type state function Ψ, is invariant with
respect to the multifractal-type Galilei group, in its vectorial form. Then let us observe
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that the same equation is also invariant with respect to the time and spatial coordinate
transformations, which represent a group in itself (different than the multifractal-type
Galilei group). These last transformations are, in the most general case of one-dimensional
neural dynamics, a result of the multifractal-type SL(2R) group structure, but in two
variables with three parameters, through the multifractal-type action [31,32]:

t′ → αt+β
γt+δ , X′ → X

γt+δ (20)

where α, β, γ and δ are real elements.
In accordance with the general mathematical procedures from [31,32], the neural

dynamics may be described through a 2 × 2 matrix, with real elements. In a neural
system, it is obvious that the problem revolves around a family of such matrices, each
of them describing the dynamics of a neural system entity (structural unit). Therefore,
the interactions between the neural system entities can be expressed through relations
between the representative matrices. These relations must contain certain parameters that
characterize the structure of the neural system, adequate to the description of the neural
system dynamics.

It results that the matrix that generates the anharmonic curve [31,32] is a 2 × 2 matrix
with real elements and can be written as:

M =

(
α β
γ δ

)
(21)

Let us observe that the elements of this matrix contain, in an unspecified form, both
the physical parameters of the neural system implying neural dynamics and the possible
initial conditions of the neural dynamics. Precisely, the elements of matrix (21) depend
on the scale resolution in the sense given by the multifractal theory of motion (the neural
curves are continuous and non-differentiable, i.e., multifractal curves). In this context, the
obtained results will also be in a sense of the previously mentioned theory.

A set of such matrices, with variable elements, may be admitted as relevant for the
neural dynamics, for example by means of a fundamental spinor set, given by 2 × 2
matrices that describe the neural dynamics. This description is analogous to the spinor
description of spacetime (for details see [34]).

In this situation, any 2 × 2 matrix of form (21) can be written as a linear combination
with real coefficients, implying two special matrices, i.e., the unity matrix U and a null-trace
matrix I (from involution), which means that:

M = λU + µI (22)

The involution U has some important properties: its squared form is a multiple of U
and also the fixed points of its homographic action are the ones of matrix M.

In Equation (22) we could freely choose a parameterization in which the squared form
of U can be the unity matrix, up to a sign. In this case the elements of I may be expressed
with the help of only two parameters, which represent the asymptotic directions of matrix
M. If the asymptotic directions are complex, being of the form u± iv, the representation
of the matrix I through asymptotic directions is of a spherical type. Then, satisfying the
above-mentioned properties implies, for the matrix I, the form:

I = 1
v

(
−u −u2 − v2

1 u

)
, I = −U (23)

This kind of representation for neural dynamics has an important advantage. When
focusing on the physics of the issue, the model allows for an explicit differential description
of the neural dynamics, through matrix geometry, identical to the metric geometry of space
at a certain moment, the hyperbolic geometry of the second type [35].
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The representation of neural dynamics through 2 × 2 matrices then leads us to a
natural matrix of the matrices’ space, for example the Killing–Cartan metric of SL(2R)-type
algebra of these matrices [36]. The basic co-vectors of such geometry are, in the general
case of matrix (21), given by external differential forms:

ω1 = αdβ−βdα
∆ , ω2 = αdγ−γdα

∆ , ω3 = βdγ−γdβ
∆

∆ = αγ− β2 (24)

In the parameterization given through (22) and (23), (24) becomes:

ω1 = 1
v dΦ + sin2Φ du

v2 − sinΦcosΦ dv
v2

ω2 = 2 u
v dΦ + 2sin2Φ udu+vdv

v2 + 2sinΦcosΦ vdu−udv
v2

ω3 = u2+v2

v dΦ + sin2Φ (u2−v2)du+2uvdv
v2 + sinΦcosΦ

2uvdu−(u2−v2)dv
v2

(25)

where:
tanΦ =

µ

λ
(26)

Related to these co-vectors, the metric is given by the squared form:

ds2 = ω1ω3 −
(

ω2

2

)2

= dΦ2 − sin2Φ
du2 + dv2

v2 (27)

Therefore, for as long as the neural system is defined by the core property admitted by
physics to be essential, i.e., the neural dynamics, its description mode is a metric geometry.
In such conjecture, the metric is given through (27), where Φ is an arbitrary “phase”, and u
and v are “coordinates” obtained from the (local) dynamics of the neural system, in the
previously described method.

This kind of approach for neural dynamics can certainly be delegated to harmonic
maps, from the neural system to the space. As soon as the mapping mode of the neural
system on the available space is solved, the quantities Φ, u, v and the elements of the
matrix family that represent the neural system are obtained. In principle, a “position”
function will be sufficient to correctly define a specific quantity of the neural system.

The difficulty of representing the neural system in this form can be overcome though
the harmonic map X = (X1, X2, X3)→ ξ =

(
ξ1, ξ2, ξ3) which can provide a set of quanti-

ties as functions of spatial coordinates. Let us now consider the functional corresponding
to the harmonic mapping principle (for details see [37]):

J =
1
2

∫ ∫ ∫
d3X

√
|h| hil(X)

∂ξµ∂ξν

∂Xi∂Xl gµν(ξ) (28)

where h is the space metric and g is the associated metric of the neural system. Cancelling
the first degree variation of this functional, in relation to the spatial coordinates, gives us
the harmonic map. Taking into account the fact that the space is Euclidean and using (26)
for the metric tensor associated to the neural system, the integrand of (28) can be written as:

√
|h| hil(X)

∂ξµ∂ξν

∂Xi∂Xl gµν(ξ) ≡ ∂lΦ∂lΦ−
(

sinΦ
v

)2[
∂lu∂lu + ∂lν∂lν

]
(29)

where the usual notation ∂l denotes the gradient.
Relation (29) can also be written in the form:

√
hhil(X)

∂ξµ∂ξν

∂Xi∂Xl gµν(ξ) = ∂lΦ∂lΦ +
sinΦ2

4
dhd}

(h− })2 (30)

where
h = u + iv, } = u− iv (31)
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Now, the phase coherence of neural dynamics, given by restrictions (which corre-
sponds with the beginnings and evolutions of the eclamptic/epileptic seizures)

Φ = const, Φ 6= 2nπ, n = 1, 2 . . . (32)

transforms (30) so that

√
hhil(X)

∂ξµ∂ξν

∂Xi∂Xl gµν(ξ) ∼ const
dhd}

(h− })2 (33)

The restriction (32) can be correlated with scale transitions.
This last expression represents a harmonic map from the Euclidian space to the hy-

perbolic (Lobacevski) plane, in the Beltrami–Poincaré representation. The Euler equations
corresponding to the functional (32) are

(h− })∂l∂
lh = 2∂lh∂lh (34)

and its complex conjugate. It can be observed that

h = i
coshx + e−iωsinhx
oshx− e−iωsinhx

(35)

verifies (33), where x is a solution of the Laplace equation in phase space and ω is arbitrary
(in the sense that it does not depend on the position in space).

In Figure 5 the real signals and the simulated ones are represented in a comparative
manner. The fractal model is a good fit when attempting to recreate signals that are naturally
chaotic. There have been extensive publications on the dynamics of the model [38–47]
and it has been shown that the system with single fractality degrees evolves from simple
oscillatory behavior to a quasi-chaotic state. This means that a single stream cannot reach
chaos. However, the real signal measured from EEG contains a bundle of streams with
different properties (amplitude, frequency, fractality degree), therefore we need to apply
the same approach when reconstructing the EEG signals in the multifractal paradigm. By
using an n-type polynom combination with a randomly selected weight, we reconstructed
the signals seen in Figure 5. The multifractal model developed here has a control parameter,
ω. By varying the control parameters for the complex multi-stream simulations, we observe
a transition similar to the one seen empirically. Each signal is constructed by the polynomic
superposition of 6 multifractal strips, each characterized by a different fractal parameter.
The normal behavior is a chaotic signal that transitions with the variation of ω towards a
sinusoidal-type signal when a fractal resonance is reached between the multifractal streams.
This resonating region is unstable and can be found for a small range of values, immediately
followed by fractal behavior. From this analysis we can conclude that in the multifractal
paradigm the epileptic seizure is defined by a maximum resonance-type state when all
the streams move synchronously. This is not an equilibrium state but it is described by
clear transition scenarios that can be used to further our understanding of these types of
abnormal behavior of the brain.
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4. Conclusions

Two complementary operational procedures have been proposed for evaluating and
predicting the onset of epileptic and eclamptic seizures. The first procedure analyzes the
electrical activity of the brain (EEG signals) using nonlinear dynamic methods, while the
second reconstructs any type of EEG signal based on scale relativity theory. Using the
non-linear dynamics method, the analysis performed on the signals corresponding to the
electroencephalogram of an epileptic patient showed that some statistical parameters, such
as standard deviation or variance, as well as the spatial–temporal entropy, can be used to
predict in advance the onset of the epileptic seizure. To do this, these parameters (or at least
one of them) need to be monitored permanently, and the warning system must be coupled
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to a system of automatic intervention on the patient, by drugs or electrophysiology, so that
the onset of the seizure is prevented. Thus, the basis of a functional electronic device, which
can be carried and controlled permanently by the epileptic patient, can be laid (as soon as a
sensor notices the occurrence of a dynamic behavior of a pre-seizure type, a treatment that
avoids the onset of the epileptic seizure can be administered).

Using methods of scale relativity theory (for example: the time homographic invari-
ance of a Schrödinger equation of a multifractal type, harmonic mappings from the usual
space to the hyperbolic one, etc.) various types of EEG signals have been reconstructed. In
such context, the explicit differential descriptions of the brain activity in the form of 2 × 2
matrices with real elements were disclosed through the in-phase coherences at various scale
resolutions, especially the complex brain neuronal dynamics and sequences of epileptic
and eclamptic seizures. In such context, the phase coherence at various scale resolutions
has been assimilated to scale transitions established by different fractal degrees of the
motion curves (movement curves associated with the dynamics of the neural system’s
structural units).
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