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Abstract: In this paper, using weight functions as well as employing various techniques from real
analysis, we establish a few equivalent conditions of two kinds of Hardy-type integral inequalities
with nonhomogeneous kernel. To prove our results, we also deduce a few equivalent conditions of
two kinds of Hardy-type integral inequalities with a homogeneous kernel in the form of applications.
We additionally consider operator expressions. Analytic inequalities of this nature and especially
the techniques involved have far reaching applications in various areas in which symmetry plays a
prominent role, including aspects of physics and engineering.
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1. Introduction

In 1925, by introducing one pair of conjugate exponents (p, q), Hardy [1] established a
well-known extension of Hilbert’s integral inequality as follows.

If p > 1, 1
p + 1

q = 1, f (x), g(y) ≥ 0,

0 <
∫ ∞

0
f p(x)dx < ∞ and 0 <

∫ ∞

0
gq(y)dy < ∞,

then: ∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dxdy <
π

sin(π/p)

(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
, (1)

where the constant factor π
sin(π/p) is the best possible.

Inequalities (1) as well as Hilbert’s integral inequality (for p = q = 2 in (1), cf. [2]) are
important in analysis and its applications (cf. [3,4]).

Almost ten years later, in 1934, Hardy et al. proved an extension of (1) with the
general homogeneous kernel of degree −1 as k1(x, y) (cf. [3], Theorem 319). The following
Hilbert-type integral inequality with the general nonhomogeneous kernel was established.

If h(u) > 0, φ(σ) =
∫ ∞

0 h(u)uσ−1du ∈ R+, then:
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∫ ∞

0

∫ ∞

0
h(xy) f (x)g(y)dxdy

< φ

(
1
p

)(∫ ∞

0
xp−2 f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q
, (2)

where the constant factor φ( 1
p ) is the best possible (cf. [3], Theorem 350).

In 1998, by introducing an independent parameter λ > 0, Yang proved an extension
of Hilbert’s integral inequality with the kernel 1

(x+y)λ (cf. [5,6]). In 2004, by introducing

another pair of conjugate exponents (r, s), Yang [7] was able to estabish an extension of (1)
with the kernel 1

xλ+yλ (λ > 0). In the paper [8], a further extension of (1) was proved along

with the result of the paper [5] with the kernel 1
(x+y)λ . Several papers (cf. [9–14]) provided

some extensions of (1) with parameters. In 2009, Yang presented the following extension
of (1) (cf. [15,16]).

If λ1 + λ2 = λ ∈ R = (−∞, ∞), kλ(x, y) is a non-negative homogeneous function of
degree −λ, satisfying:

kλ(ux, uy) = u−λkλ(x, y) (u, x, y > 0),

and:
k(λ1) =

∫ ∞

0
kλ(u, 1)uλ1−1du ∈ R+ = (0, ∞),

then we have: ∫ ∞

0

∫ ∞

0
kλ(x, y) f (x)g(y)dxdy

< k(λ1)

(∫ ∞

0
xp(1−λ1)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−λ2)−1gq(y)dy

) 1
q
, (3)

where the constant factor k(λ1) is the best possible.
For λ = 1, kλ(x, y) = 1

x+y , λ1 = 1
q , λ2 = 1

p , (3) reduces to (1). The following extension
of (2) was proven: ∫ ∞

0

∫ ∞

0
h(xy) f (x)g(y)dxdy

< φ(σ)

(∫ ∞

0
xp(1−σ)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−σ)−1gq(y)dy

) 1
q
, (4)

where the constant factor φ(σ) is the best possible (cf. [17]).
For σ = 1

p , (4) reduces to (2).
Some equivalent inequalities of (3) and (4) are considered in [16]. In 2013, Yang [17]

also studied the equivalency between (3) and (4) by adding a condition. In 2017, Hong [18]
proved an equivalent condition between (3) and a few parameters. Some similar results
were obtained in [19–28].

Remark 1 (cf. [17]). If h(xy) = 0, for xy > 1, then:

φ(σ) =
∫ 1

0
h(u)uσ−1du = φ1(σ) ∈ R+,

and (4) reduces to the following Hardy-type integral inequality with nonhomogeneous kernel:
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∫ ∞

0
g(y)

(∫ 1
y

0
h(xy) f (x)dx

)
dy

< φ1(σ)

(∫ ∞

0
xp(1−σ)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−σ)−1gq(y)dy

) 1
q
, (5)

where the constant factor φ1(σ) is the best possible.
If h(xy) = 0, for xy < 1, then:

φ(σ) =
∫ ∞

1
h(u)uσ−1du = φ2(σ) ∈ R+,

and (4) reduces to the following kind of Hardy-type integral inequality with nonhomogeneous kernel:

∫ ∞

0
g(y)

(∫ ∞

1
y

h(xy) f (x)dx

)
dy

< φ2(σ)

(∫ ∞

0
xp(1−σ)−1 f p(x)dx

) 1
p
(∫ ∞

0
yq(1−σ)−1gq(y)dy

) 1
q
, (6)

where the constant factor φ2(σ) is the best possible.

In this paper, using weight functions as well as employing various techniques from
real analysis, we establish a few equivalent conditions of two kinds of Hardy-type integral
inequalities with the nonhomogeneous kernel:

| ln xy|β
(xy)λ + 1

(β > −1, λ > 0).

To prove our results, we also deduce a few equivalent conditions of two kinds of
Hardy-type integral inequalities with a homogeneous kernel in the form of applications.
We additionally consider operator expressions. Analytic inequalities of this nature and
especially the techniques involved have far reaching applications in various areas in which
symmetry plays a prominent role, including aspects of physics and engineering.

2. Two Lemmas

For β > −1, λ > 0, we set

h(u) :=
| ln u|β
uλ + 1

(u > 0).

For σ > 0, by the Lebesgue term-by-term integration theorem, we derive that:

k1(σ) : =
∫ 1

0
h(u)uσ−1du =

∫ 1

0

(− ln u)β

uλ + 1
uσ−1du

=
∫ 1

0
(− ln u)β

∞

∑
k=0

(−1)kukλ+σ−1du

=
∫ 1

0
(− ln u)β

∞

∑
i=0

(u2iλ − u(2i+1)λ)uσ−1du

=
∞

∑
i=0

∫ 1

0
(− ln u)β(u2iλ − u(2i+1)λ)uσ−1du

=
∞

∑
k=0

(−1)k
∫ 1

0
(− ln u)βukλ+σ−1du.
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Setting v = (kλ + σ)(− ln u) in the above integral, we obtain:

k1(σ) =
∞

∑
k=0

(−1)k

(kλ + σ)β+1

∫ ∞

0
vβe−vdv

=
Γ(β + 1)

λβ+1 ξ
(

β + 1,
σ

λ

)
∈ R+, (7)

where:
Γ(η) :=

∫ ∞

0
vη−1e−vdv (η > 0)

stands for the gamma function and:

ξ(s, a) :=
∞

∑
k=0

(−1)k

(k + a)s (Re(s), a > 0),

which is a function very well known for its applications in analytic number theory.
For 0 < σ < λ, µ = λ− σ > 0, setting v = 1

u , by (7), we obtain that:

k2(σ) : =
∫ ∞

1
h(u)uσ−1du

=
∫ ∞

1

(ln u)β

uλ + 1
uσ−1du =

∫ 1

0

(− ln v)β

vλ + 1
vµ−1dv

=
Γ(β + 1)

λβ+1 ξ(β + 1,
µ

λ
) = k1(µ) ∈ R+. (8)

In the sequel , we assume that p > 1, 1
p + 1

q = 1, σ1, µ1 ∈ R.

Lemma 1. If β > −1, σ, λ > 0, there exists a constant M1, such that for any non-negative
measurable functions f (x) and g(y) in (0, ∞), the following inequality:

∫ ∞

0
g(y)

[∫ 1
y

0

| ln xy|β
(xy)λ + 1

f (x)dx

]
dy

≤ M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q

(9)

holds true. Then, we have σ1 = σ, and M1 ≥ k1(σ).

Proof. If σ1 > σ, then for n ≥ 1
σ1−σ (n ∈ N), we set the following two functions:

fn(x) :=

{
xσ+ 1

pn−1, 0 < x ≤ 1
0, x > 1

, gn(y) :=

{
0, 0 < y < 1

yσ1− 1
qn−1, y ≥ 1

,

and deduce that:

J1 :=
[∫ ∞

0
xp(1−σ)−1 f p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1gq

n(y)dy
] 1

q
= n.

Setting u = xy, we obtain:
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I1 : =
∫ ∞

0
gn(y)

(∫ 1
y

0

| ln xy|β
(xy)λ + 1

fn(x)dx

)
dy

=
∫ ∞

1

(∫ 1
y

0

(− ln xy)β

(xy)λ + 1
xσ+ 1

pn−1dx

)
yσ1− 1

qn−1dy

=
∫ ∞

1
y(σ1−σ)− 1

n−1dy
∫ 1

0

(− ln u)β

uλ + 1
uσ+ 1

pn−1du,

and then by (9), we have:

∫ ∞

1
y(σ1−σ)− 1

n−1dy
∫ 1

0

(− ln u)β

uλ + 1
uσ+ 1

pn−1du

= I1 ≤ M1 J1 = M1n < ∞. (10)

Since (σ1 − σ)− 1
n ≥ 0, it follows that:∫ ∞

1
y(σ1−σ)− 1

n−1dy = ∞.

By (10), in view of: ∫ 1

0

(− ln u)β

uλ + 1
uσ+ 1

pn−1du > 0,

we deduce that ∞ < ∞, which is a contradiction.
If σ1 < σ, then for n ≥ 1

σ−σ1
(n ∈ N), we set the following two functions:

f̃n(x) :=

{
0, 0 < x < 1

xσ− 1
pn−1, x ≥ 1

, g̃n(y) :=

{
yσ1+

1
qn−1, 0 < y ≤ 1

0, y > 1
,

and obtain:

J̃1 :=
[∫ ∞

0
xp(1−σ)−1 f̃ p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1 g̃q

n(y)dy
] 1

q
= n.

Setting u = xy, we obtain:

Ĩ1 : =
∫ ∞

0
f̃n(x)

[∫ 1
x

0

| ln xy|β
(xy)λ + 1

g̃n(y)dy

]
dx

=
∫ ∞

1

[∫ 1
x

0

(− ln xy)β

(xy)λ + 1
yσ1+

1
qn−1dy

]
xσ− 1

pn−1dx

=
∫ ∞

1
x(σ−σ1)− 1

n−1dx
∫ 1

0

(− ln u)β

uλ + 1
uσ1+

1
qn−1du,

and then by Fubini’s theorem and (9), we have:

∫ ∞

1
x(σ−σ1)− 1

n−1dx
∫ 1

0

(− ln u)β

uλ + 1
uσ1+

1
qn−1du

= Ĩ1 =
∫ ∞

0
g̃n(y)

[∫ 1
y

0

| ln xy|β f̃n(x)
(xy)λ + 1

dx

]
dy ≤ M1 J̃1 = M1n. (11)

Since (σ− σ1)− 1
n ≥ 0, it follows that:∫ ∞

1
x(σ−σ1)− 1

n−1dx = ∞.

By (11), in view of the fact that
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∫ 1

0

(− ln u)β

uλ + 1
uσ1+

1
qn−1du > 0,

we obtain that ∞ < ∞, which is a contradiction.
Hence, we conclude that σ1 = σ.
For σ1 = σ, we reduce (11) as follows:

M1 ≥
∫ 1

0

(− ln u)β

uλ + 1
uσ+ 1

qn−1du. (12)

Since: {
(− ln u)β

uλ + 1
uσ+ 1

qn−1
}∞

n=1

is non-negative and increasing in (0, 1], by Levi’s theorem, we derive that:

M1 ≥ lim
n→∞

∫ 1

0

(− ln u)β

uλ + 1
uσ+ 1

qn−1du

=
∫ 1

0
lim

n→∞

(− ln u)β

uλ + 1
uσ+ 1

qn−1du = k1(σ).

This completes the proof of the lemma.

Lemma 2. If β > −1, 0 < σ < λ, there exists a constant M2, such that for any non-negative
measurable functions f (x) and g(y) in (0, ∞), the following inequality:

∫ ∞

0
g(y)

[∫ ∞

1
y

| ln xy|β
(xy)λ + 1

f (x)dx

]
dy

≤ M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q

(13)

holds true. Then, we have σ1 = σ, and M2 ≥ k2(σ).

Proof. If σ1 < σ, then for n ≥ 1
σ−σ1

(n ∈ N), we set two functions f̃n(x) and g̃n(y) as in
Lemma 1, and derive that:

J̃1 =

[∫ ∞

0
xp(1−σ)−1 f̃ p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1 g̃q

n(y)dy
] 1

q
= n.

Setting u = xy, we obtain:

Ĩ2 : =
∫ ∞

0
g̃n(y)

[∫ ∞

1
y

| ln xy|β
(xy)λ + 1

f̃n(x)dx

]
dy

=
∫ 1

0

[∫ ∞

1
y

(ln xy)β

(xy)λ + 1
xσ− 1

pn−1dx

]
yσ1+

1
qn−1dy

=
∫ 1

0
y(σ1−σ)+ 1

n−1dy
∫ ∞

1

(ln u)β

uλ + 1
uσ− 1

pn−1du,

and then by (13), we deduce that:

∫ 1

0
y(σ1−σ)+ 1

n−1dy
∫ ∞

1

(ln u)β

uλ + 1
uσ− 1

pn−1du

= Ĩ2 ≤ M2 J̃1 = M2n < ∞. (14)
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Since (σ1 − σ) + 1
n ≤ 0, it follows that:

∫ 1

0
y(σ1−σ)+ 1

n−1dy = ∞.

By (14), in view of ∫ ∞

1

(ln u)β

uλ + 1
uσ− 1

pn−1du > 0,

we have ∞ < ∞, which is a contradiction.
If σ1 > σ, then for n ≥ 1

σ1−σ (n ∈ N), we set two sequences of fn(x) and gn(y) as in
Lemma 1, and obtain:

J1 =

[∫ ∞

0
xp(1−σ)−1 f p

n (x)dx
] 1

p
[∫ ∞

0
yq(1−σ1)−1gq

n(y)dy
] 1

q
= n.

Setting u = xy, we obtain:

I2 : =
∫ ∞

0
fn(x)

[∫ ∞

1
x

| ln xy|β
(xy)λ + 1

gn(y)dy
]

dx

=
∫ 1

0

[∫ ∞

1
x

(ln xy)β

(xy)λ + 1
yσ1− 1

qn−1dy
]

xσ+ 1
pn−1dx

=
∫ 1

0
x(σ−σ1)+

1
n−1dx

∫ ∞

1

(ln u)β

uλ + 1
uσ1− 1

qn−1du,

and then, by Fubini’s theorem and (13), we have:

∫ 1

0
x(σ−σ1)+

1
n−1dx

∫ ∞

1

(ln u)β

uλ + 1
uσ1− 1

qn−1du

= I2 =
∫ ∞

0
gn(y)

[∫ ∞

1
y

| ln xy|β fn(x)
(xy)λ + 1

dx

]
dy ≤ M2 J1 = M2n. (15)

Since (σ− σ1) +
1
n ≤ 0, it follows that

∫ 1

0
x(σ−σ1)+

1
n−1dx = ∞.

By (15), in view of the fact that:

∫ ∞

1

(ln u)β

uλ + 1
uσ1− 1

qn−1du > 0,

we have ∞ < ∞, which is a contradiction.
Hence, we conclude the fact that σ1 = σ.
For σ1 = σ, we reduce (15) as follows:

M2 ≥
∫ ∞

1

(ln u)β

uλ + 1
uσ− 1

qn−1du. (16)

Since: {
(ln u)β

uλ + 1
uσ− 1

qn−1
}∞

n=1
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is non-negative and increasing in [1, ∞), still by Levi’s theorem, we have:

M2 ≥ lim
n→∞

∫ ∞

1

(ln u)β

uλ + 1
uσ− 1

qn−1du

=
∫ ∞

1
lim

n→∞

(ln u)β

uλ + 1
uσ− 1

qn−1du = k2(σ).

This completes the proof of the Lemma.

3. Main Results and Corollaries

Theorem 1. If β > −1, σ, λ > 0, then the following conditions are equivalent.
(i) There exists a constant M1, such that for any f (x) ≥ 0, satisfying:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following Hardy-type integral inequality of the first kind with nonhomogeneous kernel:

J :=

{∫ ∞

0
ypσ1−1

[∫ 1
y

0

| ln xy|β
(xy)λ + 1

f (x)dx

]p

dy

} 1
p

< M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (17)

(ii) There exists a constant M1, such that for any f (x), g(y) ≥ 0, satisfying:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq(1−σ1)−1gq(y)dy < ∞,

we have the following inequality:

I :=
∫ ∞

0
g(y)

[∫ 1
y

0

| ln xy|β
(xy)λ + 1

f (x)dx

]
dy

< M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (18)

(iii) σ1 = σ.
If Condition (iii) holds, then M1 ≥ k1(σ) and the constant factor:

M1 = k1(σ) =
Γ(β + 1)

λβ+1 ξ(β + 1,
σ

λ
)

in (17) and (18) is the best possible.

Proof. (i)⇒ (ii). By Hölder’s inequality (cf. [29,30]), we obtain:

I =
∫ ∞

0

[
yσ1− 1

p

∫ 1
y

0

| ln xy|β
(xy)λ + 1

f (x)dx

](
y

1
p−σ1 g(y)

)
dy

≤ J
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (19)

Then by (17), we have (18).
(ii)⇒ (iii). By Lemma 1, we have σ1 = σ.
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(iii)⇒ (i). Setting u = xy, we obtain the following weight function:

ω1(σ, y) : = yσ
∫ 1

y

0

| ln xy|β
(xy)λ + 1

xσ−1dx

=
∫ 1

0

(− ln u)β

uλ + 1
uσ−1du = k1(σ)(y > 0). (20)

By Hölder’s inequality with weight and (20), for y ∈ (0, ∞), we have:[∫ 1
y

0

| ln xy|β
(xy)λ + 1

f (x)dx

]p

=

{∫ 1
y

0

| ln xy|β
(xy)λ + 1

[
y(σ−1)/p

x(σ−1)/q
f (x)

][
x(σ−1)/q

y(σ−1)/p

]
dx

}p

≤
∫ 1

y

0

| ln xy|β
(xy)λ + 1

yσ−1 f p(x)
x(σ−1)p/q

dx

[∫ 1
y

0

| ln xy|β
|(xy)λ − 1|

xσ−1dx
y(σ−1)q/p

]p−1

=
[
ω1(σ, y)yq(1−σ)−1

]p−1 ∫ 1
y

0

| ln xy|β
(xy)λ + 1

yσ−1

x(σ−1)p/q
f p(x)dx

= (k1(σ))
p−1y−pσ+1

∫ 1
y

0

| ln xy|β
|(xy)λ − 1|

yσ−1

x(σ−1)p/q
f p(x)dx. (21)

If (21) takes the form of equality for some y ∈ (0, ∞), then (cf. [30]) there exist constants
A and B, such that they are not all zero and:

A
yσ−1

x(σ−1)p/q
f p(x) = B

xσ−1

y(σ−1)q/p
a.e. in R+.

We suppose that A 6= 0 (otherwise B = A = 0). It follows that:

xp(1−σ)−1 f p(x) = yq(1−σ) B
Ax

a.e. in R+,

which contradicts the fact that:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞.

Hence, (21) takes the form of strict inequality.
For σ1 = σ, by (21) and Fubini’s theorem, we obtain:

J < (k1(σ))
1
q

{∫ ∞

0

[∫ 1
y

0

| ln xy|β
(xy)λ + 1

yσ−1

x(σ−1)p/q
f p(x)dx

]
dy

} 1
p

= (k1(σ))
1
q

{∫ ∞

0

[∫ 1
x

0

| ln xy|β
(xy)λ + 1

yσ−1

x(σ−1)(p−1)
dy

]
f p(x)dx

} 1
p

= (k1(σ))
1
q

[∫ ∞

0
ω1(σ, x)xp(1−σ)−1 f p(x)dx

] 1
p

= k1(σ)

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
.

Setting M1 ≥ k1(σ), (17) follows.
Therefore, Condition (i), Condition (ii) and Condition (iii) are equivalent.
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When Condition (iii) is satisfied, if there exists a constant factor M1 ≤ k1(σ), such
that (18) is valid, then by Lemma 1 we have M1 ≥ k1(σ). Then, the constant factor
M1 = k1(σ) in (18) is the best possible. The constant factor M1 = k1(σ) in (17) is still
the best possible. Otherwise, by (19) (for σ1 = σ), we can conclude that the constant factor
M1 = k1(σ) in (18) is not the best possible.

Setting y = 1
Y , G(Y) = Yλ−2g( 1

Y ), µ1 = λ− σ1 in Theorem 1, then replacing Y (resp.
G(Y)) by y (resp. g(y)), we derive the following Corollary.

Corollary 1. If β > −1, σ, λ > 0, then the following conditions are equivalent.
(i) There exists a constant M1, such that for any f (x) ≥ 0, satisfying:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following Hardy-type inequality of the first kind with homogeneous kernel:

{∫ ∞

0
ypµ1−1

[∫ y

0

| ln(x/y)|β
xλ + yλ

f (x)dx
]p

dy

} 1
p

< M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (22)

(ii) There exists a constant M1, such that for any f (x), g(y) ≥ 0, satisfying:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq(1−µ1)−1gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
g(y)

[∫ y

0

| ln(x/y)|β
xλ + yλ

f (x)dx
]

dy

< M1

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−µ1)−1gq(y)dy

] 1
q
; (23)

(iii) µ1 = µ.
If Condition (iii) holds, then we have M1 ≥ k1(σ), and the constant M1 = k1(σ) in (22) and

(23) is the best possible.

Similarly, we obtain the following weight function:

ω2(σ, y) : = yσ
∫ ∞

1
y

| ln xy|βxσ−1

(xy)λ + 1
dx

=
∫ ∞

1

lnβ u
uλ + 1

uσ−1du = k2(σ)(y > 0),

and then in view of Lemma 2 and in a similar manner, we obtain the following theorem:

Theorem 2. If β > −1, 0 < σ = λ− µ < λ, then the following conditions are equivalent.
(i) There exists a constant M2, such that for any f (x) ≥ 0, satisfying:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,
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we have the following Hardy-type inequality of the second kind with the nonhomogeneous kernel:

{∫ ∞

0
ypσ1−1

[∫ ∞

1
y

| ln xy|β
(xy)λ + 1

f (x)dx

]p

dy

} 1
p

< M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
. (24)

(ii) There exists a constant M2, such that for any f (x), g(y) ≥ 0, satisfying:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq(1−σ1)−1gq(y)dy < ∞,

we have the following inequality:

∫ ∞

0
g(y)

[∫ ∞

1
y

| ln xy|β
(xy)λ + 1

f (x)dx

]
dy

< M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−σ1)−1gq(y)dy

] 1
q
. (25)

(iii) σ1 = σ.
If Condition (iii) holds, then we have M2 ≥ k2(σ), and the constant factor:

M2 = k2(σ) =
Γ(β + 1)

λβ+1 ξ
(

β + 1,
µ

λ

)
= k1(µ)

in (24) and (25) is the best possible.

Setting:

y =
1
Y

, G(Y) = Yλ−2g
(

1
Y

)
, µ1 = λ− σ1

in Theorem 2, then replacing Y (resp. G(Y)) by y (resp. g(y)), we derive the follow-
ing Corollary.

Corollary 2. If β > −1, 0 < σ = λ− µ < λ, then the following conditions are equivalent.
(i) There exists a constant M2, such that for any f (x) ≥ 0, satisfying:

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞,

we have the following Hardy-type inequality of the second kind with homogeneous kernel:

{∫ ∞

0
ypµ1−1

[∫ ∞

y

| ln(x/y)|β
xλ + yλ

f (x)dx
]p

dy

} 1
p

< M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
; (26)

(ii) There exists a constant M2, such that for any f (x), g(y) ≥ 0, satisfying

0 <
∫ ∞

0
xp(1−σ)−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
yq(1−µ1)−1gq(y)dy < ∞,
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we have the following inequality:

∫ ∞

0
g(y)

[∫ ∞

y

| ln(x/y)|β
xλ + yλ

f (x)dx
]

dy

< M2

[∫ ∞

0
xp(1−σ)−1 f p(x)dx

] 1
p
[∫ ∞

0
yq(1−µ1)−1gq(y)dy

] 1
q
. (27)

(iii) µ1 = µ.
If Condition (iii) holds, then we have M2 ≥ k2(σ), and the constant M2 = k2(σ) = k1(µ)

in (26) and (27) is the best possible.

4. Operator Expressions

For σ, λ > 0, µ = λ− σ, we set the following functions:

ϕ(x) := xp(1−σ)−1, ψ(y) := yq(1−σ)−1, φ(y) := yq(1−µ)−1,

and:
ψ1−p(y) = ypσ−1, φ1−p(y) = ypµ−1 (x, y ∈ R+).

Define the following real normed linear spaces:

Lp,ϕ(R+) :=

{
f : || f ||p,ϕ :=

(∫ ∞

0
ϕ(x)| f (x)|pdx

) 1
p
< ∞

}
,

Lq,ψ(R+) =

{
g : ||g||q,ψ :=

(∫ ∞

0
ψ(y)|g(y)|qdy

) 1
q
< ∞

}
,

Lq,φ(R+) =

{
g : ||g||q,φ :=

(∫ ∞

0
φ(y)|g(y)|qdy

) 1
q
< ∞

}
,

Lp,ψ1−p(R+) =

{
h : ||h||p,ψ1−p =

(∫ ∞

0
ψ1−p(y)|h(y)|pdy

) 1
p
< ∞

}
,

Lq,φ1−p(R+) =

{
h : ||h||p,φ1−p =

(∫ ∞

0
φ1−p(y)|h(y)|pdy

) 1
p
< ∞

}
.

(a) In view of Theorem 1 (setting σ1 = σ), for f ∈ Lp,ϕ(R+), setting:

h1(y) :=
∫ 1

y

0

| ln xy|β
(xy)λ + 1

f (x)dx (y ∈ R+),

by (17), we have:

||h1||p,ψ1−p =

[∫ ∞

0
ψ1−p(y)hp

1 (y)dy
] 1

p
< M1|| f ||p,ϕ < ∞. (28)

Definition 1. Define a Hardy-type integral operator of the first kind with the nonhomogeneous
kernel:

T(1)
1 : Lp,ϕ(R+)→ Lp,ψ1−p(R+)

as follows.
For any f ∈ Lp,ϕ(R+), there exists a unique representation:

T(1)
1 f = h1 ∈ Lp,ψ1−p(R+),
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satisfying T(1)
1 f (y) = h1(y), for any y ∈ R+.

In view of (28), it follows that:

||T(1)
1 f ||p,ψ1−p = ||h1||p,ψ1−p ≤ M1|| f ||p,ϕ,

and then the operator T(1)
1 is bounded satisfying

||T(1)
1 || = sup

f ( 6=0)∈Lp,ϕ(R+)

||T(1)
1 f ||p,ψ1−p

|| f ||p,ϕ
≤ M1.

If we define the formal inner product of T(1)
1 f and g as follows:

(T(1)
1 f , g) :=

∫ ∞

0

[∫ 1
y

0

| ln xy|β
(xy)λ + 1

f (x)dx

]
g(y)dy,

then we can rewrite Theorem 1 as follows.

Theorem 3. For β > −1, σ, λ > 0, the following conditions are equivalent.
(i) There exists a constant M1, such that for any f (x) ≥ 0, f ∈ Lp,ϕ(R+), || f ||p,ϕ > 0, we

have the following inequality:

||T(1)
1 f ||p,ψ1−p < M1|| f ||p,ϕ. (29)

(ii) There exists a constant M1, such that for any f (x), g(y) ≥ 0, f ∈ Lp,ϕ(R+), g ∈ Lq,ψ(R+),
|| f ||p,ϕ, ||g||q,ψ > 0, we have the following inequality:

(T(1)
1 f , g) < M1|| f ||p,ϕ||g||q,ψ. (30)

We also have that ||T(1)
1 || = k1(σ) ≤ M1.

(b) In view of Corollary 1 (setting µ1 = µ), for f ∈ Lp,ϕ(R+), considering the function:

h2(y) :=
∫ y

0

| ln(x/y)|β
xλ + yλ

f (x)dx (y ∈ R+),

by (22), we have:

||h2||p,φ1−p =

[∫ ∞

0
φ1−p(y)hp

2 (y)dy
] 1

p
< M1|| f ||p,ϕ < ∞. (31)

Definition 2. Define a Hardy-type integral operator of the first kind with the homogeneous kernel:

T(2)
1 : Lp,ϕ(R+)→ Lp,φ1−p(R+)

as follows.
For any f ∈ Lp,ϕ(R), there exists a unique representation:

T(2)
1 f = h2 ∈ Lp,φ1−p(R+),

satisfying T(2)
1 f (y) = h2(y), for any y ∈ R+.

In view of (31), it follows that:
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||T(2)
1 f ||p,φ1−p = ||h2||p,φ1−p ≤ M1|| f ||p,ϕ,

and then the operator T(2)
1 is bounded satisfying:

||T(2)
1 || = sup

f ( 6=0)∈Lp,ϕ(R+)

||T(2)
1 f ||p,φ1−p

|| f ||p,ϕ
≤ M1.

If we define the formal inner product of T(2)
1 f and g as follows:

(T(2)
1 f , g) :=

∫ ∞

0

[∫ y

0

| ln(x/y)|β
xλ + yλ

f (x)dx
]

g(y)dy,

then we can rewrite Corollary 1 as follows.

Corollary 3. For β > −1, σ, λ > 0, the following conditions are equivalent.
(i) There exists a constant M1, such that for any f (x) ≥ 0, f ∈ Lp,ϕ (R+), || f ||p,ϕ > 0, we

have the following inequality:

||T(2)
1 f ||p,φ1−p < M1|| f ||p,ϕ. (32)

(ii) There exists a constant M1, such that for any f (x), g(y) ≥ 0, f ∈ Lp,ϕ(R+), g ∈ Lq,φ (R+),
|| f ||p,ϕ, ||g||q,φ > 0, we have the following inequality:

(T(2)
1 f , g) < M1|| f ||p,ϕ||g||q,φ. (33)

We still have ||T(2)
1 || = k1(σ) ≤ M1.

(c) In view of Theorem 2 (setting σ1 = σ), for f ∈ Lp,ϕ(R+), considering the function:

H1(y) :=
∫ ∞

1
y

| ln xy|β
(xy)λ + 1

f (x)dx (y ∈ R+),

by (24), we have:

||H1||p,ψ1−p =

[∫ ∞

0
ψ1−p(y)Hp

1 (y)dy
] 1

p
< M2|| f ||p,ϕ < ∞. (34)

(A. Raigorodskii)

Definition 3. Define a Hardy-type integral operator of the second kind with the nonhomoge-
neous kernel:

T(1)
2 : Lp,ϕ(R+)→ Lp,ψ1−p(R+)

as follows.
For any f ∈ Lp,ϕ(R+), there exists a unique representation:

T(1)
2 f = H1 ∈ Lp,ψ1−p(R+),

satisfying T(1)
2 f (y) = H1(y), for any y ∈ R+.

In view of (34), it follows that:

||T(1)
2 f ||p,ψ1−p = ||H1||p,ψ1−p ≤ M2|| f ||p,ϕ,



Symmetry 2021, 13, 1006 15 of 17

and then the operator T(1)
2 is bounded satisfying:

||T(1)
2 || = sup

f ( 6=0)∈Lp,ϕ(R+)

||T(1)
2 f ||p,ψ1−p

|| f ||p,ϕ
≤ M2.

If we define the formal inner product of T(1)
2 f and g as follows.

(T(1)
2 f , g) :=

∫ ∞

0

[∫ ∞

1
y

(ln xy)β

(xy)λ + 1
f (x)dx

]
g(y)dy,

then we can rewrite Theorem 2 as follows.

Theorem 4. For β > −1, 0 < σ = λ− µ < λ, the following conditions are equivalent.
(i) There exists a constant M2, such that for any f (x) ≥ 0, f ∈ Lp,ϕ(R+), || f ||p,ϕ > 0, we

have the following inequality:

||T(1)
2 f ||p,ψ1−p < M2|| f ||p,ϕ. (35)

(ii) There exists a constant M2, such that for any f (x), g(y) ≥ 0, f ∈ Lp,ϕ(R+), g ∈ Lq,ψ (R+),
|| f ||p,ϕ, ||g||q,ψ > 0, we have the following inequality:

(T(1)
2 f , g) < M2|| f ||p,ϕ||g||q,ψ. (36)

We still have ||T(1)
2 || = k2(σ) ≤ M2.

(d) In view of Corollary 2 (setting µ1 = µ), for f ∈ Lp,ϕ(R+), considering the function:

H2(y) :=
∫ ∞

y

| ln(x/y)|β
xλ + yλ

f (x)dx (y ∈ R+),

by (26), we have:

||H2||p,φ1−p =

[∫ ∞

0
φ1−p(y)Hp

2 (y)dy
] 1

p
< M2|| f ||p,ϕ < ∞. (37)

Definition 4. Define a Hardy-type integral operator of the second kind with the homogeneous kernel:

T(2)
2 : Lp,ϕ(R+)→ Lp,φ1−p(R+)

as follows.
For any f ∈ Lp,ϕ(R), there exists a unique representation:

T(2)
2 f = H2 ∈ Lp,φ1−p(R+),

satisfying T(2)
2 f (y) = H2(y), for any y ∈ R+.

In view of (37), it follows that:

||T(2)
2 f ||p,φ1−p = ||H2||p,φ1−p ≤ M2|| f ||p,ϕ,
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and then the operator T(2)
2 is bounded satisfying.

||T(2)
2 || = sup

f ( 6=0)∈Lp,ϕ(R+)

||T(2)
2 f ||p,φ1−p

|| f ||p,ϕ
≤ M2.

If we define the formal inner product of T(2)
1 f and g as follows:

(T(2)
2 f , g) :=

∫ ∞

0

[∫ ∞

y

[ln(x/y)]β

xλ + yλ
f (x)dx

]
g(y)dy,

then we can rewrite Corollary 2 as follows.

Corollary 4. For β > −1, 0 < σ = λ− µ < λ, the following conditions are equivalent.
(i) There exists a constant M2, such that for any f (x) ≥ 0, f ∈ Lp,ϕ(R+), || f ||p,ϕ > 0, we

have the following inequality:

||T(2)
2 f ||p,φ1−p < M2|| f ||p,ϕ. (38)

(ii) There exists a constant M2, such that for any f (x), g(y) ≥ 0, f ∈ Lp,ϕ (R+), g ∈
Lq,φ (R+), || f ||p,ϕ, ||g||q,φ > 0, we have the following inequality:

(T(2)
2 f , g) < M2|| f ||p,ϕ||g||q,φ. (39)

We still have ||T(2)
2 || = k2(σ) = k1(µ) ≤ M2.
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