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Abstract: In this study, the numerical solution of a space-fractional parabolic partial differential
equation was considered. The investigation of the solution was made by focusing on the space-
fractional diffusion equation (SFDE) problem. Note that the symmetry of an efficient approximation
to the SFDE based on a numerical method is related to the compatibility of a discretization scheme
and a linear system solver. The application of the one-dimensional, linear, unconditionally stable,
and implicit finite difference approximation to SFDE was studied. The general differential equation
of the SFDE was discretized using the space-fractional derivative of Caputo with a half-sweep finite
difference scheme. The implicit approximation to the SFDE was formulated, and the formation of
a linear system with a coefficient matrix, which was large and sparse, is shown. The construction
of a general preconditioned system of equation is also presented. This study’s contribution is the
introduction of a half-sweep preconditioned successive over relaxation (HSPSOR) method for the
solution of the SFDE-based system of equation. This work extended the use of the HSPSOR as an
efficient numerical method for the time-fractional diffusion equation, which has been presented in the
5th North American International Conference on industrial engineering and operations management
in Detroit, Michigan, USA, 10–14 August 2020. The current work proposed several SFDE examples to
validate the performance of the HSPSOR iterative method in solving the fractional diffusion equation.
The outcome of the numerical investigation illustrated the competence of the HSPSOR to solve the
SFDE and proved that the HSPSOR is superior to the standard approximation, which is the full-sweep
preconditioned SOR (FSPSOR), in terms of computational complexity.

Keywords: implicit finite difference scheme; Caputo’s partial derivative; HSPSOR; space-fractional;
fractional diffusion equation

1. Introduction

In recent years, many effective mathematical physics models have been developed
using the theory and applying the partial fractional derivatives. In most of the fractional
partial-differential-equation-related works of literature, partial fractional derivatives appear
in many anomalous phenomena modelling and in complex systems theory. Examples
include a fractional mathematical model of the dynamics of the cancer chemotherapy effect
based on both the time instant and the time history [1]; a fractional mathematical model of
the population dynamics among cancer stem cells, tumor cells, healthy cells, the effects
of excess estrogen and the body’s natural immune response on the cell populations [2]; a
fractional mathematical model to investigate the dynamics of tuberculosis between the
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children and the adults [3]; a fractional model an of energy supply-demand system [4]; and
a fractional mathematical model of the COVID-19 pandemic [5].

The success of fractional partial differential equations was attributed to the derivative
order’s generalization, from integer-order to arbitrary order. The fractional derivatives
in the fractional partial differential equations have an effective memory function that
enables many physical phenomena to be described effectively. Fractional partial differential
equations can be categorized as a time-fractional type, a space-fractional type, and a time-
and space-fractional type. Our research focused on investigating the numerical solution of
the space-fractional partial differential equation, particularly the parabolic type equation
such as the space-fractional diffusion equation (SFDE). This research focus came from the
need to discover an efficient solution for the SFDE problem.

Based on our short review of the existing solution methods, many researchers have
suggested the finite-difference method. The method of finite difference can be implicit
or explicit, depending on its stability to obtain the solution [6–10]. Since SFDE involves
changing the time and space of a continuous variable, numerical treatment such as finite
difference discretization is necessary to transform the differential equation into a finite
system of linear equations that a computer can solve. Although SFDE can be solved
without discretization, this research focused on improving an iterative method that is
mostly formulated based on a discretized equation. Furthermore, the iterative method
works best in obtaining an accurate approximate solution when a finite system of equations
is large and complex. Other than the method of finite difference, several methods have
been proposed to solve the space-fractional problems, such as the spectral collocation
method [11], the boundary value method [12], the finite volume method [13], and the
method of lines and splines [14].

In this study, an unconditionally stable implicit finite difference scheme and the β
order Caputo fractional partial derivative were executed to discretize the SFDE and to
obtain the correct approximation equation. The generated system of equation after the
approximation equation was used on the solution domain, which led to a tridiagonal
linear system. Since the sparse and large-scale linear system’s coefficient matrix is difficult
to be solved analytically, an iterative method is employed as an alternative. In terms
of the efficiency of the iterative processes, many authors [8,15,16] have suggested and
debated over several numerical iterative methods. Besides that, the block iteration has been
presented [17] to show the computation cost efficiency improvement by separating systems
of equations. The preconditioned iterative methods have also been widely recognized as
the competent methods for solving linear systems. Thus, the symmetry in solving the SFDE
problem via a numerical method exists in the use of the finite difference discretization
scheme and the iterative method. A finite difference scheme needs to be unconditionally
stable so that the solution can be obtained regardless of the time and space step sizes used.
On the other hand, an iterative method needs to be efficient, which means the accurate
solution of a highly complex linear system can be computed in a short time.

The contribution of this study was to build and examine the efficacy of the half-sweep
preconditioned SOR (HSPSOR) method, which was formulated from the use of implicit
finite difference and the Caputo fractional derivative, for resolving the SFDE implicitly. We
also used the full-sweep preconditioned SOR (FSPSOR) iterative techniques as a control
method to analyze the efficacy of the HSPSOR method. To begin the formulation and the
investigation of the HSPSOR method, we considered the following general form of the
SFDE as follows:

∂U(x, t)
∂t

= A1
∂βU(x, t)

∂xβ
+ A2

∂U(x, t)
∂x

+ A3U(x, t) + B(x, t), (1)

where Ai, i = 1, 2, and 3 were arbitrary constants, and B(x, t) was a known function. Notice
that when the value of β in Equation (1) equals 2, one can get a usual diffusion equation
with a second-order derivative in space. The derivative of order-β for an SFDE usually
lies between 1 < β ≤ 2 to provide flexibility in the study of the effect of the medium and
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the space interaction with the fluid [18]. The solution of Equation (1), which is U(x, t), can
be approximated using the method of finite difference subject to the initial and boundary
conditions as given by:

U(x, 0) = U0, 0 ≤ x ≤ l, (2)

and
U(0, t) = UL, U(l, t) = UR, 0 < t < T. (3)

Before the space-fractional term in Equation (1) is discretized by the finite difference
mean, the following established definitions from the theory of fractional derivatives must
be defined as follows [19]:

Definition 1. Let a real number α > 0, and let the function f be continuous on F′ = (0, ∞)
and integrable on any finite subinterval of F = [0, ∞). Then, for x > 0, the Riemann–Liouville
fractional integral, f with the order α is defined as:

Jα =
1

Γ( α)

∫ x

0
(x− ξ) α−1 f (ξ)dξ. (4)

Definition 2. Let a real number β > 0, such that m− 1 < β ≤ m, where m is a natural number
element. Let the function f be continuous on F′ = (0, ∞) and integrable on any finite subinterval
of F = [0, ∞). Then, for x > 0, the Caputo fractional, f with the order β is defined as:

Dβ
x f (x) =

1
Γ(m− β)

∫ x

0

f m(ξ)

(x− ξ)β−m+1 dξ. (5)

From Definition 2, the following properties hold:

Dβ
x C = 0, (6)

and

Dβ
x xη =

{
0,

Γ(η+1)
Γ(η+1−β)

xη−β,
(7)

where η is an element of natural number and Γ(.) is a gamma function.

2. Approximation to a Space-Fractional Diffusion Equation

Equation (1) approximates the space-fractional term using the Caputo definition and the
second-order half-sweep finite-difference. For more details about half-sweep see [17,20–22].
Suppose that h = l

P with P as any positive integer. Then, the space-fractional term can be
equated as:

∂βU(x, t)
∂xβ

=
1

Γ(2− β)

∫ x

0

∂2U(ξ, t)
∂x2 (x− ξ)1−βdξ, (8)

which is also equivalence to:

1
Γ(2− β)

i−2

∑
j=0, 2,4,...

∫ (j+1)h

jh

Ui+2−j,n − 2Ui−j,n + Ui−2−j,n

2h2 (Ph− ξ)1−βdξ. (9)

Let ϕ = 2h−2

Γ(3−β)
and gβ

j =
(

j
2 + 1

)2−β
−
(

j
2

)2−β
. Then, from Equation (9), we obtain:

∂βU( xi, tn)

∂xβ
= ϕ

i−2

∑
j=0,2,4,...

gβ
j
(
Ui+2−j,n − 2Ui−j,n + Ui−2−j,n

)
. (10)
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Using Equation (10) and the implicit finite difference scheme for the remaining deriva-
tives in Equation (1), the simplified approximation to the SFDE via the finite difference and
Caputo partial derivative can be formulated into:

γUi,n − A1 ϕ
i−2
∑

j=0,2,4,...
gβ

j
(
Ui+2−j,n − 2Ui−j,n + Ui−2−j,n

)
− A2

4h (Ui+2,n −Ui−2,n)

−A3Ui,n − Bi,n = γUi,n−2,
(11)

for i = 2, 4, . . . , P− 2. Equation (11) can be rearranged neatly into:

biUi−2,n + (γi − ci)Ui,n − biUi+2,n − a∗i = fi, (12)

where bi =
A2
4h , γi = ∆t, ci = A3, a∗i = ai

i−2
∑

j=0,2,4,...
gβ

j
(
Ui+2−j,n − 2Ui−j,n +Ui−2−j,n

)
, ai = A1ϕ,

and fi = γUi,n−2 + Bi,n. Based on Equation (12), we can simply state an equation for
n > 3 as:

piUi−6,n + qiUi−4,n + riUi−2,n + siUi,n + viUi+2,n − Ri = fi, (13)

where Ri = ai
i−2
∑

j=0,2,4,...
gβ

j
(
Ui+2−j,n − 2Ui−j,n + Ui−2−j,n

)
, pi = −aig

β
2 , qi = −aig

β
1 + 2aig

β
2 ,

ri = bi − aig
β
2 + 2aig

β
1 − ai, si = −aig

β
1 + 2ai + γ − ci, and vi = −ai − bi. From

Equation (13), the system of the linear equation can be expressed as follows:

AU
∼
= f
∼

, (14)

where

A =



s2 v2
r4 s4 v4
q6 r6 s6 v6
p8 q8 r8 s8 v8

p10 q10 r10 s10 v10
. . . . . . . . . . . . . . .

pP−4 qP−4 rP−4 sP−4 vP−4
pP−2 qP−2 rP−2 sP−2


(P−2)×(P−2)

,

U
∼
=
[

U2 U4 U6 · · · UP−4 UP−2
]T ,

and

f
∼
=
[

f2 − r2U2 f4 + q4U4 f6 + p6U6 · · · fP−4 + RP−4 fP−2 − rP−2UP + Rp−2
]T

3. Half-Sweep Preconditioned SOR Formulation

The system (Equation (14)) is transformed in the form of the linear equation’s precon-
ditioned system as follows:

A∗x
∼
= f ∗
∼

, (15)

where A∗ = ρAρT , f ∗
∼

= ρ f ,
∼

and U = ρTx.

Further, to discover the numerical tridiagonal linear system solutions of Equation (15),
we considered the half-sweep preconditioned SOR (HSPSOR) iterative method. The ρ was
the preconditioned matrix and was given as [23]:

ρ = I + S, (16)
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where

S =



0 −v1 0 0 0 0
0 0 −v2 0 0 0
0 0 0 −v3 0 0

0 0
. . . . . . . . . 0

0 0 0 0 0 −vP−1
0 0 0 0 0 0


(P−1)×(P−1)

.

Meanwhile, I was an identity matrix. The generated coefficient matrix A∗, as in
Equation (15), can be split as follows:

A∗ = D− L−V, (17)

where D, L, and V were the diagonal matrices, the lower triangular, and the upper triangu-
lar, respectively. Considering Equation (17), the HSPSOR iterative method can be rewritten
in the form of:

x
∼
(k+1) = (D−ωL)−1[ωV + (1−ω)D]x(k) + (D−ωL)−1 f ∗

∼
, (18)

where the unknown vector, x
∼
(k+1), was given the solution at the (k + 1)th iteration, and

the relaxation parameters were chosen within the range, 1 < ω < 2. The computational
algorithm of the HSPSOR iterative method was as follows.

Algorithm 1 The HSPSOR iterative method.
i. Initialize U

∼
← 0 and ε← 10−10.

ii.
For j = 0, 1, . . . , n, and for i = 0, 1, 2, . . . , P, calculate Equation (18), then approximate solutions :

U
∼
(k+1) = ρT x

∼
(k+1).

If the convergence criterion is satisfied, that is :

‖ U
∼
(k+1) −U

∼
(k) ‖≤ ε,

go to Step (iii). Otherwise, go back to Step (ii).
iii Stop.

4. Numerical Evaluation via C++

In this section, we implemented two examples of SFDE, using C++ programming
to verify the HSPSOR method’s effectiveness. The C++ programming language was
used to code Algorithm 1 because of a better coding organization and comprehension,
which enabled numerical computation to be conducted accurately. Furthermore, C++
programming was preferred for this work compared to other mathematics applications
such as Mathematica and Maple because the number of iterations and the execution time
could be recorded and optimized according to the code arrangement.

For the comparison purpose, we considered a standard or full-sweep preconditioned
SOR by taking into account the number of iterations, the execution time (seconds), and
the maximum error at the values of β = 1.2, β = 1.5, and β = 1.8. The tolerance error
considered in Algorithm 1 and the C++ simulation was set at ε = 10−10. This stopping
condition was fixed for the different mesh sizes used, M; that is, 128, 256, 512, 1024, and
2048. There was no best value of ε because, when a large value of ε was chosen such
as ε = 10−2, the number of iterations became small, and the result became inaccurate.
Moreover, when a small value of ε was used, such as ε = 10−100, the number of iterations
became large without improving the accuracy. Therefore, ε = 10−10 was selected arbitrarily
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to check the convergence of the solution. The solution can only be obtained through the
simulation of Algorithm 1 after the iteration process was completed successfully.

Example 1. Let us consider the SFDE’s initial boundary value problem:

∂U(x, t)
∂t

= A1
∂Uβ(x, t)

∂xβ
+ B(x, t), (19)

Example 2. Let us consider the SFDE’s initial boundary value problem:

∂U(x, t)
∂t

= Γ(1.2)xβ ∂Uβ(x, t)
∂xβ

+ 3x2(2x− 1)e−t, (20)

Based on Tables 1 and 2, it can be observed that for the five different mesh sizes and
the three different β used for the simulation of FSPSOR and HSPSOR to solve Example 1
and 2, respectively, the number of iterations and the execution time required by HSPSOR
are always smaller than FSPSOR. These results illustrated the success of the Half-Sweep
finite difference scheme with Caputo’s space fractional to approximate the solution of SFDE
with lower computational complexity. The maximum errors produced by PSOR iteration
to solve both Example 1 and 2 decreases with the increasing mesh sizes for β = 1.8 and 1.5.
This means that with these values of β, the numerical solution of SFDE via HSPSOR can be
computed nearly to its exact solution with a sufficiently large mesh size is used. However,
for β = 1.2, the maximum error is getting larger when the mesh is made to be narrower.
This shows the sign of limitation from the use of PSOR iteration, and a modification on
PSOR iteration needs to be conducted to handle this problem.

Table 1. Computing the results with β = 1.2, 1.5, and 1.8.

M Method

β = 1.2 β = 1.5 β = 1.8

K Time Max
Error K Time Max

Error K Time Max
Error

128
FSPSOR 34 0.84 2.37 × 10−2 80 1.90 6.20 × 10−4 246 5.76 3.99 × 10−2

HSPSOR 23 0.38 2.37 × 10−2 37 0.54 6.99 × 10−4 94 2.36 3.99 × 10−2

256
FSPSOR 67 5.33 2.44 × 10−2 211 17.84 5.69 × 10−4 806 67.75 3.97 × 10−2

HSPSOR 34 2.73 2.44 × 10−2 94 6.90 6.21 × 10−4 303 34.65 3.97 × 10−2

512
FSPSOR 129 41.43 2.47 × 10−2 566 182.83 5.36 × 10−4 2635 843.91 3.96 × 10−2

HSPSOR 67 22.65 2.47 × 10−2 246 86.09 5.69 × 10−4 988 421.58 3.96 × 10−2

1024
FSPSOR 278 472.35 2.49 × 10−2 1514 898.29 5.13 × 10−4 11,829 2099.87 3.95 × 10−2

HSPSOR 141 206.58 2.49 × 10−2 655 434.72 5.36 × 10−4 5413 1033.78 3.95 × 10−2

2048
FSPSOR 608 1219.76 2.50 × 10−2 4052 4299.73 5.02 × 10−4 47,289 8852.28 3.93 × 10−2

HSPSOR 305 608.80 2.50 × 10−2 2188 2133.43 5.13 × 10−4 23,143 4425.90 3.93 × 10−2
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Table 2. Computing the results with β = 1.2, 1.5, and 1.8.

M Method

β = 1.2 β = 1.5 β = 1.8

K Time Max
Error K Time Max

Error K Time Max
Error

128
FSPSOR 34 0.84 2.37 × 10−2 80 1.90 6.20 × 10−4 246 5.76 3.99 × 10−2

HSPSOR 23 0.38 2.37 × 10−2 37 0.54 6.99 × 10−4 94 2.36 3.99 × 10−2

256
FSPSOR 67 5.33 2.44 × 10−2 211 17.84 5.69 × 10−4 806 67.75 3.97 × 10−2

HSPSOR 34 2.73 2.44 × 10−2 94 6.90 6.21 × 10−4 303 34.65 3.97 × 10−2

512
FSPSOR 129 41.43 2.47 × 10−2 566 182.83 5.36 × 10−4 2635 843.91 3.96 × 10−2

HSPSOR 67 22.65 2.47 × 10−2 246 86.09 5.69 × 10−4 988 421.58 3.96 × 10−2

1024
FSPSOR 278 472.35 2.49 × 10−2 1514 898.29 5.13 × 10−4 11,829 2099.87 3.95 × 10−2

HSPSOR 141 206.58 2.49 × 10−2 655 434.72 5.36 × 10−4 5413 1033.78 3.95 × 10−2

2048
FSPSOR 608 1219.76 2.50 × 10−2 4052 4299.73 5.02 × 10−4 47,289 8852.28 3.93 × 10−2

HSPSOR 305 608.80 2.50 × 10−2 2188 2133.43 5.13 × 10−4 23,143 4425.90 3.93 × 10−2

5. Conclusions

This paper describes the mathematical derivation of the implicit finite difference in
Caputo’s approximation equations in which this approximation equation leads to a linear
system. By imposing the iterative methods of the FSPSOR and the HSPSOR, based on
observation of all experimental effects, it was evident that the number of iterations of the
HSPSOR decreased by approximately 31.30–85.45 per cent compared with the iterative
methods of the FSPSOR. Meanwhile, the execution time was much quicker, by around
41.18–95.33% more than the FSPSOR method. This implies that, relative to the FSPSOR
iterative methods, the HSPSOR method needs the minimum number of iterations and
computational time. It can be inferred from the precision of both iterative approaches that
their numerical resolutions were in the acceptable domain. When the tabulated numerical
results of the HSPSOR to solve the SFDE was compared against the results from the
application of the HSPSOR on the time-fractional diffusion equation (TFDE) [24], it was
found that the overall maximum errors produced by the HSPSOR in solving the SFDE were
slightly greater than when the HSPSOR was used to solve the TFDE. A thorough study of
the error of the method used will be conducted in the future. From this work, the capability
of the half-sweep finite difference scheme to reduce the computational complexity for
solving space- and time-fractional diffusion equations and the compatibility of the scheme
with the PSOR iteration was shown.
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