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Abstract: In this note, we discuss symmetric brackets on skew-symmetric algebroids associated
with metric or symplectic structures. Given a pseudo-Riemannian metric structure, we describe
the symmetric brackets induced by connections with totally skew-symmetric torsion in the language
of Lie derivatives and differentials of functions. We formulate a generalization of the fundamental
theorem of Riemannian geometry. In particular, we obtain an explicit formula of the Levi-Civita
connection. We also present some symmetric brackets on almost Hermitian manifolds and discuss
the first canonical Hermitian connection. Given a symplectic structure, we describe symplectic
connections using symmetric brackets. We define a symmetric bracket of smooth functions on skew-
symmetric algebroids with the metric structure and show that it has properties analogous to the Lie
bracket of Hamiltonian vector fields on symplectic manifolds.
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1. Introduction

Let M be a differential manifold and SkT∗M denote the k-th symmetric power
of the cotangent bundle of M. On S(TM) =

⊕
k≥0

SkT∗M, there exists the mapping ds :

S(TM) → S(TM) being the symmetrized covariant derivative of a connection ∇ on M,
i.e., dsη = (k + 1) · (Sym ◦∇)η for η ∈ Γ(SkT∗M). This mapping can be written, for
η ∈ Γ(SkT∗M), X1, . . . , Xk+1 ∈ Γ(TM), as follows:

(dsη)(X1, . . . , Xk+1) =
k+1
∑

j=1
Xj(η(X1, . . . X̂j . . . , Xk+1)) (1)

− ∑
i<j

η(
〈

Xi : Xj
〉∇, X1, . . . X̂i . . . X̂j . . . , Xk+1),

where
〈X : Y〉∇ = ∇XY +∇YX (2)

for X, Y ∈ Γ(TM). Thus, ds can be written in the Koszul-type form (1) shown above.
This form is a symmetric equivalent of the exterior derivative operator where the role
of the Lie bracket of vector fields is taken over by the symmetric bracket (2). We add that
the Koszul-type shape of ds for tangent bundles was first obtained by Heydari, Boroojerdian,
and Peyghan in [1] and next under the study of generalized gradients on Lie algebroids
in the sense of Stein–Weiss in [2]. However, ds in the case of tangent bundles was introduced
by Sampson in [3]. This mapping on tangent bundles was discussed by several authors
when studying the Lichnerowicz-type Laplacian on symmetric tensors, cf. [4,5].
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Observe that the symmetric product 〈X : Y〉∇ = ∇XY +∇YX satisfies the Leibniz
rule 〈X : f Y〉∇ = f 〈X : Y〉∇ + X( f )Y and

∇XY = 1
2 ([X, Y] + 〈X : Y〉∇) + 1

2 T∇(X, Y)

for X, Y ∈ Γ(TM), f ∈ C∞(M), and where T∇ denote the torsion of∇. Thus, the symmetric
product induced by∇ is a summand of the connection. Our goal is to examine symmetric
brackets for connections. In particular, the area of our interest is the discovery of explicit
forms of symmetric brackets. Torsion-free connections, such as the Levi-Civita connection
or symplectic connections, can be described completely by suitable symmetric brackets.
The Levi-Civita connection is the basis of many constructions of linear connections; therefore,
the symmetric bracket of this connection will be one of the first objects of our interest. We will
also give examples of symmetric products that define symplectic connections.

Linear connections are the subject of geometric problems not only in geometric struc-
tures on a tangent bundle to a differential manifold but also in others such as Lie algebroids,
in particular Lie algebras, or more general structures such as anchored vector bundles with
skew-symmetric brackets. Therefore, our general discussion of symmetric brackets related
to linear connections is in the framework of skew-symmetric algebroids.

An anchored vector bundle (A, $A) over a manifold M is a vector bundle A over M
equipped with a homomorphism of vector bundles $A : A→ TM over the identity, which
is called an anchor. If, additionally, in the space Γ(A) of smooth sections of A we have R-
bilinear skew-symmetric mapping [·, ·] : Γ(A)× Γ(A)→ Γ(A) associated with the anchor
with the following derivation law

[X, f ·Y] = f · [X, Y] + ($A ◦ X)( f ) ·Y (3)

for X, Y ∈ Γ(A), f ∈ C∞(M), we say that (A, $A, [·, ·]) is a skew-symmetric algebroid over M.
If the anchor preserves [·, ·] and the Lie bracket [·, ·]TM of vector fields on M, i.e.,

$A ◦ [X, Y] = [$A ◦ X, $A ◦Y]TM for X, Y ∈ Γ(A), a skew-symmetric algebroid is an almost
Lie algebroid. Any skew-symmetric algebroid in which [·, ·] satisfies the Jacobi identity is a
Lie algebroid in the sense of Pradines, who discovered them as infinitesimal parts of differ-
entiable groupoids [6] (for the general theory of Lie algebroids, we refer to the Mackenzie
monographs [7,8]). Thus, Lie algebroids are simultaneous generalizations of integrable
distributions on the one hand and Lie algebras on the other. Anchored vector bundles,
in particular almost Lie algebroids, are studied by Marcela Popescu and Paul Popescu,
among others, in [9–12] and recently in [13], in which the Chern character for almost
Lie algebroids is considered. However, the concept of skew-symmetric algebroids was
introduced by Kosmann-Schwarzbach and Magri in [14] on the level of finitely gener-
ated projective modules over commutative and associative algebras with unit and under
the name pre-Lie algebroids. Skew-symmetric algebroids (under the same name pre-Lie
algebroids) were examined by Grabowski and Urbański in [15,16], where a concept of
general algebroids, which have an important role in analytical mechanics, was also intro-
duced. Using general algebroids instead of Lie algebroids, one can describe a larger family
of systems, both in the Lagrangian and Hamiltonian formalisms [17]. In this paper, we use
the terminology of skew-symmetric algebroid which comes from de León, Marrero, and
de Diego in [18], in which linear almost Poisson structures (also discussed in [14–16]) are
applied to nonholonomic mechanical systems.

Given an anchored vector bundle, we can associate a connection. Given a skew-
symmetric algebroid, we can associate a connection with a torsion. An A-connection in a vector
bundle E→ M is an R-bilinear map∇ : Γ(A)× Γ(E)→ Γ(E) with the following properties:

∇ f ·X(u) = f · ∇X(u),

∇X( f · u) = f · ∇X(u) + ($A ◦ X)( f ) · u
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for any X ∈ Γ(A), f ∈ C∞(M), u ∈ Γ(E). The torsion of an A-connection∇ in A is the ten-
sor T∇ ∈ Γ(

∧2 A∗ ⊗ A) defined by T∇(X, Y) = ∇XY −∇YX − [X, Y] for X, Y ∈ Γ(A).
We say that an A-connection is torsion-free if its torsion equals zero.

In the article [19] by Enrietti, Fino, and Vezzoni, the connections on Lie algebras,
understood precisely as anchored bundles with skew-symmetric brackets, are examined.
Such research motivates the indication of the properties of connections on more general
structures involving both Lie algebras and differential manifolds.

An important algebraic structure that provides further motivations for the study of connec-
tions on skew-symmetric algebroids is the special algebroid structure determined by an almost
complex manifold. Namely, an almost complex structure J : TM→ TM on 2n-dimensional
manifold M defines a new skew-symmetric bracket [[X, Y]]J = [JX, Y] + [X, JY]− J[X, Y] giv-
ing a skew-symmetric algebroid structure in TM with J as an anchor (cf. [14]). The fulfillment
of Jacobi’s identity by the bracket [[·, ·]]J is equivalent to the integrability of J. Thus, structures
of skew-symmetric algebroids naturally appear in geometric problems.

We now describe the sections of this paper. In Section 2, we discuss the substitution op-
erator, the Lie derivative operator, and the exterior derivative operator on the general
structure of a skew-symmetric algebroid. We also consider the symmetrized covariant
derivative ds determined by a connection. Symmetrized covariant derivatives depend
on symmetric products designated by the connection. In Section 3, we extend the concept of
symmetric brackets to anchored bundles and the associated symmetric Lie derivative and
ds to the whole tensor bundle. We note that ds satisfy the Cartan-type formulas analogous
to those on exterior forms. The primary goal of Section 4 is to obtain the explicit formula
for the symmetric bracket defined by the metric connection. As a result, we obtain an ex-
plicit formula for a symmetric bracket defined by a connection with totally skew-symmetric
torsion. Section 5 deals with metric connections on skew-symmetric algebroids with an
additional symmetric bracket. We show that the condition for connections with totally
skew-symmetric torsion to be compatible with the metric is that the (alternating) Lie deriva-
tive of the metric should be equal to the minus of the symmetric Lie derivative of the metric.
We also extend the fundamental theorem of Riemannian geometry to skew-symmetric
algebroids equipped with a metric structure. In a particular case, this theorem implies
the existence of the only torsion-free connection compatible with the metric, which is called
the Levi-Civita connection associated with the metric. In consequence, we give an explicit
formula for a metric connection with totally skew-symmetric torsion using the language
of symmetric product. To describe this symmetric product, we use the Lie derivative and
the exterior derivative operator induced by the structure of the skew-symmetric algebroid
and their symmetric counterparts.

In Section 6, we consider an almost Hermitian structure and some symmetric brackets
associated with connections that are compatible with the metric structure and the almost
complex structure. We consider two structures of the skew-symmetric algebroid in the al-
most Hermitian manifold (M, g, J). The first structure is the tangent bundle with the iden-
tity as an anchor and with the Lie bracket of vector fields. The second skew-symmetric
algebroid structure TMJ induced by the almost complex structure J, where J is the anchor
and the bracket is associated with the Nijenhuis tensor, was introduced in [14]. We also
discuss the first canonical Hermitian connection ∇ and obtain a formula for ∇ in the case
of nearly Kähler manifolds using the properties of symmetric brackets. Moreover, we show
the dependence of the Bismut connection in Hermitian manifolds on the structure of the
skew-symmetric algebroid TMJ . The torsion of this connection depends on the exterior
differential of the Kähler form in TMJ .

Section 7 deals with symplectic connections on skew-symmetric algebroids addi-
tionally equipped with a symplectic form. A symplectic connection as a torsion-free
connection is determined completely by a skew-symmetric bracket in a given algebroid
and some symmetric brackets. Finding symmetric brackets that define symmetric con-
nections is our goal. We use the idea of constructing symplectic connections noticed by
Tondeur in [20] and by Bieliavsky, Cahen, Gutt, Rawnsley, and Schwachhöfer in [21].
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We show that this idea leads to connections that are determined by the affine sum of two
symmetric brackets. The first of them is a symmetric bracket for a certain initial torsion-free
connection ∇0, while the second is a symmetric bracket of the connection, which is a dual
to ∇0 with respect to the symplectic form. In addition to general considerations, we con-
sider symplectic connections on symplectic manifolds and on skew-symmetric algebras,
which contain the family of symplectic Lie algebras. We give an example of the symplectic
connection on a 4-dimensional symplectic Lie algebra r2r2 being the double direct product
of 2-dimensional non-abelian Lie algebra r2 = aff(R) of the group of affine transforma-
tions of the real line (cf. [22,23]). We note that the symmetric bracket associated with this
symplectic connection defines a structure of Jordan algebra in r2r2.

Motivations for the considerations in Section 8 come from Poisson geometry, in partic-
ular from symplectic geometry. In a given Poisson manifold, the Lie bracket of Hamiltonian
vector fields is the Hamiltonian vector field defined by the Poisson bracket of smooth
functions. We show that the analogical property holds on skew-symmetric algebroids over
a manifold M with a metric g for the symmetric bracket 〈·, ·〉LC defined by the Levi-Civita
connection associated with g. We define a symmetric bracket (·, ·) : C∞(M)× C∞(M)→
C∞(M) of smooth functions on M, which has the property that 〈grad f : grad h〉LC =
grad( f , h) for f , h ∈ C∞(M). We consider in particular the case of a symplectic manifold
where we introduce a symmetric bracket in the algebra of Hamiltonian vector fields and
show that it has analogous properties to the Lie bracket of Hamiltonian vector fields.

2. The Exterior Derivative Operator and the Symmetrized Covariant Derivative

Let (A, $A, [·, ·]) be a skew-symmetric algebroid over a manifold M. The substitution
operator iX : Γ(

⊗k A∗)→ Γ(
⊗k−1 A∗) for X ∈ Γ(A) is defined by

(iXζ)(X1, . . . , Xk−1) = ζ(X, X1, . . . , Xk−1)

for ζ ∈ Γ(
⊗k A∗), X, X1, . . . , Xk−1 ∈ Γ(A).

The (alternating) Lie derivative La
X : Γ(

⊗k A∗)→ Γ(
⊗k A∗) for X ∈ Γ(A) is defined by

(La
XΩ)(X1, . . . , Xk) = ($A ◦ X)(Ω(X1, . . . , Xk))−

k
∑

i=1
Ω(X1, . . . , [X, Xi], . . . , Xk)

for Ω ∈ Γ(
⊗k A∗), X1, . . . , Xk ∈ Γ(A). Notice that La

X(η) ∈ Γ(
∧

A∗) if η ∈ Γ(
∧

A∗).
Moreover, let ∇ : Γ(A)× Γ(A) → Γ(A) be an A-connection in A. We define the A-

connection ∇̄ in the dual bundle in a classical way by the following formula

(∇̄Xω)Y = ($A ◦ X)(ω(Y))−ω(∇XY)

for ω ∈ Γ(A∗), X, Y ∈ Γ(A). Next, by the Leibniz rule, we extend this connection to the A-
connection in the whole tensor bundle

⊗
A∗, which will also be denoted by ∇. Then, for

ζ ∈ Γ(
⊗k A∗), X, X1, . . . , Xk ∈ Γ(A),

(∇Xζ)(X1, . . . , Xk) = ($A ◦ X)(ζ(X1, . . . , Xk))−
k

∑
j=1

ζ(X1, . . . ,∇XXj, . . . , Xk).

Now, we define the operator ∇ : Γ(
⊗k A∗)→ Γ(

⊗k+1 A∗) by

(∇ζ)(X1, X2 . . . , Xk+1) =
(
∇X1 ζ

)
(X2, . . . , Xk+1).
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We recall that the exterior derivative operator on the skew-symmetric algebroid
(A, $A, [·, ·]) is defined by

(daη)(X1, . . . , Xk+1) =
k+1
∑

j=1
(−1)j+1(ρA ◦ Xj)

(
η(X1, . . . X̂j . . . , Xk+1)

)
(4)

+ ∑
i<j

(−1)i+jη
([

Xi, Xj
]
, X1, . . . X̂i . . . X̂j . . . , Xk+1

)
for η ∈ Γ(

∧k A∗), X1, . . . , Xk+1 ∈ Γ(A). Associated with a skew-symmetric algebroid
(A, $A, [·, ·]) is the Jacobiator Jac[·,·] : Γ(A) × Γ(A) × Γ(A) → Γ(A) of the bracket [·, ·]
given by

Jac[·,·](X, Y, Z) = [[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X]

for X, Y, Z ∈ Γ(A). If the bracket [·, ·] satisfies the Jacobi identity, i.e., Jac[·,·] = 0, da ◦
da = 0 (discussed in [24]). If ∇ is torsion-free A-connection in A, then da can be written
as the alternation of the operator ∇ (cf. [2]), i.e., da = (k + 1) · (Alt ◦∇) on Γ(

∧k A∗),
where Alt is the alternator given by (Alt ζ)(X1, . . . , Xk) =

1
k! ∑

σ∈Sk

sgn σ ζ(Xσ(1), . . . , Xσ(k))

for ζ ∈ Γ(
⊗k A∗). Equivalently,

(daη)(X1, . . . , Xk+1) =
k+1
∑

j=1
(−1)j+1

(
∇Xj η

)(
X1, . . . X̂j . . . , Xk+1

)
for η ∈ Γ(

∧k A∗), X1, . . . , Xk+1 ∈ Γ(A).
Here, we recall the classical Cartan’s formulas:

Lemma 1. For any X, Y ∈ Γ(A),

(a) La
X = iXda + daiX and

(b) La
XiY − iYLa

X = i[X,Y].

The symmetrized covariant derivative is

ds = (k + 1) · (Sym ◦∇) : Γ(Sk A∗)→ Γ(Sk+1 A∗)

which is the symmetrization of ∇ up to a constant on the symmetric power bundle, where
Sym is the symmetrizer defined by (Sym ζ)(X1, . . . , Xk) = 1

k! ∑
σ∈ Sk

ζ(Xσ(1), . . . , Xσ(k)) for

ζ ∈ Γ(
⊗k A∗). Equivalently,

(dsη)(X1, . . . , Xk+1) =
k+1
∑

j=1

(
∇Xj η

)(
X1, . . . X̂j . . . , Xk+1

)
(5)

for η ∈ Γ(Sk A∗), X1, . . . , Xk+1 ∈ Γ(A). We recall that ds in the case of tangent bundles
was introduced by Sampson in [3], in which a symmetric version of Chern’s theorem was
proved. This mapping on tangent bundles was discussed in [1], in which a Frölicher–
Nijenhuis bracket for vector-valued symmetric tensors was also discussed and in [25],
in which the Dirac-type operator on symmetric tensors was considered. One can check that
for η ∈ Γ(Sk A∗), X1, . . . , Xk+1 ∈ Γ(A), the following Koszul-type formula holds:

(dsη)(X1, . . . , Xk+1) =
k+1
∑

j=1
(ρA ◦ Xj)

(
η(X1, . . . X̂j . . . , Xk+1)

)
− ∑

i<j
η
(〈

Xi : Xj
〉∇, X1, . . . X̂i . . . X̂j . . . , Xk+1

)
,
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where 〈X : Y〉∇ = ∇XY +∇YX for X, Y ∈ Γ(A). This shape of ds in the case A = TM was
discovered by Heydari, Boroojerdian, and Peyghan in [1]. The symmetric R-bilinear form

〈· : ·〉∇ : Γ(A)× Γ(A) −→ Γ(A), 〈X : Y〉∇ = ∇XY +∇YX

is called the symmetric product or the symmetric bracket induced by the A-connection∇.
The symmetric product in the case A = TM was first introduced by Crouch in [26].
However, the symmetric product for Lie algebroids was first considered in the context of
control systems by Cortés and Martínez in [27]. Observe that

〈X : f ·Y〉∇ = f · 〈X : Y〉∇ + ($A ◦ X)( f ) ·Y

for all X, Y ∈ Γ(A) and f ∈ C∞(M). Therefore, 〈· : ·〉 satisfies the Leibniz-kind rule.
We add that Lewis in [28] gives some interesting geometrical interpretation of the symmet-
ric product associated with the geodesically invariant property of a distribution. We say
that a smooth distribution D on a manifold M with an affine connection∇TM is geodesically
invariant if for every geodesic c : I → M satisfying the property c′(s) ∈ Dc(s) for some
s ∈ I, we have c′(s) ∈ Dc(s) for every s ∈ I. Lewis proved in [28] that a distribu-
tion D on a manifold M equipped with an affine connection ∇TM is geodesically invariant
if and only if the symmetric product induced by ∇TM is closed under D.

3. Symmetric Bracket. Symmetric Lie Derivative

In this section, we introduce the concepts of a symmetric bracket and the related
mapping ds and the symmetric Lie derivative defined on the whole tensor bundle of a given
skew-symmetric algebroid. Implemented operators satisfy the Cartan properties analogous
to those fulfilled by the exterior derivative and the Lie derivative.

Let (A, $A, [·, ·]) be a skew-symmetric algebroid over a manifold M. A symmetric
bracket on the anchored vector bundle (A, $A) is an R-bilinear symmetric mapping

〈· : ·〉 : Γ(A)× Γ(A)→ Γ(A)

satisfying the following Leibniz-kind rule:

〈X : f Y〉 = f 〈X : Y〉+ ($A ◦ X)( f )Y

for X, Y ∈ Γ(A), f ∈ C∞(M). Let us assume that the skew-symmetric algebroid
(A, $A, [·, ·]) is equipped with a symmetric bracket 〈· : ·〉 : Γ(A)× Γ(A)→ Γ(A).

We define ds : Γ(
⊗k A∗)→ Γ(

⊗k+1 A∗) on the whole tensor bundle by

(dsΩ)(X1, . . . , Xk+1) =
k+1
∑

j=1
(ρA ◦ Xj)

(
Ω(X1, . . . X̂j . . . , Xk+1)

)
− ∑

i<j
Ω
(

X1, . . . X̂i . . . ,
〈

Xi : Xj
〉
, . . . , Xk+1

)
for Ω ∈ Γ(

⊗k A∗), X1, . . . , Xk+1 ∈ Γ(A). We denote the restriction of ds to the symmetric
power bundle S(A) by the same symbol.

The symmetric Lie derivative Ls
X : Γ(

⊗k A∗)→ Γ(
⊗k A∗) for X ∈ Γ(A) is defined by

(Ls
XΩ)(X1, . . . , Xk) = ($A ◦ X)(Ω(X1, . . . , Xk))−

k
∑

i=1
Ω(X1, . . . , 〈X : Xi〉, . . . , Xk)

for Ω ∈ Γ(
⊗k A∗), X1, . . . , Xk ∈ Γ(A). Notice that the image Ls

X(ϕ) of a symmetric tensor
ϕ is also a symmetric tensor.

By using definitions, one can prove that the symmetric Lie derivative satisfies the fol-
lowing Cartan’s identities analogous to these Cartan identities on exterior forms:
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Lemma 2. For any X, Y ∈ Γ(A),

(a) Ls
X = iXds − dsiX and

(b) Ls
XiY − iYLs

X = i〈X:Y〉.

Moreover, the symmetric Lie derivative has the following properties:

Lemma 3. For f ∈ C∞(M), X ∈ Γ(A), ω ∈ Γ(A∗), we have

(a) Ls
f ·Xω = f · Ls

Xω− (iXω) · ds f and
(b) Ls

X( f ·ω) = f · Ls
Xω + ($A ◦ X)( f ) ·ω.

4. The Symmetric Brackets Induced by Connections Associated with a
Metric Structure

Let (A, $A, [·, ·]) be a skew-symmetric algebroid over a manifold M equipped with
a pseudo-Riemannian metric g ∈ Γ(S2 A∗) in the vector bundle A and an A-connection ∇
in A. Let 〈· : ·〉∇ be the symmetric product induced by ∇ and ds the symmetrized co-
variant derivative. A connection ∇ on is said to be compatible with the metric g if ∇g = 0.
The pseudo-Riemannian metric defines two homomorphisms of vector bundles

[ : A→ A∗, ] : A∗ −→ A

by
[(X) = iX g, g(](ω), X) = ω(X)

for X ∈ Γ(A), ω ∈ Γ(A∗), respectively. For any X ∈ Γ(A), the 1-form iX g = g(X, ·) will
be denoted, briefly, by X[.

We say that∇ is a connection with totally skew-symmetric torsion with respect to a pseudo-

Riemannian metric g if the tensor Tg ∈ Γ(
⊗3

A∗) given by

Tg(X, Y, Z) = g(T∇(X, Y), Z)

for X, Y, Z ∈ Γ(A), is a 3-form on A, i.e., Tg ∈ Γ(
∧3 A∗).

Theorem 1. Let X, Z ∈ Γ(A). Then,

g(∇XX, Z) = g(](La
XX[ − 1

2 da(g(X, X)), Z)− g(T∇(X, Z), X)

+(∇g)(Z, X, X)− 1
2 (d

sg)(X, X, Z).

In particular, if ∇ is a connection with totally skew-symmetric torsion compatible with g, then

∇XX = ](La
XX[ − 1

2 da(g(X, X)). (6)

Proof. Let X, Z ∈ Γ(A). First, observe that

(dsg)(X, X, Z) = 2(∇g)(X, X, Z) + (∇g)(Z, X, X).

Therefore, we have

(∇g)(Z, X, X)− 1
2 (d

sg)(X, X, Z) = 1
2 (∇g)(Z, X, X)− (∇g)(X, X, Z).
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Next, observe that

1
2 (∇g)(Z, X, X)− (∇g)(X, X, Z)

= 1
2 (∇Zg)(X, X)− (∇X g)(X, Z)

= 1
2 $A(Z)(g(X, X))− g(∇ZX, X)− $A(X)(g(X, Z)) + g(∇XX, Z) + g(X,∇XZ)

= 1
2 $A(Z)(g(X, X)) + g(∇XZ−∇ZX− [X, Z], X)

−$A(X)(g(X, Z)) + g([X, Z], X) + g(∇XX, Z).

Since
$A(Z)(g(X, X)) = da(g(X, X))(Z) = g(](da(g(X, X))), Z)

and (
La

XX[
)
(Z) = $A(X)(g(X, Z))− g(X, [X, Z]),

we have

1
2 (∇g)(Z, X, X)− (∇g)(X, X, Z)

= 1
2 da(g(X, X))(Z) + g(T∇(X, Z), X)−

(
La

XX[
)
(Z) + g(∇XX, Z).

Moreover, if ∇ is a metric connection with totally skew-symmetric torsion, then ∇g = 0,
dsg = 0, and

g(T∇(X, Z), X) = −g(T∇(X, X), Z) = 0,

and, in consequence, we obtain (6). This completes the proof.

Applying Theorem 1, we have

Theorem 2. Let X, Y, Z ∈ Γ(A) and let 〈X : Y〉∇ be the symmetric bracket of sections induced
by ∇. Then,

g(〈X : Y〉∇, Z) = g(](La
XY[ + La

YX[ − da(g(X, Y))), Z) (7)

−g(T∇(X, Z), Y)− g(T∇(Y, Z), X)

+2(∇g)(Z, X, Y)− (dsg)(X, Y, Z).

Proof. Using the following polarization formula

〈X : Y〉∇ = ∇X+Y(X + Y)−∇XX−∇YY

and Theorem 1, we obtain

g(〈X : Y〉∇, Z) = g(](La
X+Y(X + Y)[ − 1

2 da(g(X + Y, X + Y)), Z)

−g(T∇(X + Y, Z), X + Y) + (∇g)(Z, X + Y, X + Y)

− 1
2 (d

sg)(X + Y, X + Y, Z)− g(](La
XX[ − 1

2 da(g(X, X)), Z)

+g(T∇(X, Z), X)− (∇g)(Z, X, X) + 1
2 (d

sg)(X, X, Z)

−g(](La
YY[ − 1

2 da(g(Y, Y))

+g(T∇(Y, Z), Y)− (∇g)(Z, Y, Y) + 1
2 (d

sg)(Y, Y, Z).

First, observe that

La
X+Y(X + Y)[ −La

XX[ −La
YY[ = La

XY[ + La
YX[

and
− 1

2 da(g(X + Y, X + Y) + 1
2 da(g(X, X)) + 1

2 da(g(Y, Y) = −da(g(X, Y)).
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Since g is a symmetric tensor and T∇ is skew-symmetric, we conclude that

−g(T∇(X + Y, Z), X + Y) + g(T∇(X, Z), X) + g(T∇(Y, Z), Y)

is equal to
−g(T∇(X, Z), Y)− g(T∇(Y, Z), X).

Moreover,

(∇g)(Z, X + Y, X + Y)− (∇g)(Z, X, X)− (∇g)(Z, Y, Y) = 2(∇g)(Z, X, Y)

and

(dsg)(X, Y, Z) = 1
2 (d

sg)(X, Y, Z) + 1
2 (d

sg)(Y, X, Z)

= 1
2 (d

sg)(X + Y, X + Y, Z)− 1
2 (d

sg)(X, X, Z)− 1
2 (d

sg)(Y, Y, Z).

Hence, it is clear that some summands of g(〈X : Y〉∇, Z) cancel. This establishes (7).

The formula in Theorem 2 gives an explicit one of symmetric bracket defined by any
metric connection with totally skew-symmetric torsion.

Corollary 1. Let ∇ be any metric A-connection in A with totally skew-symmetric torsion with
respect to a pseudo-Riemannian metric g. Then,

〈X : Y〉∇ = ](La
XY[ + La

YX[ − da(g(X, Y))

for X, Y ∈ Γ(A).

5. A General Metric Compatibility Condition of Connections with Totally
Skew-Symmetric Torsion. Fundamental Theorem of Pseudo-Riemannian Geometry
and the Levi-Civita Connection

In this section, we consider skew-symmetric algebroids equipped with a metric
structure and additionally with a symmetric bracket. The considerations in the last sec-
tion show that the given skew-symmetric bracket and the metric define a symmetric bracket.
We would like to note here that some properties hold for any given symmetric bracket.
Thus, the discovery of the symmetric bracket leads to receiving new structure. Using
the symmetric bracket setting by the metric, we will show a generalization of the fun-
damental theorem of the Riemannian geometry, which says that for a given metric and
the 2-form Ω with values in a given algebroid, there is exactly one metric connection
preserving the given metric and whose torsion is equal to Ω. In particular, we will ob-
tain the form of a metric connection with totally skew-symmetric torsion and a formula
for the Levi-Civita connection.

Let (A, $A, [·, ·]) be a skew-symmetric algebroid over a manifold M equipped with
a pseudo-Riemannian metric g ∈ Γ(S2 A∗) in the vector bundle A and a symmetric bracket
〈· : ·〉 : Γ(A)× Γ(A)→ Γ(A). By definition, we recall that the symmetric bracket is an R-
bilinear symmetric mapping which satisfies the following Leibniz-kind rule:

〈X : f Y〉 = f 〈X : Y〉+ ($A ◦ X)( f ) ·Y

for X, Y ∈ Γ(A), f ∈ C∞(M).
Let Ls and ds denote the symmetric Lie derivative and the symmetric covariant

derivative, respectively, and both are induced by 〈· : ·〉.

Theorem 3. Let ∇ be an A-connection in A with totally skew-symmetric torsion with respect to
a pseudo-Riemannian metric g on A given by

∇XY = 1
2 ([X, Y] + 〈X : Y〉) + 1

2 T(X, Y) (8)
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for X, Y ∈ Γ(A), and some T ∈ Γ(
∧2 A∗ ⊗ A). Then,

(iX ◦ ∇)g = 1
2 (L

a
X + Ls

X)g for X ∈ Γ(A).

Proof. Let X, Y, Z ∈ Γ(A). Since T ∈ Γ
(∧2

A∗ ⊗ A
)

is a 2-skew-symmetric tensor with
the property that

g(Y, T(X, Z)) = g(T(X, Z), Y) = −g(T(X, Y), Z),

we have

(∇X g)(Y, Z) = ρA(X)(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ)

= 1
2 (ρA(X)(g(Y, Z))− g([X, Y], Z)− g(Y, [X, Z]))

+ 1
2 (ρA(X)(g(Y, Z))− g(〈X : Y〉, Z)− g(Y, 〈X : Z〉))
− 1

2 g(T(X, Y), Z)− 1
2 g(Y, T(X, Z))

= 1
2 (L

a
X g + Ls

X g)(Y, Z).

Hence, we can conclude the following condition on a connection with totally skew-
symmetric torsion to be a metric connection:

Corollary 2. If ∇ is an A-connection with totally skew-symmetric torsion with respect to g given
by (8), then ∇ is metric with respect to g if and only if

La
X g = −Ls

X g for any X ∈ Γ(A).

Now, we recall some properties of the (skew-symmetric) Lie derivative.

Lemma 4. For f ∈ C∞(M), X ∈ Γ(A), ω ∈ Γ(A∗), we have

(a) La
f ·Xω = f · La

Xω + (iXω) · da f and
(b) La

X( f ·ω) = f · La
Xω + ($A ◦ X)( f ) ·ω.

Theorem 4. Given a skew-symmetric algebroid (A, $A, [·, ·]), we define

〈X : Y〉s : Γ(A)× Γ(A)→ Γ(A)

by
〈X : Y〉s = ](La

XY[ + La
YX[ − da(g(X, Y)) (9)

for X, Y ∈ Γ(A). Then, 〈· : ·〉s is a symmetric bracket that defines the symmetric Lie derivative Ls

satisfying Ls
X g = −La

X g.

Proof. It is evident that 〈· : ·〉s is a symmetric and R-bilinear mapping. Let X, Y, Z ∈ Γ(A).
Lemma 4 now gives

La
X( f Y)[ = fLa

XY[ + ($A ◦ X)( f )Y[

and
La

f YX[ = fLa
YX[ + g(X, Y)da f .

Since
da(g(X, f Y)) = f da(g(X, Y)) + g(X, Y)da f ,
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we conclude that 〈· : ·〉s satisfies the Leibniz rule. In consequence, 〈· : ·〉s is a symmetric
bracket. Observe that

g(〈X : Y〉s, Z) =
(
〈X : Y〉s

)[
(Z) = (La

XY[ + La
YX[ − da(g(X, Y))(Z)

= ($A ◦ X)(g(Y, Z))− g(Y, [X, Z])

+($A ◦Y)(g(X, Z))− g(X, [Y, Z])− ($A ◦ Z)(g(X, Y)).

Similarly,

g(Y, 〈X : Z〉s) = ($A ◦ X)(g(Y, Z))− g(Z, [X, Y])

+($A ◦ Z)(g(X, Y))− g(X, [Z, Y])− ($A ◦Y)(g(X, Z)).

Therefore,

(Ls
X g)(Y, Z) = ($A ◦ X)(g(Y, Z))− g(〈X : Y〉s, Z)− g(Y, 〈X : Z〉s)

= g(Y, [X, Z]) + g(X, [Y, Z])

−($A ◦ X)(g(Y, Z)) + g(Z, [X, Y]) + g(X, [Z, Y])

= −($A ◦ X)(g(Y, Z)) + g([X, Y], Z) + g(Y, [X, Z])

+g(X, [Y, Z] + [Z, Y])

= −(La
X g)(Y, Z) + 0.

Theorem 3 now yields:

Corollary 3. The torsion-free connection ∇ given by

∇XY = 1
2
(
[X, Y] + 〈X : Y〉s

)
,

where
〈X : Y〉s = ](La

XY[ + La
YX[ − da(g(X, Y)) (10)

for X, Y ∈ Γ(A), is compatible with g.

Now, we show that for the skew-symmetric algebroid structure equipped with addi-
tional pseudometric g, the following generalization of the fundamental theorem of Rieman-
nian geometry holds:

Theorem 5. Let g be a pseudo-Riemannian metric in the vector bundle A and Ω ∈ Γ(
∧2 A∗⊗ A)

be a 2-form on A with values in A. Then, there exists a unique connection ∇ on A compatible with
g such that its torsion tensor equals Ω, i.e., ∇g = 0 and T∇ = Ω, and is given by

∇XY = 1
2
(
[X, Y] + 〈X : Y〉s

)
+ 1

2 Ω(X, Y) + S(X, Y),

where
〈X : Y〉s = ](La

XY[ + La
YX[ − da(g(X, Y)), (11)

and S ∈ Γ(S2 A∗ ⊗ A) is the symmetric 2-tensor on A with values in A such that

g(S(X, Y), Z) = g(Ω(Z, X), Y) + g(Ω(Z, Y), X), for X, Y, Z ∈ Γ(A).

Proof. Let X, Y ∈ Γ(A). Consider the linear connection ∇g given by

∇g
XY = 1

2
(
[X, Y] + 〈X : Y〉s

)
,
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where
〈X : Y〉s = ](La

XY[ + La
YX[ − da(g(X, Y)).

Let ∇ be a linear connection compatible with g and with torsion T∇ = Ω. Observe that

∇XY = ∇g
XY + Φ(X, Y)

for some 2-tensor Φ ∈ Γ(⊗2 A∗ ⊗ A) and that

T∇(X, Y) = Φ(X, Y)−Φ(Y, X).

Therefore,
∇XY = ∇g

XY + 1
2 Ω(X, Y) + S(X, Y),

where S ∈ Γ(S2 A∗ ⊗ A) is some symmetric tensor. So,

〈X : Y〉∇ = 〈X : Y〉s + S(X, Y). (12)

This shows at once that S is determined uniquely. Since ∇g = 0, Theorem 2 and (12) now
lead to

g(〈X : Y〉s + S(X, Y), Z) = g(〈X : Y〉s, Z)− g(T∇(X, Z), Y)− g(T∇(Y, Z), X).

From this and skew-symmetricity of the torsion T∇ = Ω, it follows that

g(S(X, Y), Z) = g(Ω(Z, X), Y) + g(Ω(Z, Y), X).

One can immediately see that the result of Theorem 5 allows us to write formulas
of some connections related to the given 2-skew-symmetric form on A with values in A.
In the case, if ∇ is a metric A-connection in the bundle A with torsion T ∈ Γ(

∧2 A∗ ⊗
A) which is totally skew-symmetric with respect to g, we can write the form of this
connection as

∇XY = 1
2
(
[X, Y] + 〈X : Y〉s

)
+ 1

2 T(X, Y),

where 〈X : Y〉s is given in (9).
Given the bundle metric g on A, there is a unique A-connection in A which is torsion-

free and metric-compatible (i.e., T∇ = 0 and∇g = 0). We call such an A-connection the Levi-
Civita connection with respect to g. Of course, the explicit formula of the Levi-Civita
connection compatible with g is written in Corollary 3.

6. Symmetric Brackets on Almost Hermitian Manifolds

In this section, we consider various symmetric brackets induced by the structures
of almost Hermitian manifolds. We would like to show here that symmetric brackets
are related to the symmetrized covariant derivatives and use the observed relationships
to show some classical properties of the first canonical Hermitian connection, in particular
in the case of nearly Kähler manifolds.

An almost complex structure (M, g, J) defines a skew-symmetric bracket on vector
fields other than the usual Lie bracket of vector fields introducing a new skew-symmetric
algebroid structure TMJ into the tangent bundle. We note the relationship of this structure
with connections compatible with a given Riemannian structure or an almost complex struc-
ture with totally skew-symmetric torsion. We consider the Bismut connection on the Her-
mitian manifold noting that the torsion of this connection depends on the differential dJ

of the Kähler form, where dJ is the exterior differential operator in the algebroid TMJ .
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Let (M, g, J) be an almost Hermitian manifold, i.e., (M, g) is a 2n-dimensional Rie-
mannian manifold admitting an orthogonal almost complex structure J : TM → TM.
Associated with the structures g and J are the Kähler form Ω ∈ Γ(

∧2 T∗M) given by

Ω(X, Y) = g(JX, Y) (13)

for X, Y ∈ Γ(TM) and the Nijenhuis tensor NJ ∈ Γ(
∧2 T∗M⊗ TM) of J, which is defined by

NJ(X, Y) = J[JX, Y] + J[X, JY] + [X, Y]− [JX, JY]

for X, Y ∈ Γ(TM).
Kosmann-Schwarzbach and Magri introduced in [14] (cf. also [15]) the bracket [[·, ·]]J

on TM defined by
[[X, Y]]J = [JX, Y] + [X, JY]− J[X, Y]. (14)

One can observe that for any X, Y ∈ Γ(TM), we have

NJ(X, Y) = J[[X, Y]]J − [JX, JY].

Since
[[X, f Y]]J = f [[X, Y]]J + (JX)( f )Y

for X, Y ∈ Γ(TM) and f ∈ C∞(M), the tangent bundle together with the almost complex
structure J as an anchor and the mapping [[·, ·]]J given in (14) as a skew-symmetric bracket
is a skew-symmetric algebroid, which we denote by TMJ . It is obvious that if NJ = 0,
then [[[[X, Y]]J , Z]]J = −J[[JX, JY], JZ] for X, Y, Z ∈ Γ(TM) and so Jac[[·,·]]J (X, Y, Z) =

−J Jac[·,·](JX, JY, JZ) = 0 for X, Y, Z ∈ Γ(TM). In consequence, if the almost complex
structure J is integrable, then the skew-symmetric algebroid

(
TM, J, [[·, ·]]J

)
is a Lie alge-

broid over M.
Now, we define some symmetric brackets on almost Hermitian manifolds. First,

we note the general properties for any skew-symmetric algebroid structures.
Let

(
TM, ρ, [·, ·]ρ

)
be a structure of skew-symmetric algebroid, and let 〈· : ·〉ρ be a sym-

metric bracket in this algebroid. By definition,

〈X : f Y〉ρ = f 〈X : Y〉ρ + (ρ ◦ X)( f )Y

for X, Y ∈ Γ(TM).
We define R-bilinear symmetric operators P

ρ
, Q

ρ
: Γ(TM)× Γ(TM)→ Γ(TM),

P
ρ
(X, Y) = −J

(
[X, JY]ρ + [Y, JX]ρ

)
and

Q
ρ
(X, Y) = −J

(
〈X : JY〉ρ + 〈Y : JX〉ρ

)
for X, Y ∈ Γ(TM).

Lemma 5. For any X, Y ∈ Γ(TM), f ∈ C∞(M), we have

(a) P
ρ
(X, f ·Y) = f · Pρ

(X, Y) + (ρ ◦ X)( f ) ·Y + (ρ ◦ JX)( f ) · JY and
(b) Q

ρ
(X, f ·Y) = f ·Qρ

(X, Y) + (ρ ◦ X)( f ) ·Y− (ρ ◦ JX)( f ) · JY.

Proof. Compute directly,

P
ρ
(X, f ·Y) = −J

(
[X, f · JY]ρ + [ f ·Y, JX]ρ

)
= −J

(
f · [X, JY]ρ + (ρ ◦ X)( f ) · JY + f · [Y, JX]ρ − (ρ ◦ JX)( f ) ·Y

)
= f · Pρ

(X, Y) + (ρ ◦ X)( f ) ·Y + (ρ ◦ JX)( f ) · JY
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and

Q
ρ
(X, f ·Y) = −J

(
〈X : f · JY〉ρ + 〈 f ·Y : JX〉ρ

)
= −J

(
f · 〈X : JY〉ρ + (ρ ◦ X)( f ) · JY + f · 〈Y : JX〉ρ + (ρ ◦ JX)( f ) ·Y

)
= f ·Qρ

(X, Y) + (ρ ◦ X)( f ) ·Y− (ρ ◦ JX)( f ) · JY.

In consequence of Lemma 5, we immediately get the following results.

Theorem 6. The mapping
1
2 (P

ρ
+ Q

ρ
)

is a symmetric bracket in the skew-symmetric algebroid
(
TM, ρ, [·, ·]ρ

)
.

Corollary 4. The mapping 〈· : ·〉 : Γ(TM)× Γ(TM)→ Γ(TM) given by

〈X : Y〉 = − 1
2 J
(
[X, JY] + [Y, JX] + ](La

X(JY)[ + La
Y(JX)[ + La

JXY[ + La
JYX[)

)
is a symmetric bracket in the Lie algebroid (TM, IdTM, [·, ·]), where [·, ·] is the Lie bracket of vector
fields on M and La is the Lie derivative on M.

Proof. Let da be the exterior derivative on manifold M. Taking ρ = IdTM in Theorem 6
and using Theorem 4, we deduce that the formula

〈X : Y〉 = − 1
2 J([X, JY] + [Y, JX])− 1

2 (J ◦ ])(La
X(JY)[ + La

JYX[ − da(g(X, JY))

− 1
2 (J ◦ ])(La

JXY[ + La
Y(JX)[ − da(g(JX, Y))

defines a symmetric bracket in the tangent bundle with IdTM as an anchor and with
the classical Lie bracket. Since Ω is a skew-symmetric 2-form on M, it follows that

g(X, JY) + g(JX, Y) = Ω(Y, X) + Ω(Y, X) = 0.

Therefore,

〈X : Y〉 = − 1
2 J([X, JY] + [Y, JX])

− 1
2 (J ◦ ])(La

X(JY)[ + La
Y(JX)[ + La

JXY[ + La
JYX[).

Let∇ be the Levi-Civita connection in (TM, IdTM, [·, ·]) with respect to g determining
the symmetric bracket 〈· : ·〉∇, i.e.,

∇XY = 1
2

(
[X, Y] + 〈X : Y〉∇

)
.

It is obvious that the bracket in Corollary 4 is a totally symmetric part of the connec-
tion ∇J : Γ(TM)× Γ(TM)→ Γ(TM) defined by

∇J
XY = − 1

2 J
(
[X, JY] + 〈X : JY〉∇

)
.

Hence,
∇J

XY = −J∇X(JY).

One can observe that the affine sum

∇ = 1
2

(
∇+∇J

)
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of connections ∇ and ∇J is Lichnerowicz’s first canonical Hermitian connection (cf. [29]),
which is compatible with both the metric structure and the almost complex structure.
In fact, since ∇J J = −∇J and (∇J g)(X, Y, Z) = (∇g)(X, JY, JZ) for X, Y, Z ∈ Γ(TM),
we conclude that ∇J = 0 and ∇J g = 0, and consequently ∇g = 1

2
(
∇+∇J)g = 0.

We will now consider some further properties of ∇J and ∇. For an A-connection ∇
on A, we define the operators

da
∇, ds

∇ : Γ(
⊗k T∗M⊗ TM)→ Γ(

⊗k+1 T∗M⊗ TM)

as the alternation and the symmetrization of ∇, respectively, i.e., for ζ ∈ Γ(
⊗k T∗M),

X1, . . . , Xk+1 ∈ Γ(TM), we have

(da
∇ζ)(X1, . . . , Xk+1) =

k+1
∑

i=1
(−1)i+1(∇Xi ζ

)
(X1, . . . X̂i . . . , Xk+1)

and

(ds
∇ζ)(X1, . . . , Xk+1) =

k+1
∑

i=1

(
∇Xi ζ

)
(X1, . . . X̂i . . . , Xk+1).

We say that an almost Hermitian manifold (M, g, J) is nearly Kähler if (∇X J)Y =
−(∇Y J)Y for X, Y ∈ Γ(TM) (cf. [30]). Thus, we have the following lemma.

Lemma 6. An almost Hermitian manifold (M, g, J) is nearly Kähler if and only if ds
∇ J = 0.

Moreover, if (M, g, J) is nearly Kähler, ∇ is a Hermitian connection with totally skew-
symmetric torsion (cf. [31]).

Now, we compare the symmetric brackets induced by ∇ and ∇. We will denote

by 〈· : ·〉∇ the symmetric product of ∇.

Theorem 7. For X, Y ∈ Γ(TM), we have J((ds
∇ J)(X, Y)) = 〈X : Y〉∇ − 〈X : Y〉∇

J
.

Proof. We first observe that

(ds
∇ J)(X, Y) = (∇X J)Y + (∇Y J)X

= ∇X(JY) +∇Y(JX)− J(∇XY +∇YX)

= ∇X(JY) +∇Y(JX)− J〈X : Y〉∇.

From this equality, we obtain

J((ds
∇ J)(X, Y)) = J∇X(JY) + J∇Y(JX) + 〈X : Y〉∇ = −〈X : Y〉∇

J
+ 〈X : Y〉∇.

Theorem 8. For X, Y ∈ Γ(TM), we have 〈X : Y〉∇ = 〈X : Y〉∇ − 1
2 J((ds

∇ J)(X, Y)).

Proof. Since ∇ = 1
2
(
∇+∇J) is an affine sum of connections ∇ and ∇J ,

〈X : Y〉∇ = 1
2 〈X : Y〉∇ + 1

2 〈X : Y〉∇
J
.

From this result and Theorem 7, we see that

〈X : Y〉∇ = 1
2 〈X : Y〉∇ + 1

2

(
〈X : Y〉∇ − J((ds

∇ J)(X, Y))
)

= 〈X : Y〉∇ − 1
2 J((ds

∇ J)(X, Y)).
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Since ∇ = 1
2
(
∇+∇J) and ∇ is torsion-free, we have

T∇ = T
1
2∇+

1
2∇

J
= 1

2 T∇ + 1
2 T∇

J
= 1

2 T∇
J
. (15)

Theorem 9. T∇
J
= −J ◦

(
da
∇ J
)
.

Proof. Let X, Y ∈ Γ(TM). Then,

(da
∇ J)(X, Y) = (∇X J)Y− (∇Y J)X = ∇X(JY)−∇Y(JX)− J[X, Y].

Hence,

−J((da
∇ J)(X, Y)) = −J∇X(JY)− (−J∇Y(JX)) + J2[X, Y]

= ∇J
XY−∇J

YX− [X, Y] = T∇
J
(X, Y).

Theorem 10. For X, Y ∈ Γ(TM), we have

2T∇
J
(X, Y) = −NJ(X, Y) + (ds

∇ J)(X, JY)− (ds
∇ J)(JX, Y).

In particular, if (M, g, J) is nearly Kähler, then T∇
J
= − 1

2 NJ .

Proof. Let X, Y ∈ Γ(TM). Then (e.g., [31] shows the first equality),

−NJ(X, Y) = (∇X J)JY− (∇Y J)JX + (∇JX J)Y− (∇JY J)X

= (∇X J)JY− (∇Y J)JX− (∇Y J)JX + (ds
∇ J)(JX, Y)

+(∇X J)JY− (ds
∇ J)(X, JY)

= 2((∇X J)JY− (∇Y J)JX) + (ds
∇ J)(JX, Y)− (ds

∇ J)(X, JY).

Moreover,

(∇X J)JY− (∇Y J)JX = −∇XY− J(∇X(JY)) +∇YX + J(∇Y(JX))

= −J(∇X(JY))− (−J(∇Y(JX)))−∇XY +∇YX

= ∇J
XY−∇J

YX− [X, Y] = T∇
J
(X, Y).

It follows that

−NJ(X, Y) = 2T∇
J
(X, Y) + (ds

∇ J)(JX, Y)− (ds
∇ J)(X, JY).

Since ∇ is a totally skew-symmetric connection, Theorems 8 and (15) now lead to

∇XY = 1
2

(
[X, Y] + 〈X : Y〉∇

)
+ 1

2 T∇(X, Y) (16)

= 1
2

(
[X, Y] + 〈X : Y〉∇ − J((ds

∇ J)(X, Y))
)
+ 1

2 T∇(X, Y)

= ∇XY− 1
2 J((ds

∇ J)(X, Y)) + 1
4 T∇

J
(X, Y).

Combining (16) with Lemma 6 and Theorems 9 and 10, we get the following result:

Corollary 5. If (M, g, J) is nearly Kähler, then ds
∇ J = 0, and in consequence,

∇ = ∇− 1
4 J ◦ (da

∇ J) = ∇− 1
8 NJ .
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Now, we would like to show the relationship of the Bismut connection [32] with
the structure of the algebroid TMJ . The Bismut connection is the unique connection ∇B

on a complex Hermitian manifold (M, g, J) (J is integrable, i.e., the Nijenhuis tensor
vanishes) with totally skew-symmetric torsion such that ∇Bg = 0 and ∇B J = 0.

It is proved in (Theorem 10.1 [33]) by Friedrich and Ivanov that a Hermitian connec-
tion∇ on an almost complex manifold (M, g, J) with totally skew-symmetric torsion exists
if and only if the Nijenhuis tensor is totally skew-symmetric, and if the Nijenhuis ten-
sor is totally skew-symmetric, the unique Hermitian connection with torsion T is given
by ∇ = ∇LC + 1

2 T, where ∇LC is the Levi-Civita connection associated with g and

g(T(X, Y), Z) = dΩ(JX, JY, JZ) + g(N(X, Y), Z)

for X, Y, Z ∈ Γ(TM). The idea comes from [34] by Gauduchon (cf. also [31]).
We will now show the relation linking the torsion of such a connection with the struc-

ture of the algebroid TMJ .

Lemma 7. Let (M, g, J) be a 2n-dimensional almost Hermitian manifold with the Kähler form Ω
given by (13), X, Y, Z ∈ Γ(TM). Then,

(dΩ)(JX, JY, JZ) = (dJΩ)(X, Y, Z) + ∑
cycl

g(NJ(X, Y), Z),

where dJ is the exterior derivative operator on the skew-symmetric algebroid
(
TM, J, [[·, ·]]J

)
.

Proof. Let X, Y, Z ∈ Γ(TM). Since [JX, JY] = J[[X, Y]]J − NJ(X, Y), we have

(dΩ)(JX, JY, JZ) = (JX)(Ω(JX, JY))− (JY)(Ω(JY, JZ)) + (JZ)(Ω(JX, JY))

−Ω([JX, JY], JZ) + Ω([JX, JZ], JY)−Ω([JY, JZ], JX)

= (JX)(Ω(X, Y))− (JY)(Ω(Y, Z)) + (JZ)(Ω(X, Y))

−Ω(J[[X, Y]]J , JZ) + Ω(J[[X, Z]]J , JY)−Ω(J[[Y, Z]]J , JX)

+Ω(NJ(X, Y), JZ)−Ω(NJ(X, Z), JY) + Ω(NJ(Y, Z), JY)

= (JX)(Ω(X, Y))− (JY)(Ω(Y, Z)) + (JZ)(Ω(X, Y))

−Ω([[X, Y]]J , Z) + Ω([[X, Z]]J , Y)−Ω([[Y, Z]]J , X)

+g(NJ(X, Y), Z)− g(NJ(X, Z), Y) + g(NJ(Y, Z), X)

= (dJΩ)(X, Y, Z) + ∑
cycl

g(NJ(X, Y), Z).

As a conclusion, we obtain that the Bismut connection is determined by the Levi-Civita
connection ∇LC on M with respect to g and is related to dJΩ as follows:

g(∇B
XY, Z) = g(∇LC

X Y, Z) + 1
2 (d

JΩ)(X, Y, Z).

In view of Theorem 5, we can say that the Bismut connection is the only one connec-
tion with totally skew-symmetric torsion such that its torsion TB satisfies g(TB(X, Y), Z) =
(dJΩ)(X, Y, Z) for X, Y ∈ Γ(TM).

7. Examples of Symmetric Product Associated with a Symplectic Connection

In this section, we show the existence of a symplectic connection for a skew-symmetric
algebroid equipped with a symplectic form. We base our considerations on this general
framework because we want to apply them to specific cases. Such structures include
symplectic manifolds on the one hand, and symplectic Lie algebras on the other hand,
understood as Lie algebroids with zero anchors. We will show that a symplectic form de-
termines a symplectic connection understood as a linear torsion-free connection preserving
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the symplectic form. We add that the existence of such a connection is not unique. Each
connection with zero torsion is determined by some symmetric brackets. We designate such
brackets and see that the considered examples are related to a certain linear connection and
its dual with respect to the symplectic form. More precisely, the resulting symmetric bracket
is a certain affine combination of two symmetric brackets corresponding to the selected
connection and to its dual connection.

7.1. Some Symplectic Connection on a Skew-symmetric Algebroid with Symplectic Form

Let (A, $A, [·, ·]) be a skew-symmetric algebroid over a manifold M equipped with
a symplectic form ω ∈ Γ(

⊗2 A∗), i.e., a nondegenerated and 2-skew-symmetric form
ω on A which is closed with respect to the exterior differential operator da given in (4).
We define ]ω : A∗ → A, ω(]ω(α), Y) = α(Y), which is an isomorphism with the inverse
map [ω : A → A∗ defined by the contraction [ω(X) = iXω. We will use the symbol Xω

to denote iXω for X ∈ Γ(A).
A symplectic connection on (A, $A, [·, ·], ω) is a torsion-free connection ∇ which is com-

patible with ω, i.e., ∇ω = 0.
We find the construction of a symplectic connection on symplectic manifolds primarily

in [20] by Tondeur and its application in [21]. When looking for a symplectic connection,
a good starting point is to take some torsion-free connection ∇0. When ∇0 is torsion-
free and 〈· : ·〉0 is the symmetric bracket determined by ∇0, the construction is to find
a symmetric 2-tensor S ∈ Γ(S2 A∗ ⊗ A) such that 〈· : ·〉0 + S is a symmetric product
associated with the connection ∇ we are looking for, which means that

∇XY = 1
2

(
[X, Y] + 〈X : Y〉0 + S(X, Y)

)
(17)

(X, Y ∈ Γ(A)) defines a torsion-free connection compatible with ω. This approach uses
the equality Alt(∇̃)(η) = daη + dTη, where (dTη)(X, Y, Z) = − ∑

cycl
η(T∇̃(X, Y), Z) for any

A-connection ∇̃ in A and η ∈ Γ(
∧2 A∗).

Let∇0 be an A-connection in A with zero torsion, T∇
0
= 0. Our search for a symplectic

connection and its corresponding symmetric bracket will be based on the mentioned
construction (cf. [20,21]) with ∇0 as the initial connection. We take the symmetric tensor
S ∈ Γ(S2 A∗ ⊗ A) uniquely determined by

ω(S(X, Y), Z) = 2
3

((
∇0

Xω
)
(Y, Z) +

(
∇0

Yω
)
(X, Z)

)
for X, Y, Z ∈ Γ(A). Then, (∇Xω)(Y, Z) = 1

3 Alt(∇)(ω) = 1
3 daω = 0 because ∇ is torsion-

free and ω is closed. Thus, in fact, the formula in (17) describes a symplectic connection.
We will write S as a linear combination of two symmetric brackets. The first is the symmetric
bracket corresponding to∇0, while the second is the symmetric bracket of its dual connection(
∇0)∗ with respect to ω defined by

ω((∇0)∗XY, Z) = ($A ◦ X)(ω(Y, Z))−ω(Y,∇0
XZ)

for X, Y ∈ Γ(A).
Let us denote by 〈· : ·〉∗ the symmetric bracket induced by (∇0)∗. The key to deter-

mining a symmetric bracket is the result written in the lemma below.

Lemma 8. Let 〈· : ·〉∗ be the symmetric bracket determined by the connection
(
∇0)∗. Then,

S(X, Y) = 2
3 ·
(
−〈X : Y〉0 + 〈X : Y〉∗

)
, X, Y ∈ Γ(A). (18)
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Proof. Let us take an arbitrary X, Y, Z ∈ Γ(A). The computation goes as follows:

(∇0
Xω)(Y, Z) + (∇0

Yω)(X, Z)

= ($A ◦ X)(ω(Y, Z))−ω(∇0
XY, Z)−ω(Y,∇0

XZ)

+($A ◦Y)(ω(X, Z))−ω(∇0
YX, Z)−ω(X,∇0

YZ)

= −ω(〈X : Y〉0, Z) + ($A ◦ X)(ω(Y, Z))−ω(Y,∇0
XZ)

+($A ◦Y)(ω(X, Z))−ω(X,∇0
YZ)

= ω(−〈X : Y〉0, Z) + ω((∇0)∗XY, Z) + ω((∇0)∗YX, Z)

= ω(−〈X : Y〉0, Z) + ω(〈X : Y〉∗, Z).

Now, we can write the formula on the symplectic connection ∇ in the language
of symmetric brackets.

Theorem 11. For any X, Y ∈ Γ(A), one has

∇XY = 1
2

(
[X, Y] + 1

3 · 〈X : Y〉0 + 2
3 · 〈X : Y〉∗

)
, (19)

where 〈· : ·〉0 and 〈· : ·〉∗ are symmetric brackets determined by ∇0 and
(
∇0)∗, respectively.

Proof. Combining (17) with (18), we get (19).

Corollary 6. The symmetric bracket determined by ∇ is some affine sum of symmetric brackets
associated with ∇0 and

(
∇0)∗, namely

〈X : Y〉∇ = 1
3 · 〈X : Y〉0 + 2

3 · 〈X : Y〉∗ for X, Y ∈ Γ(A).

Remark 1. The construction of a symplectic connection used here consists in looking
for a ∈ R such that the torsion-free connection given by

∇XY = 1
2

(
[X, Y] + a · 〈X : Y〉0 + (1− a) · 〈X : Y〉∗

)
(20)

is compatible with ω. Therefore, we will see below why for a = 1
3 the connection ∇

is compatible with the symplectic form. For this purpose, let us note some properties
of ∇0, ∇ and the skew-symmetric and corresponding symmetric Lie derivatives written
in the lemma below.

Lemma 9. Let a ∈ R and Ls,0, Ls,∗, and Ls denote the symmetric Lie derivatives determined
by symmetric brackets 〈· : ·〉0, 〈· : ·〉∗, and 〈· : ·〉s = a〈· : ·〉0 + (1− a)〈· : ·〉∗, respectively. Let
Lalt be the Lie derivative associated with the skew-symmetric bracket [·, ·], X ∈ Γ(A), and ∇
be given in (20). Then,

(a) ∇Xω = 1
2 (Lalt

X + Ls
X)ω,

(b) Ls
X = aLs,0

X + (1− a)Ls,∗
X ,

(c) (Lalt
X + Ls,∗

X )ω = −∇0
Xω, and

(d) (Ls,0
X −L

s,∗
X )ω = 3∇0

Xω.

Proof. Since ∇0 is torsion-free, ∇XY = 1
2 ([X, Y] + 〈X : Y〉s) for X, Y ∈ Γ(A). Hence, (a)

and (b) immediately follow. From Lemma 8, it follows that

ω(−〈X : Y〉0 + 〈X : Y〉∗, Z) =
(
∇0

Xω
)
(Y, Z) +

(
∇0

Yω
)
(X, Z).
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From this equality and the fact that daω = 0, one can obtain (c) and (d).

Properties from Lemma 9 are helpful in determining the relationship between ∇ω
and ∇0ω, which allows us to notice how important it is for the connection given in (20) to
be compatible with the symplectic form; this is the influence of constant a = 1

3 . We present
this relationship in the corollary below.

Corollary 7. ∇ω = 3a−1
2 · ∇0ω.

Proof. Let X ∈ Γ(A). Using successively the properties (a)–(d) from Lemma 9, we get

∇Xω = 1
2 (Lalt

X + Ls
X)ω

= 1
2

(
Lalt

X + aLs,0
X + (1− a)Ls,∗

X

)
ω

= 1
2

(
Lalt

X + Ls,∗
X

)
ω + a

2 (L
s,0
X −L

s,∗
X )ω

= − 1
2 · ∇0

Xω + 3a
2 · ∇0

Xω

= 3a−1
2 · ∇0

Xω.

In Sections 7.2 and 7.3, we give examples of symplectic connections and the corre-
sponding symmetric brackets in two cases: a symplectic manifold and a symplectic algebra
(in particular, a symplectic Lie algebra).

7.2. The Case of Symplectic Manifold

Let (M, ω) be a symplectic manifold, i.e., the manifold M is equipped with a nonde-
generated and closed exterior 2-form ω on M. The form ω is then called a symplectic form
on M. We define ]ω : T∗M → TM, ω(]ω(α), Y) = α(Y), which is an isomorphism with
the inverse map [ω : TM → T∗M defined by the contraction [ω(X) = iXω. We will use
the symbol Xω to denote iXω for X ∈ Γ(TM).

A symplectic connection on (M, ω) is a torsion-free connection ∇ which is compatible
with ω, i.e., ∇ω = 0.

We use the construction discussed in Section 7.1. We take the Levi-Civita connec-
tion associated with g as a starting connection. Let J : TM → TM be an almost com-
plex structure compatible with ω and g be an associated pseudo-Riemannian metric, i.e.,
g(X, Y) = ω(X, JY) for X, Y ∈ Γ(TM). Let ∇LC be the Levi-Civita connection induced
by g and 〈·, ·〉LC be the symmetric product defined by ∇LC. Let ]g : T∗M → TM denote
the sharp operator for g, i.e., g(]g(α), Y) = α(Y) for α ∈ Γ(T∗M), Y ∈ Γ(TM).

We will calculate the dual connection and the symmetric bracket designated by it,
also analogously to the Levi-Civita connection using the Lie derivative and the differential
operator. Let us recall that in the geometry of Hermitian manifolds, a special role is played
by the connection ∇J associated with ∇LC and the almost complex structure by

∇J
XY = −J

(
∇LC

X (JY)
)

for X, Y ∈ Γ(TM).

The dual connection
(
∇LC)∗ to the Levi-Civita connection is just ∇J . Indeed, note

that since ∇LC preserves the metric, we have

ω
((
∇LC

)∗
X

Y, Z
)

= X(ω(Y, Z))−ω(Y,∇LC
X Z) = X(g(JY, Z))− g(JY,∇LC

X Z)

= g(∇LC
X (JY), Z) = ω(∇LC

X (JY), JZ) = −ω(J(∇LC
X (JY)), Z)

= ω(∇J
XY, Z)

for X, Y, Z ∈ Γ(TM).
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Let 〈· : ·〉LC and 〈· : ·〉J denote the symmetric brackets determined by ∇LC and ∇J ,
respectively. Theorem 11 shows immediately that an example of a symplectic connection is
a torsion-free connection ∇ that defines a symmetric bracket, which is the following affine
combination 1

3 〈· : ·〉LC + 2
3 〈· : ·〉, i.e.,

∇XY = 1
2

(
[X, Y] + 1

3 · 〈X : Y〉LC + 2
3 · 〈X : Y〉J

)
for X, Y ∈ Γ(TM). We will now designate the symmetric bracket 〈· : ·〉J setting by ∇J .
Note that using the formula (11) of 〈· : ·〉LC we can write explicitly the symmetric bracket
of the connection ∇J :

〈X : Y〉J = −J
(
∇LC

X (JY) +∇LC
Y (JX)

)
= − 1

2 J
(
[X, JY] + ]g(La

X(JY)[ + La
JYX[ − da(g(X, JY)

)
− 1

2 J
(
[Y, JX] + ]g(La

Y(JX)[ + La
JXY[ − da(g(Y, JX)

)
= − 1

2 (J[X, JY] + J[Y, JX]) + 1
2 ]ω

(
La

XYω + La
YXω

)
− 1

2 ]ω

(
La

JX(JY)ω + La
JY(JX)ω

)
because g(X, JY) + (g(Y, JX) = ω(Y, X) + ω(X, Y) = 0, ]ω = −J ◦ ]g, (JX)[ = Xω, and
X[ = −(JX)ω.

Remark 2. When looking for symmetric brackets, we notice that properties written in
Lemmas 4 and 3 imply that one of the brackets is

(X, Y)s = 1
2 ]ω(La

XYω + Ls
XYω + La

YXω + Ls
YXω),

where the symmetric Lie derivative is defined for 〈·, ·〉LC, i.e., for the symmetric product
associated with ∇LC. Observe that (·, ·)s is the symmetric product defined by the connec-
tion ∇′ given by

∇′XY := 1
2 ]ω(La

XYω + Ls
XYω)

for X, Y ∈ Γ(TM). One can check that ∇′ is actually the Levi-Civita connection associated
with g.

7.3. The Case of Symplectic Skew-symmetric Algebra

We say that (g, [·, ·]) is a skew-symmetric algebra if g is a real vector space and [·, ·] is a bi-
linear skew-symmetric mapping. A skew-symmetric algebra can be regarded as a skew-
symmetric algebroid with a zero anchor. In particular, any finite-dimensional Lie algebra
is such an algebra. We call each skew-symmetric algebra (g, [·, ·]) together with a bilinear
skew-symmetric nondegenerated closed form ω ∈ ∧2 g∗ a symplectic skew-symmetric al-
gebra. Then, ω is said to be a symplectic form on g. A Lie algebra (g, [·, ·]) endowed with
a symplectic form ω is called a symplectic Lie algebra.

Let (g, [·, ·]) be a skew-symmetric algebra together with a bilinear skew-symmetric
nondegenerated form ω ∈ ∧2 g∗. Let ad : g→ End(g) be the adjoint representation of g,
i.e., adx(y) = [x, y] for x, y ∈ g. Our goal is to admit a certain symplectic connection using
the result of Theorem 11. Thus, the starting point is a certain torsion-free connection. As
a starting connection, let us take ∇0 = 1

2 ad. Next, we take the connection ∇∗ = 1
2 ad∗,

where ad∗ is dual to ad with respect to the symplectic form ω. To be more precise, ∇∗
is determined as follows:

ω
(
∇∗xy, z

)
= ω

(
1
2 ad∗x(y), z

)
= − 1

2 ω
(
y, [x, z]

)
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for x, y, z ∈ g. Hence, the symmetric bracket 〈· : ·〉∗ of 1
2 ad∗ is given by

ω
(
〈x : y〉∗, z

)
= − 1

2

(
ω
(
[z, x], y

)
+ ω

(
[z, y], x

))
. (21)

Since 〈· : ·〉∇
0
= 0 holds, Theorem 11, indicates that

∇xy = 1
2 [x, y] + 1

3 〈x : y〉∗, x, y ∈ g, (22)

defines a symplectic connection with respect to the symplectic form ω. From (21), we con-
clude that

ω
(
∇xy, z

)
= 1

2 ω([x, y], z)− 1
6 ω([z, x], y)− 1

6 ω([z, y], x) (23)

for x, y, z ∈ g. Using the condition dω = 0, we can rewrite (23) as

ω(∇xy, z) = − 2
3 ω([z, x], y) + 1

3 ω([z, y], x), x, y, z ∈ g.

Example 1. We will designate a symplectic connection of the symplectic algebra g = r2r2
from [23], where the classification of four dimensional symplectic Lie algebras is given. We
consider a 4-dimensional vector space g with a basis {e1, e2, e3, e3}. Let

{
e1, e2, e3, e4} be its

dual basis of g∗. We define the skew-symmetric bracket [·, ·] : g× g→ g satisfying the fol-
lowing rules [e1, e2] = e2, [e3, e4] = e4. The Lie algebra defined in this way is isomorphic
to the direct product r2 × r2, where r2 = aff(R) is 2-dimensional non-abelian Lie algebra
of the group of affine transformations of the real line (cf. [22,23]).
Let a, b, c ∈ R. Take the skew-symmetric bilinear form

ω = ae1 ∧ e2 + be1 ∧ e3 + ce3 ∧ e4 ∈ ∧2 g∗.

Note that the determinant of the matrix
[
ω(ei, ej)

]
of ω in the frame B = (e1, e2, e3, e3)

is equal to a2c2. It follows that if a 6= 0 and c 6= 0, then ω is nondegenerate, and in conse-
quence, ω is a symplectic form on g. We further assume that a and c are nonzero reals. The
symmetric bracket 〈· : ·〉∗ of 1

2 ad∗ is given by (21). Therefore, one can check that 〈· : ·〉∗

is fully designated by the following values:
(
〈e1 : e1〉∗

)ω
= −a pr2,B,

(
〈e2 : e1〉∗

)ω
= a

2 pr1,B,(
〈e3 : e3〉∗

)ω
= −c pr4,B, and

(
〈e4 : e3〉∗

)ω
= c

2 pr3,B, where pri,B : g→ R denotes the frame
B = (e1, e2, e3, e3) dependent projection given by pri,B(z) = zi if z = ∑4

k=1 zkek, and zero
in other cases

〈
ei : ej

〉
. Hence,

〈e1 : e1〉∗ = −e1 − b
c e4,

〈e2 : e1〉∗ = − 1
2 e2, 〈e2 : e2〉∗ = 0,

〈e3 : e1〉∗ = 0, 〈e3 : e2〉∗ = 0, 〈e3 : e3〉∗ = b
a e2 − e3,

〈e4 : e1〉∗ = 0, 〈e4 : e2〉∗ = 0, 〈e4 : e3〉∗ = − 1
2 e4, 〈e4 : e4〉∗ = 0.

Therefore, a symplectic connection ∇ given in (22) and (23) can be described on vectors
from the frame B as follows:

∇e1 e1 = − 1
3 (e1 +

b
c e4), ∇e1 e2 = 1

3 e2, ∇e1 e3 = 0, ∇e1 e4 = 0,

∇e2 e1 = − 2
3 e2, ∇e2 e2 = 0, ∇e2 e3 = 0, ∇e2 e4 = 0,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 1
3 (

b
a e2 − e3), ∇e3 e4 = 1

3 e4,

∇e4 e1 = 0, ∇e4 e2 = 0, ∇e4 e3 = − 2
3 e4, ∇e4 e4 = 0.
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One can check that
〈
〈x : y〉∗ : 〈x : x〉∗

〉∗
=
〈

x :
〈
y : 〈x : x〉∗

〉∗〉∗ for x, y ∈ g. This means

that the symmetric bracket 〈· : ·〉∗ satisfies the Jordan identity and thus introduces the struc-
ture of a Jordan algebra into g = r2r2.

Example 2. Let (g, [·, ·]) be a finite dimensional Lie algebra. In the direct sum h = g⊕ g∗,
we consider a structure of algebra with skew-symmetric bracket defined by

[[x⊕ α, y⊕ β]] = [x, y]⊕ 1
2
(
α ◦ ady−β ◦ adx

)
for x, y ∈ g, α, β ∈ g∗, and where ady(x) = [x, y], i.e., ad is the adjoint representa-
tion of the Lie algebra g. We recall that any skew-symmetric algebra is a skew-symmetric
algebroid with the zero anchor. So, we have the exterior differential operator d :

∧k h∗ →∧k+1 h∗ given by (dη)(a1, . . . , ak+1) = ∑i<j(−1)i+jη([[ai, aj]], a1, . . . âi . . . âj . . . , ak+1) for
η ∈ ∧k h∗, a1, . . . , ak+1 ∈ h.
We equip h with a nondegenerate skew-symmetric bilinear form ω ∈ ∧2 h∗ defined by

ω(x⊕ α, y⊕ β) = α(y)− β(x).

One can verify that dω = 0. Thus, ω is a symplectic form in h = g⊕ g∗. We would
have to find a symplectic connection in h compatible with ω starting from the torsion-free

connection∇0 = 1
2 adh. Since the connection

(
∇0)∗ = ( 1

2 adh

)∗
which is dual with respect

to ω is described by

ω

((
∇0
)∗

x⊕α
(y⊕ β), z⊕ γ

)
= − 1

4 α[y, z]− 1
2 β[x, z]− 1

4 γ[x, y],

it follows that
(
∇0)∗ and the symmetric bracket 〈· : ·〉∗ of

(
∇0)∗ are given explicitly by(

∇0
)∗

x⊕α
(y⊕ β) =

(
1
4 [x, y]

)
⊕
(
− 1

4 α ◦ ady− 1
2 β ◦ adx

)
,

〈x⊕ α : y⊕ β〉∗ = 0⊕
(
− 3

4
)(

α ◦ ady +β ◦ adx
)

for x, y ∈ g, α, β ∈ g∗.
The formula given in (22) defines now a symplectic connection ∇ in h, which we can write
as follows:

∇x⊕α(y⊕ β) = 1
2 [[x⊕ α, y⊕ β]] + 1

3 〈x⊕ α : y⊕ β〉∗

= 1
2 [x, y]⊕ 1

4
(
α ◦ ady−β ◦ adx

)
− 0⊕ 1

4
(
α ◦ ady +β ◦ adx

)
= 1

2 ([x, y]⊕ (−β ◦ adx))

for x⊕ α, y⊕ β ∈ h.
We remark that one can also take ∇1 given by ∇1

x⊕α(y ⊕ β) = 1
2
(
[x, y]⊕

(
α ◦ ady

))
as a torsion-free initiating connection. One can check that

〈x⊕ α : y⊕ β〉∇
1

= 0⊕ 1
2
(
α ◦ ady +β ◦ adx

)
,(

∇1
)∗

x⊕α
(y⊕ β) = 0⊕ 1

2
(
−α ◦ ady−β ◦ adx

)
,

〈x⊕ α : y⊕ β〉(∇
1)
∗

= 0⊕
(
−α ◦ ady−β ◦ adx

)
.

According to Theorem 11, ∇sp
A B = 1

2 [[A, B]] + 1
3 〈A : B〉∇

1
+ 2

3 〈A : B〉(∇
1)
∗
, A, B ∈ h,

is a symplectic connection in h. However ∇sp = ∇, which means that the procedure
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described in Section 7.1 gives the same symplectic connection for both of the initial torsion-
free connections. In h we have a natural metric g ∈ S2h∗ given by

g(x⊕ α, y⊕ β) = α(y) + β(x)

for x⊕ α, y⊕ β ∈ h. To discover a symplectic connection with respect to ω, one can take
the Levi-Civita connection with respect to g as an initial connection. It can be checked
that ∇ is actually the Levi-Civita ∇LC connection with respect to g. Thus, the Levi-Civita
connection related to g is also a symplectic connection in h with respect to the symplectic
form ω.

8. The Bochner Bracket of Smooth Functions

In this section, given the skew-symmetric algebroid endowed with a metric, we con-
sider a symmetric product (·, ·) of smooth functions determined naturally by the metric.
We consider a linear connection∇ on a given algebroid and examine whether for a symmet-
ric product 〈· : ·〉∇ determined by this connection there is the property 〈grad f : grad h〉∇ =
grad( f , h) for any smooth functions f , h. Thus, we investigate whether there is an analogous
property that holds for Hamiltonian vector fields on a Poisson manifold. We will see that
this property holds for the connection with totally skew-symmetric torsion. The symmetric
bracket defined by the Levi-Civita connection is essential.

Let (A, $A, [·, ·]) be a skew-symmetric algebroid over a manifold M equipped with
a pseudo-Riemannian metric g ∈ Γ(S2 A∗) in the vector bundle A. Moreover, let [ : A→ A∗

and ] : A∗ → A be the musician morphisms induced by g (see the beginning of Section 4).
We extend ] to the morphism

] : S(A∗)→
⊕
k≥0

Sk A

on the whole bundle S(A∗) by

](Ω)(ω1, . . . , ωk) = (−1)kΩ(]ω1, . . . , ]ωk)

for Ω ∈ Γ(Sk A∗), ω1, . . . , ωk ∈ Γ(A∗).
Define the 2-symmetric tensor

G = ](g) ∈ Γ(S2 A),

i.e.,
G(ω, η) = g(]ω, ]η), ω, η ∈ Γ(A∗).

By the gradient of a smooth function f ∈ C∞(M) with respect to g we mean the section

grad f = ](da f ) ∈ Γ(A),

where da is the exterior derivative operator in the a skew-symmetric algebroid (A, $A, [·, ·]),
i.e., (da f )(X) = ($A ◦ X)( f ) for X ∈ Γ(A).

Now, define the symmetric bracket on smooth functions

(·, ·) : C∞(M)× C∞(M)→ C∞(M)

by
( f , h) = G(d f , dh) = g(grad f , grad h). (24)

This bracket will be called the Bochner bracket of smooth functions, following Crouch [26].
Observe that (·, ·) is a symmetric R-bilinear mapping with the property

( f1, f2 · f3) = f2 · ( f1, f3) + ( f1, f2) · f3

for all f1, f2, f3 ∈ C∞(M). So, ( f1, ·) is a derivation for any f1 ∈ C∞(M).



Symmetry 2021, 13, 1003 25 of 28

We would now like to examine under what conditions the linear connection ∇ de-
fines a symmetric bracket 〈· : ·〉∇, for which the gradient of the Bochner bracket of smooth
functions defined in (24) is the bracket of the gradients. We notice in the lemma below the re-
lationship of the Lie derivative with the symmetric bracket of functions. These properties are
related to the symmetric bracket defined by the metric connection and given in (11).

Lemma 10. If f , h ∈ C∞(M) and X = grad f , Y = grad h, then

](LXY[) = ](d(g(X, Y))) = ](LYX[) = grad( f , h). (25)

Proof. First observe that

(LX(dh))(Z) = X(dh(Z))− dh([X, Z]) = Z(X(h)) = d(X(h))(Z)

for Z ∈ Γ(TM). So,
LXY[ = d(X(h)) = d(g(X, Y))

since g(X, Y) = g(X, ]dh) = (dh)(X). Moreover, by definition, ( f , g) = G(d f , gh) =
g(grad f , grad h). Therefore, we have (25).

As a consequence of the last result and Theorem 5, we obtain the following:

Theorem 12. If∇ is a metric A-connection in A with totally skew-symmetric torsion with respect
to a pseudo-Riemannian metric g and f , h ∈ C∞(M), then

〈grad f : grad h〉∇ = grad( f , h).

Proof. Let f , h ∈ C∞(M). Define X = grad f and Y = grad h. By Theorem 5 and
Lemma 10, we have at once that

〈grad f : grad h〉∇ = 〈X : Y〉∇

= ](La
XY[ + La

YX[ − da(g(X, Y))

= grad( f , h) + grad( f , h)− grad( f , h) = grad( f , h).

Corollary 8. The space of all gradients Grad(A, g) together with the restricted symmetric bracket
〈· : ·〉LC : Grad(A, g)×Grad(A, g)→ Grad(A, g) of the Levi-Civita connection associated with
g forms a symmetric algebra. The multiplication 〈· : ·〉LC satisfies

〈X : f Y〉LC = f 〈X : Y〉LC + g(grad f , X)Y

for X, Y ∈ Grad(A, g), f ∈ C∞(M).

The Case of Symplectic Manifolds.

Let M continue to be a symplectic manifold with a symplectic form ω. Fix an almost
complex structure J : TM → TM compatible with ω, i.e., J is a bundle morphism with
J2 = − idTM and g ∈ Γ(S2 A∗) defined by g(X, Y) = ω(X, JY) is a Riemannian metric.
These conditions imply that J : TM→ TM is an isometry both with respect to ω (we then
say that J is a symplectomorphism) and with respect to g, i.e., ω(JX, JY) = ω(X, Y) and
g(JX, JY) = g(X, Y) for X, Y ∈ Γ(TM), respectively. Let ]ω : T∗M → TM and [ω :
TM→ T∗M be the mappings defined at the beginning of Section 7.2 and determined by
the symplectic form ω. On the other hand, the maps ]g : T∗M→ TM, g(]g(α), Y) = α(Y)
and [ω : TM → T∗M, [ω(X) = iXω are determined by the metric g. For any X ∈ Γ(A),
the forms iX g and iXω will be denoted, briefly, by X[ and Xω, respectively.
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For every f ∈ C∞(M), there is a corresponding unique vector field H f ∈ Γ(TM)
such that

iH f ω = d f .

The vector field H f is called the Hamiltonian vector field with Hamiltonian function f . The space
of all Hamiltonian vector fields on (M, ω) is denoted by XHam(M). Since [X, Y] = Hω(Y,X)

for any Hamiltonian vector fields X, Y, XHam(M) is a Lie algebra with the Lie bracket
of vector fields. Let 〈· : ·〉LC be the symmetric bracket determined by the Levi-Civita
connection associated with g.

Let us note that the relations between the symplectic structure, the almost complex
structure, and the metric imply the following identities:

]g = J ◦ ]ω, X[ = −(JX)ω, Xω = (JX)[ (26)

for X, Y ∈ Γ(TM). From this, we have

grad f = JH f

for f ∈ C∞(M).
For any X, Y ∈ Γ(TM), we define

(X : Y) = J〈JX : JY〉LC.

Since
(
XHam(M) : XHam(M)

)
⊂ XHam(M) holds, the map (· : ·) introduces the struc-

ture of symmetric algebra into the space of Hamiltonian vector fields. From the general
form of the Levi-Civita connection and identities (26), it follows that

(X : Y) = −(J ◦ ]g)(La
JX(JY)[ + La

JY(JX)[ − da(g(X, Y))

= ]ω(La
JXYω + La

JYXω − da(ω(X, JY))

for X, Y ∈ Γ(TM).
The symmetric bracket of smooth functions introduced at the beginning of this sec-

tion by (24) is connected with the corresponding Hamiltonian vector fields. This rela-
tion is shown in the theorem below.

Theorem 13. Let f , h ∈ C∞(M). Then,

( f , h) = ω(Hh, JH f ). (27)

Theorems 12 and 13 now lead to

(X : Y) = Hω(Y,JX)

for all X, Y ∈ XHam(M). The obtained property of the symmetric bracket of Hamiltonian
vector fields is a symmetric analogy of the properties of the Lie bracket of such fields because

[X, Y] = Hω(Y,X)

for all X, Y ∈ XHam(M).

9. Concluding Remarks

The result obtained in the last section generalizes the result for Riemannian manifolds
and the Levi-Civita connections [26] and shows that the properties analogous to those
for the Hamiltonian vector fields on Poisson manifolds naturally occur for gradients and
symmetric brackets determined by some connections. According to Theorem 2, it is im-
portant to assume that a given connection compatible with the pseudometric has a totally
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skew-symmetric torsion with respect to the metric. However, the symmetric brackets
of such connection are completely determined by the bracket for the Levi-Civita connec-
tion. Examples show that the symmetric bracket associated with a metric connection and
brackets for the dual connections with respect to a given nondegenerate bilinear form have
an important role in the construction of linear connections on various geometric structures
related to skew-symmetric algebroids.
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15. Grabowski, J.; Urbański, P. Lie algebroids and Poisson-Nijenhuis structures. Rep. Math. Phys. 1997, 40, 195–208. [CrossRef]
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