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Abstract: In irrigation and drainage channels, vertical drops are generally used to transfer water
from a higher elevation to a lower level. Downstream of these structures, measures are taken to
prevent the destruction of the channel bed by the flow and reduce its destructive kinetic energy. In
this study, the effect of use steps and grid dissipators on hydraulic characteristics regarding flow
pattern, relative downstream depth, relative pool depth, and energy dissipation of a vertical drop was
investigated by numerical simulation following the symmetry law. Two relative step heights and two
grid dissipator cell sizes were used. The hydraulic model describes fully coupled three-dimensional
flow with axial symmetry. For the simulation, critical depths ranging from 0.24 to 0.5 were considered.
Values of low relative depth obtained from the numerical results are in satisfactory agreement with
the laboratory data. The simultaneous use of step and grid dissipators increases the relative energy
dissipation compared to a simple vertical drop and a vertical drop equipped with steps. By using
the grid dissipators and the steps downstream of the vertical drop, the relative pool depth increases.
Changing the pore size of the grid dissipators does not affect the relative depth of the pool. The
simultaneous use of steps and grid dissipators reduces the downstream Froude number of the vertical
drop from 3.83–5.20 to 1.46–2.00.

Keywords: energy dissipation; hydropower; step and grid dissipator; spillway; symmetry law

1. Introduction

Sometimes, during the construction of water supply systems, the natural slope of the
ground is steeper than the slope required for the design. In such a situation, a drop is usually
used to transfer water from a high level to a lower level and thus cause energy loss due to
the increase of flow depth and decreasing the flow velocity. In addition to slope control,
the drop structure also reduces the earthworks volume. One of the most critical issues to
address downstream of a hydraulic structure is the flow’s kinetic energy [1]. The control
structures must dissipate kinetic energy. Turbulence and water–air mixing are effective
ways to increase energy dissipation. The use of grid structures and steps downstream of
the vertical drop is a newer technique for energy dissipation. Grid dissipators are located
in the path of a supercritical flow; they deposit the flow onto the downstream steps. By
this process, they dissipate the destructive flows [2,3].

This study aims to investigate the effect of the simultaneous use of grid dissipators
and steps downstream. Prior research, such as Esen, et al. [4], Rajaratnam and Chamani [5],
Kabiri-Samani et al. [6], and Sharif and Kabiri-Samani [7] have studied the behavior
of vertical drops and their influence on energy dissipation, bottom depth, and other
performance metrics. Moore [8] was among pioneers who experimentally examined the
velocity downstream of the vertical drop. The results showed that energy dissipation from
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these structures is a function of the relative critical depth. The main reason for energy
dissipation is the impact of the vertical jets onto the bottom of the channel. Rajaratnam
and Chamani [5] provided relationships for estimating pool depth and relative energy
dissipation. It was inferred from the results that the return flow governs the depth of the
pool to the drop wall (i.e., recirculating flow). Also, the free surface is approximated as a
flat and rigid slip wall, and symmetry boundary conditions are applied for the resolved
flow variables [9].

Esen et al. [4] used steps to reduce the destructive kinetic energy of the flow down-
stream of drops. By adding steps at different heights, the researchers showed that steps
increase energy dissipation compared to a simple vertical drop. Kabiri-Samani et al. [6]
investigated the behavior of vertical drops equipped with grid and groove dissipators; they
showed that these dissipators increase energy dissipation. Sharif and Kabiri-Samani [7]
investigated the effect of shallow depth on the behavior of a vertical drop equipped with
grid dissipators. The results showed that increasing the downstream relative depth reduces
water and bubble interference and increases the relative pool depth.

Daneshfaraz et al. [10] numerically investigated the effect of lattice plates and blocks
on the energy dissipation of flow. From the results, it can be obtained that the use of
screens and blocks increases energy dissipation. Daneshfaraz et al. [11] investigated
the effect of double screens on vertical drops. The results showed that with increasing
relative critical depth, the downstream relative depth and the relative residual energy also
increase. Daneshfaraz et al. [1] also performed a laboratory study of energy dissipation on
a drop equipped with screens. The results indicate that screens increase energy dissipation
compared to a simple vertical drop. Daneshfaraz et al. [12] conducted an experimental
study on the effect of horizontal screens diameter on hydraulic parameters of vertical drop.
The results can be obtained that increasing the diameter of the screens does not affect the
amount of energy dissipation. Daneshfaraz et al. [13] investigated the performance of
the support vector machine on the prediction of hydraulic parameters of a vertical drop
equipped with a horizontal screen with different diameters, which showed the excellent
performance of SVM in predicting these parameters.

Previous research on slopes and the need to use this type of structure in irrigation and
drainage channels show that one of the disadvantages that this structure exhibits (convert-
ing a steep slope into a more moderate design slope) lead to an increase in downstream
kinetic energy, which is why little research has been done on these types of drops, including
vertical and stepped drops. Falling flow through the pores of the grid dissipator increases
air interference and increases the depth of flow. Simultaneous use of steps downstream of
the vertical drop and grid dissipators increases the depth of the pool and the downstream
depth of the stream and increases energy dissipation. On the other hand, the simultaneous
use of steps and grid dissipators has not been studied numerically. Hence, the present
study aims to comprehensively investigate the effect of steps and grid dissipators on the
performance of a vertical drop in the plane of symmetry principle.

2. Materials and Methods
2.1. Turbulence Model

FLOW 3D is a software that is used for solving computational fluid dynamics (CFD)
problems. The flow equations in this software are the Navier–Stokes’s equations and
mass conservation [14]. This software solves Navier–Stokes’ equations discretized on
finite volumes that subdivide the solution domain. The general forms of continuity and
momentum are presented in Equations (1) and (2), respectively [15].

∂Ui
∂xj

= 0 (1)

δUi
δti

+ ρUi
∂Ui
∂xi
− ∂P

∂xi
+

∂

∂xi
(µ

∂Ui
∂xj
− ρu′ju

′
i) + ρgiui (2)
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Here, Ui and u′ i are the mean and fluctuating velocities in the direction xi, where
xi = (x, y, z), Ui = (U, V, W) and u′ i = (u’, v’, w’). The symbols ρ, µ, P and gi are specific
gravity, dynamic viscosity, pressure, and gravitational acceleration. The instantaneous
velocity is obtained by superposing the time-averaged and instantaneous fluctuating
velocity ui = Ui + u′ i in all three directions. In the software, turbulence can be simulated
using the following turbulence models:

1. Large Vortex Simulation Model (LES),
2. Model of two equations (k-E),
3. Model of Re-Normalized Group (RNG),
4. Prandtl mixing length.

In the present study, the Re-Normalized Group (RNG) turbulence model was selected.
The reason for using this turbulence model is its ability to simulate a flow with a large
computational mesh, good performance in simulating flow separation, superior results
with sudden strain and curvature, as well as success in previous numerical studies [16–20].
The RNG (k-E) model is a two-equations model that is expressed as [21,22]:

δUi
δti

+ ρUi
∂Ui
∂xi
− ∂P

∂xi
+

∂

∂xi
(µ

∂Ui
∂xj
− ρu′ju

′
i) + ρgiui (3)

∂

∂t
(ρε) +

∂(ρεui)

∂xi
=

∂

∂xj
(αsµe f f

∂k
∂xj

) + C1s −
ε

k
(Gk + G3sGb) + C2sρ

ε2

k
− Rε + Sε (4)

In these equations, k is the turbulent kinetic energy; E is the turbulence dissipation rate;
Gk is the production of turbulent kinetic energy due to velocity gradient; Gb is turbulent
kinetic energy production from buoyancy, and YM is turbulence dilation oscillation distri-
bution [15,23,24]. In the above equations, αk = αs = 1.39, C1s= 1.42 and C2s = 1.6 are model
constants. The terms Sk and Sε are source terms for k and E, respectively. The turbulent
viscosity is added to the molecular viscosity to obtain µeff effective viscosity. The volume of
fluid (VOF) method consists of three main components: fluid ratio function, VOF transport
equation solution, and boundary conditions at the free surface. The VOF transport equation
is expressed by Abbasi, et al. [25]:

∂F
∂t

+
1

VF

[
∂(FAxu)

∂x
+

∂(FAyv)
∂y

+
∂(FAzw)

∂z

]
= 0 (5)

2.2. Simulation Specification and Solution Field Network

Two steps with heights of 7.5 and 10 cm and two grid dissipators with cell sizes 6 × 6
and 4 × 4 cm were employed to investigate the simultaneous effect of steps and grid
dissipators. The grids have porosities of 56% and 44%, respectively (Table 1).

Table 1. Description of the grid dissipator.

Dissipator N4 × 4 N6 × 6

a (cm) 4 6
b (cm) 4 6

Ln (cm) 60 60
LG (cm) 40 40

a/b 1.0 1.0
E(%) 44 56

The height of the drop structure is 25 cm, and a total of 82 simulations were completed.
For validation, the numerical model results were compared with the laboratory data of
Esen et al. [4]. Those researchers used a laboratory flume with a width of 0.6 m, a height
of 0.78 m and a length of 20 m, three drop heights, and seven different step heights. The
height of their drop was 25 cm, and the heights of their steps were 7.5 and 10 cm. For
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validation, the relative downstream depth corresponding to a drop height of 25 cm and
a step height of 7.5 cm was used. Figure 1 shows a three-dimensional view of a vertical
drop with steps and grid dissipators. In Figure 1, Ln and LG are the grid dissipator length
and width, respectively. The amount of Ln is equal to the width of the channel, where
the LG is equal to 40 cm, for which the amount of grid length has been used from the
Kabiri-Samani et al. [6] study.

Figure 1. 3D view of a vertical drop equipped with steps and grid structures: (a) h/H = 0.3,
(b) h/H = 0.4, and (c) the grid structure.

The boundary conditions used in the present study are as follows:

(i) inlet boundary = volume flow rate (VFR),
(ii) outlet boundary = outflow,
(iii) the bottom and side, boundary = Wall, v: the top boundary = symmetry.

After applying the boundary conditions, the time required for the flow stability time
was 35 s which is the steady-state in all models in the 20th second. The time step was
0.01 s. Table 2 shows the range of operating parameters, and Figure 2 shows the geometric
characteristics of the vertical slope with boundary conditions in the presence of a step and
a grid dissipator. It should be noted that the type of mesh used in this study is a cartesian.

Table 2. Range of parameters.

h/H Dissipator Size (cm)
Variables

yd (cm) yc (cm) Q (Lit/s) Frd Reu (×104)

Without step - 2.00–6.00

6.00–12.50 27.60–64.50

3.83–5.20

16–39.9

0.3 - 2.60–6.00 2.90–3.85
0.4 2.45–6.00 2.90–3.83
0.3

6 × 6
4.65–7.00 1.46–2.00

0.4 4.73–8.60 1.43–2.00
0.3

4 × 4
3.45–7.30 2.20–2.90

0.4 3.95–7.80 1.87–2.36
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Figure 2. The geometric profile, vertical drop, and boundary conditions.

2.3. Dimensional Analysis

Relevant parameters are annotated in Figure 3. A functional relationship between the
various parameters is provided mathematically in Equation (6), where f1 is an undefined
functional relationship.

f 1(Q, ρ, µ, g, yu, yd, yb, H, h, B, a, b, yp, yc, ε, Eu, Ed) = 0 (6)

Figure 3. Geometric and hydraulic parameters for a vertical drop equipped with step and grid structures.

In Equation (6), Q is the discharge [L3T−1], ρ is density [ML−3], µ is the kinematic
viscosity [ML−1T−1], g is the gravitational acceleration [LT−2], yu is the upstream depth
[L], yd is the downstream depth [L], yb represents the edge of the drop depth [L], H is the
drop height [L], h is the step height [L], B refers to the channel width [L], a and b are the
length and width. The grid dissipators are also annotated [L], Eu is the upstream specific
energy [L], Ed is the downstream specific energy [L], yp refers to the pool depth [L], yc to
the critical depth [L] and E is the grid dissipator porosity [-]. Using the Pi–Buckingham
method and considering the parameters ρ, g, and yu as iterative parameters, dimensional
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analysis can be performed. Relative energy dissipation and downstream relative depth are
extracted as dimensionless parameters according to Equation (7):

f 2(Fru, Reu,
yd
yu

,
yb
yu

,
H
yu

,
h
yu

,
B
yu

,
a

yu
,

b
yu

,
yp

yu
,

ycr

yu
,

Eu

yu
,

Ed
yu

, ε) = 0 (7)

By simplifying and dividing dimensionless parameters, Equation (8) is obtained
as follows:

yd
H

,
∆E
Eu

,
yp

H
= f 3(Fru, Reu,

yb
H

,
h
H

,
B
H

,
a
b

,
ycr

H
, ε) (8)

Given that the flow is turbulent and the Reynolds number is 160,000–399,000, the
viscous effects are ignored. Additionally, the parameters a/b, B/H, and yb/H were removed
because of their lack of influence on the results. The Fru parameter, which indicates the
upstream Froude number, is subcritical in all models, and it was also eliminated [8] so that:

∆E
Eu

,
yd
H

,
yp

H
= f 5(

h
H

,
ycr

H
, ε) (9)

2.4. Classical Hydraulic Equations and Evaluation Criteria

One parameter to be studied is the relative energy dissipation of the flow. The specific
energy upstream and downstream of the drop are calculated from Equations (10) and (11),
respectively. Additionally, R2 and RMSE were used to evaluate the agreement between
the calculations and the measurements. RMSE refers to the root mean square errors, R2

is the coefficient of determination, and n is the total number of data points. The metrics
above were computed using Equations (12) and (13), respectively. It should be noted
that the optimal answer is one in which the RMSE and R2 parameters tend to zero and
one, respectively.

Eu = H + 1.50yc (10)

Ed = yd +
q2

2gy2
d

(11)
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√√√√√ n
∑
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H
)
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H
)
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]2

n
(12)
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H
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[( yd
H
)
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( yd

H
)

Exp
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×
√

n
∑

i=1

[( yd
H
)

Num −
( yd

H
)

Num

]2

 (13)

2.5. Validation

A mesh independence study was performed with increasing computational elements
until the results were no longer materially dependent on the element sizes. Table 3 sum-
marizes the mesh-independence results, and Figure 4 indicates the RMSE values for vari-
ous meshes.

Table 3. Meshing sensitivity analysis.

Test No. Turbulence Model Cell Size (cm) Total Number of Cells RMSE (%) R2

Test 1 RNG (k-E) 2.5 46,080 6.504 0.74
Test 2 RNG (k-E) 1.0 720,000 3.251 0.776
Test 3 RNG (k-E) 0.95 836,136 2.186 0.802
Test 4 RNG (k-E) 0.83 1,856,200 1.136 0.89
Test 5 RNG (k-E) 0.60 3,350,000 0.718 0.993
Test 6 RNG (k-E) 0.50 5,253,000 0.708 0.995
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Figure 4. Variation of the RMSE versus cell size.

The mesh with 3,350,000 elements resulted in a root mean square error and a coefficient
of determination of 0.781% and 0.993, respectively. This mesh was selected for performing
further calculations. Figure 5 was prepared to relate the relative experimental and predicted
depths downstream of the vertical drop. It is seen that the two results agree to within
±8.4%. Test 6 also has very good results, but because the number of evaluation parameters
RMSE and R2 are very close to the values of test 5, to reduce the number of meshes, test
specification 5 was used to continue the simulation.

Figure 5. Comparison of experimental and numerical values of the relative depth downstream of the
vertical drop with a step of 7.5 cm.

3. Results and Discussion
3.1. Water Surface Profile

Flow profiles along the route reflect the water depth. It is usually possible to design
canal walls based on flow profiles [10]. At the same time, the velocity profiles on the plane
of symmetry downstream of the vertical drop may be analyzed together where a significant
thickness of the fluid covers the structure [26]. Thus, measurements were carried out in
the vertical plane of symmetry, downstream of the vertical. The flow surface profile over a
vertical drop with a continuous step with relative height 0.4 and relative critical depth 0.24
is shown in Figure 6a.
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Figure 6. Flow over a vertical drop with h/H = 0.3: (a) drop equipped with a step, (b) drop equipped with both a step and
grid structures.

Additionally, shown is a flow profile over a vertical drop equipped with steps with a
relative height of 0.3. There are also grid dissipators with cell sizes of 4 × 4 cm, as shown
in Figure 6b. According to Figure 6a,b, it can be inferred that after the fluid flows past the
vertical drop, some of the flow passes through the grid dissipator pores and subsequently
falls downstream as a jet. Some of the discharge returns upstream to the vertical drop
wall, causing turbulence behind the jet. Some of the flow impacts the steps installed at the
bottom of the drop. It was proposed that this phenomenon is due to the influence of the
recirculation vortex, which entrained the inner portions of the vortex and drew the flow
pattern towards the axis of symmetry [26–28].

3.2. Relative Downstream Depth

Based on the dimensional analysis, the values of the relative downstream depth are
plotted versus the relative critical depths in Figure 7.

Figure 7. Relative downstream depth versus relative critical depth.

It is observed that with increasing relative critical depth, the downstream relative
depth values increase in all scenarios. According to Figure 7, it is clear that for step heights,
the value of the downstream relative depth increases with the use of grid dissipators. The
jet flow downstream of the vertical drop passes through the pores in the grid dissipator.
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This process increases the water and air interference and increases oxygen in the water.
This mixing also increases the downstream depth.

On the other hand, some of the flow reverses direction and travels upstream toward
the vertical drop wall. The reversed flow increases turbulence behind the jet—a portion of
the flow impacts the steps installed at the bottom of the drop. The presence of steps and
the increase of the relative height (caused by the grid dissipators) causes a 32% increase
in relative downstream depth for two relative heights of 0.3 and 0.4. Simultaneous use of
steps and a grid reduces the Froude number of the vertical drop. Reduction of the Froude
number is a significant quantity that provides insight into the stilling basins’ economic
design. The range of Froude numbers for the present study is presented in Table 4.

Table 4. Meshing sensitivity analysis.

h/H Grid Cell Size (mm) Froude Number (Downstream)

Without step Without dissipator 3.83–2.50
0.3 Without dissipator 2.90–3.85
0.4 Without dissipator 2.90–3.83

0.3
60 × 60

1.46–2.00
0.4 1.43–2.00

0.3
40 × 40

2.20–2.90
0.4 1.87–2.36

3.3. Relative Energy Dissipation

Relative energy dissipation values for flow over a simple vertical drop, a vertical drop
equipped with steps, and a vertical drop equipped with steps and grid dissipators are
indicated in Figure 8.

Figure 8. Relative energy dissipation versus relative critical depth.

The data was extracted for two relative step heights and two grid-cell sizes. It is
observed that for all models of a simple vertical drop, with increasing relative critical
depth, the relative energy dissipation decreases. The minimum energy dissipation values
occur with a simple vertical drop. In contrast, a maximum energy dissipation corresponds
to a drop equipped with a vertical grid dissipator and a step with a relative step height
of 0.3 and a grid size of 6 cm. The minimum energy reduction was 259%, whereas the
maximum reduction is 483% (compared to the simple vertical drop case). Results are
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shown in Figure 9, where the significant effect on energy dissipation is evident. After flow
passes over the vertical drop with a step, a portion of the flow passes through the dissipator
holes. Following the dropping jets, some of the fluid flows towards the drop wall.

Figure 9. Energy dissipation is presented as relative to a simple vertical drop case.

The vertical drop results in enhanced turbulence behind the jet, and some of the flow
passes onto the step installed at the bottom of the drop. The decrease of the relative energy
dissipation for a vertical drop with a relative step height of 0.4 and dissipator cell size of 4
and 6 cm is almost the same; modifications to the grid cell size have minimal effect on the
degree of energy dissipation.

Given that grid dissipators significantly increase energy dissipation, the use of these
structures also has limitations, such as blocking the pores of these grids. Suppose debris
accumulates over these pores over the years. In that case, these pores will be blocked
and will act as a vertical drop, and as the flow falls through it, the downstream flow
regime will become supercritical. To expand this issue, we can mention the use of grooved
grids because in this case, there is no hole, and it will be grooved, and pore-clogging will
not occur.

3.4. Relative Pool Depth

The relative pool depth values for the models studied in the present study versus the
relative critical depth are shown in Figure 10. It is observed that in all models, increasing
the relative critical depth increases the relative pool depth. The return flow discharge to
the pool and the immersion created by the interference of the flow passing through the
pores of the grid dissipators increases. This hydraulic phenomenon causes the relative
critical depth and the relative pool depth as well. According to the figure, it can be seen
that changing the size of the grid of grid dissipators does not affect the relative pool depth.
However, compared to the model without grid dissipators, the relative pool depth in the
vertical drop equipped with steps and dissipators has an increasing trend.
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Figure 10. Relative pool depth versus relative critical depth.

3.5. Equations

Equations were presented to investigate the effect of the input parameters and estimate
the values of relative downstream depth and relative energy dissipation, and relative
pool depth. These equations are used to estimate the energy dissipation and the relative
downstream depth for a vertical drop structure equipped with a step. These equations
were obtained by output data from Flow 3D software and then in Excel using the solver
command. 30% of the data were selected for testing and 70% for training to develop the
equations. Equations (14) and (15) are used to estimate the relative downstream depth and
the relative energy dissipation; the values of its fixed parameters are shown in Table 5.

∆E
Eu

,
yd
H

= a(
yc

H
)

b
×
[
c + d(

yc

H
)

e]
(14)

yp

H
= a(

yc

H
)

b
× (

h
H
)

c
× ln(ε) (15)

Table 5. Values of constant parameters of Equations (14) and (15).

Dependent
Parame-

ters

Constant Parameters Criteria Parameters

a b c d e RMSE R2

yd
H 0.4565 −0.2808 0.3487 1.2620 1.4209 0.0223 0.980

∆E
Eu

0.3226 0.8063 0.6159 0.3669 1.3921 0.0228 0.973
yp
H 5.325 1.370 1.796 - 0.0124 0.993

After performing the predictive calculations, the values were compared with the
results from the numerical simulation, as shown in Figure 11.

As can be deduced from the figure, for all cases, the relative downstream depth can be
predicted with root mean square error and the coefficient of determination values of 0.023
and 0.980, respectively. The relative energy is predicted with root mean square error and
coefficient of determination values equal to 0.0228 and 0.973. Similarly, the relative pool
depth is predicted with root mean square error and coefficient of determination values
equal to 0.0124 and 0.993, respectively. The predictions have maximum relative errors of
±5.8% and ±8.9%, and ±8.13%, respectively (as evident from the following images).



Symmetry 2021, 13, 895 12 of 14

Figure 11. Comparison of predictions and measured results: (a) relative downstream depth, (b)
relative energy dissipation, (c) relative pool depth.

4. Conclusions

In the present study, the simultaneous use of a step downstream of a vertical drop
and grid dissipators was studied using FLOW 3D software. The VOF method was used to
simulate the free surface, and the RNG (k-E) model was used to calculate turbulence. The
relative downstream depth for the vertical drop equipped with a step obtained agrees very
closely with measurements. Simultaneous use of a step and grid dissipators increases the
relative downstream depth and increases relative energy dissipation. The relative energy
dissipation decreases with increases to the relative critical depth. A vertical drop equipped
with a step has less energy dissipation than a vertical drop equipped with a step and grid
dissipator. Simultaneous use of steps with a height of 7.5 cm and a grid dissipator with a
cell size of 6 cm increases the relative energy dissipation energy by more than 4.8 times
compared to a simple vertical drop. The relative energy dissipation for the vertical drop
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with a relative step height of 0.4 and cell sizes of 4 and 6 cm grid are nearly identical. The
use of steps and grid dissipators caused a 62% reduction in the Froude number compared
to the simple vertical drop so that the range of Froude numbers has changed from a range
of 3.83–5.20 to 1.46–2.00. Therefore, reducing the Froude number with grid dissipators can
cause severe turbulence and enhanced air–water mixing.
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