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Abstract: This work deals with heat conduction problems formulation in the framework of a CAD-
compatible topology optimization method based on a pseudo-density field as a topology descriptor.
In particular, the proposed strategy relies, on the one hand, on the use of CAD-compatible Non-Uniform
Rational Basis Spline (NURBS) hyper-surfaces to represent the pseudo-density field and, on the other
hand, on the well-known Solid Isotropic Material with Penalization (SIMP) approach. The resulting
method is then referred to as NURBS-based SIMP method. In this background, heat conduction problems
have been reformulated by taking advantage of the properties of the NURBS entities. The influence of the
integer parameters, involved in the definition of the NURBS hyper-surface, on the optimized topology is
investigated. Furthermore, symmetry constraints, as well as a manufacturing requirement related to the
minimum allowable size, are also integrated into the problem formulation without introducing explicit
constraint functions, thanks to the NURBS blending functions properties. Finally, since the topological
variable is represented by means of a NURBS entity, the geometrical representation of the boundary of
the topology is available at each iteration of the optimization process and its reconstruction becomes
a straightforward task. The effectiveness of the NURBS-based SIMP method is shown on 2D and 3D
benchmark problems taken from the literature.

Keywords: heat conduction; NURBS hyper-surfaces; topology optimization; SIMP method;
minimum length scale requirement; additive manufacturing

1. Introduction

The continuous downscaling of semi-conductor electronics in devices like smart-
phones and laptops, which require increasing power rates that need to be dissipated,
calls for major challenges to design dedicated cooling systems [1]. Efficient heat transfer
in electronic devices is of paramount importance because it allows operation at higher
performance for longer duration [2]. Moreover, the performance of other devices, like heat
exchangers, turbine blades, fins, thermoelectric generators, and cooling systems, critically
depends on effective heat transfer [3–7]. Improved heat transfer design can reduce the
energy consumption of devices during their operative life, thus allowing for a reduction of
the operational costs. The use of dedicated optimization strategies in heat transfer prob-
lems can be also applied to increase the efficiency of support structures in various additive
manufacturing technologies to save material and to allow producing more compact and
cost-effective structures [8].

In the last decade, the use of topology optimization (TO) methods has experienced
a significant growth in many industrial fields due also to the development of modern
additive manufacturing processes. The goal of TO is to determine the optimal distribution
of the material within a given design domain under prescribed requirements. Since
its introduction in the late 1980s [9], numerous aproaches have been proposed in the
literature [10,11], as the homogenization method [9,12], Solid Isotropic Material with

Symmetry 2021, 13, 888. https://doi.org/10.3390/sym13050888 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-5688-3664
https://www.mdpi.com/article/10.3390/sym13050888?type=check_update&version=1
https://doi.org/10.3390/sym13050888
https://doi.org/10.3390/sym13050888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050888
https://www.mdpi.com/journal/symmetry


Symmetry 2021, 13, 888 2 of 16

Penalization (SIMP) method [10,13], Level Set Method (LSM) [14,15], Moving Morphable
Components (MMC) method [16], Evolutionary Structural Optimization (ESO) method [17],
and its improved version, i.e., the Bi-directional ESO [18,19] method.

TO has been extensively used in heat transfer problems [20–27]. An exhaustive review
on this topic can be found in [28]. Li et al. [20,21] extend the ESO algorithm to shape opti-
mization problems dealing with steady-state heat conduction. Zhuang et al. [22] employed
the LSM to deal with TO heat conduction problems under multiple load cases. Yoon [23]
proposed a formulation taking into account for forced convective heat transfer. In this back-
ground, the heat transfer equation with forced convective heat loss and the Navier-Stokes
equation were integrated in the TO problem formulation. As a consequence, four material
properties were interpolated in terms of the pseudo-density field: the inverse permeability,
the conductivity, the material density, and the specific heat capacity. Iga et al. [27] focused
on the influence of design-dependent heat convection coefficients and internal heat gen-
eration on the optimized topologies found by means of the homogenization method [29].
The dependency of these coefficients on the design variables was determined through
a dedicated surrogate model. Ikonen et al. [24] formulated heat conduction problems
in the framework of an interesting TO method based on parametric L-systems and the
finite volume method (FVM). Results were compared to those provided by the classical
SIMP approach showing equivalent or superior performances. Recently, Yoon and Koo [26]
developed a sensitivity analysis for TO of steady-state conductive thermal problems subject
to design-dependent thermal loads using density gradients–based boundary detection,
whilst Hu et al. [25] presented an interesting application of TO dealing with heat transfer
problems in microchannels in order to optimize their performances in terms of both heat
dissipation and pressure drop. Bendsøe and Sigmund in [10] discussed the generalization
of the well-known 99-line Matlab code to heat conduction problems.

It is noteworthy that the success of the SIMP method is due to its efficiency and
compactness [10]. However, two major drawbacks affect such an approach. Firstly, the
topological descriptor relies on the mesh of the finite element (FE) model, and it is not
possible to obtain an optimized topology compatible with CAD software: accordingly,
the results of the TO require a time-consuming CAD reconstruction/reassembly phase
in order to integrate the optimized solution within the CAD environment. Secondly, to
avoid the well-known checker-board effect, dedicated filtering techniques [10] or projection
methods [30,31] must be introduced, which represent a further limitation of this method.

In order to overcome the aforementioned issues, the classical SIMP approach has
been recently reformulated in the framework of Non-Uniform Rational Basis Spline hyper-
surfaces [32–39]. The resulting method is then referred to as NURBS-based SIMP method.
As discussed in [32,33], some consequences of outstanding importance result from this
approach: (1) the number of design variables is unrelated to the number of elements and
a significant reduction of the design variables amount can be obtained with respect to
the classical SIMP approach; (2) the optimized topology is unrelated to the quality of the
mesh of the FE model; (3) the NURBS formalism allows taking advantage of an implicitly
defined filter zone, whose size depends on the NURBS parameters. Moreover, the CAD
reconstruction phase is a trivial task [38], and, thanks to the peculiar features of the NURBS
entities, it is possible to meet the design requirements on the reassembled geometry.

In this study, only heat conduction problems are considered, wherein the so-called
thermal compliance is considered as a measure of the overall structural thermal conductivity.
Heat conduction problems are formulated in the context of the NURBS-based SIMP method.
The contribution of this study is twofold. Firstly, the gradient of thermal responses with
respect to the topological variables is derived by exploiting the main properties of NURBS
entities. In particular, the formulation benefits from the local support property of the
NURBS blending functions [32,33], which establishes an implicit relation among the
pseudo-densities of adjacent elements. Secondly, a sensitivity analysis of the optimized
topology to the integer parameters of the NURBS entity is carried out. Particularly, these
parameters can be set to define a minimum member size requirement without introducing



Symmetry 2021, 13, 888 3 of 16

an explicit constraint into the problem formulation, as discussed in [35]. The effectiveness
of the NURBS-based SIMP method is tested on both 2D and 3D test cases taken from
the literature.

The paper follows this outline. Section 2 presents the fundamentals of NURBS hyper-
surfaces. Section 3 introduces the main concepts at the basis of the NURBS-based SIMP
method. The numerical results are presented and discussed in Section 4: the differences
obtained in the optimized topologies when using either B-spline or NURBS entities as
topology descriptor are highlighted and the influence of the integer parameters involved
in the definition of the NURBS entity is also investigated. Finally, meaningful conclusions
and prospects are provided in Section 5.

Notation 1. Upper-case bold letters are used to indicate tensors and matrices, while lower-case
bold letters indicate column vectors.

2. Fundamentals of NURBS Hyper-Surfaces

A NURBS hyper-surface is a polynomial-based function, defined over a parametric
space (domain), taking values in the NURBS space (co-domain). Therefore, if N is the
dimension of the parametric space and M is the dimension of the NURBS space, a NURBS
entity is defined as h : RN −→ RM. The mathematical formula of a generic NURBS
hyper-surface is

h(ζ1, . . . , ζN) =
n1

∑
i1=0
· · ·

nN

∑
iN=0

Ri1,...,iN (ζ1, . . . , ζN)Pi1,...,iN , (1)

where nj (j = 1, . . . , N) is the number of control points (CPs) along the ζ j parametric direc-
tion, Ri1,...,iN (ζ1, . . . , ζN) are the piece-wise rational basis functions, which are related to the
standard NURBS blending functions Nik ,pk (ζk), k = 1, . . . , N by means of the relationship

Ri1,...,iN (ζ1, . . . , ζN) =
ωi1,...,iN ∏N

k=1 Nik ,pk (ζk)

∑n1
j1=0 · · ·∑

nN
jN=0

[
ωj1,...,jN ∏N

k=1 Njk ,pk (ζk)
] . (2)

In Equations (1) and (2), h(ζ1, . . . , ζN) is a M-dimension vector-valued rational func-
tion, (ζ1, . . . , ζN) are scalar dimensionless parameters defined in the interval [0, 1], whilst
Pi1,...,iN are the CPs coordinates. The j-th CP coordinate (X(j)

i1,...,iN
) is stored in the array X(j),

whose dimensions are (n1 + 1)× · · · × (nN + 1). The explicit expression of CPs coordinates
in RM is:

Pi1,...,iN = {X(1)
i1,...,iN

, . . . , X(M)
i1,...,iN

},

X(j) ∈ R(n1+1)×···×(nN+1), j = 1, . . . , M.
(3)

Curves and surfaces formulæ can be easily deduced from Equation (1). The CPs layout
is referred to as control polygon for NURBS curves, control net for surfaces and control
hyper-net otherwise [32]. The overall number of CPs constituting the hyper-net is:

nCP :=
N

∏
i=1

(ni + 1). (4)

The generic CP does not actually belong to the NURBS entity but it affects its shape by
means of its coordinates. A weight wi1,...,iN is associated to the generic CP. The higher the
weight wi1,...,iN , the more the NURBS entity is attracted towards the CP Pi1,...,iN . For each
parametric direction ζk, k = 1, . . . , N, the NURBS blending functions are of degree pk and
can be computed in a recursive way as
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Nik ,0(ζk) =

{
1, if v(k)ik

≤ ζk < v(k)ik+1,

0, otherwise,
(5)

Nik ,q(ζk) =
ζk−v(k)ik

v(k)ik+q−v(k)ik

Nik ,q−1(ζk) +
v(k)ik+q+1−ζk

v(k)ik+q+1−v(k)ik+1

Nik+1,q−1(ζk),

q = 1, . . . , pk,
(6)

where each blending function is defined on the knot vector

v(k) = {0, . . . , 0︸ ︷︷ ︸
pk+1

, v(k)pk+1, . . . , v(k)mk−pk−1, 1, . . . , 1︸ ︷︷ ︸
pk+1

}, (7)

whose dimension is mk + 1, with

mk = nk + pk + 1. (8)

Each knot vector v(k) is a non-decreasing sequence of real numbers that can be in-
terpreted as a discrete collection of values of the related dimensionless parameter ζk.
The NURBS blending functions are characterized by several interesting properties: the
interested reader is referred to [40] for a deeper insight into the matter. Here, only the local
support property is recalled because it is of paramount importance for the NURBS-based
SIMP method [32,33]:

Ri1,...,iN (ζ1, . . . , ζN) 6= 0,

if (ζ1, . . . , ζN) ∈
[
v(1)i1

, v(1)i1+p1+1

[
× · · · ×

[
v(N)

iN
, U(N)

iN+pN+1

[
.

(9)

Equation (9) means that each CP (and the respective weight) affects only a precise
zone of the parametric space, which is referred to as local support or influence zone.

3. The NURBS-Based SIMP Method

The details of the formulation of the SIMP method in the NURBS hyper-surfaces
framework are given in [32,33]. The main features of the NURBS-based SIMP method
for TO are briefly recalled here. The mathematical formulation is here provided for 3D
steady-state heat conduction problems under the hypothesis that the applied thermal loads
and boundary conditions (BCs) do not depend upon the pseudo-density field (of course,
the formulation can be generalized by relaxing this hypothesis). Consider the compact
space D ⊂ R3 in a Cartesian orthonormal frame O(x1, x2, x3):

D := {xT = {x1, x2, x3} ∈ R3 : x1 ∈ [0, a1], x2 ∈ [0, a2], x3 ∈ [0, a3]}, (10)

where aj (j = 1, 2, 3) is a reference length defined along xj axis. The aim of TO is to search
for the best distribution of a given “heterogeneous material” satisfying the requirements of
the design problem.

Consider the steady-state equation of the FE model in the most general case:

K̂û = f̂; û, f̂ ∈ RN̂DOF , K̂ ∈ RN̂DOF×N̂DOF , (11)

where N̂DOF represents the overall number of degrees of freedom (DOFs) before applying
the BCs, and K̂ is the non-reduced (singular) conductivity matrix of the FE model, while
f̂ and û are the non-reduced vectors of the external generalized nodal thermal forces
and temperatures, respectively. Using standard FE notation [41], Equation (11) can be
rewritten as: [

K KBC
KT

BC K̃

](
u

uBC

)
=

(
f
r

)
, (12)
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with:
u, f ∈ RNDOF , uBC, r ∈ RNBC , K ∈ RNDOF×NDOF ,
KBC ∈ RNDOF×NBC , K̂ ∈ RNBC×NBC , N̂DOF = NDOF + NBC,

(13)

where NBC represents the number of DOFs where temperature is imposed (Dirichlet’s BC),
while NDOF is the number of unknown DOFs. In Equation (12), u and uBC are the unknown
and imposed vectors of nodal temperatures, respectively. f is the vector of generalized
external nodal thermal forces, whilst r is the vector of (unknown) generalized nodal thermal
reactions at nodes where BCs are imposed.

K, KBC, and K̂ are the conductivity matrices of the FE model after applying BCs.
Consider, now, the case of zero Dirichlet’s BCs and non-zero Neumann’s BCs: the thermal
compliance of the structure is defined as:

W := fTu. (14)

In the SIMP approach, the material domain Ω ⊆ D is identified by means of a pseudo-
density function ρ(x) ∈ [0, 1] for x ∈ D: ρ(x) = 0 denotes absence of material, whilst
ρ(x) = 1 indicates completely dense bulk material. The density field affects the element
conductivity matrix and, accordingly, the global conductivity matrix of the FE model as

K :=
Ne

∑
e=1

ρα
e LT

e K0
e Le =

Ne

∑
e=1

LT
e KeLe,

K0
e , Ke ∈ RNe

DOF×Ne
DOF , Le ∈ RNe

DOF×NDOF ,

(15)

where ρe is the fictitious density computed at the centroid of the generic element e, whilst
α ≥ 1 is a parameter penalizing the intermediate densities between 0 and 1, in agreement
with the classic SIMP approach (α = 3 in this study). Ne is the total number of elements
and Ne

DOF is the number of DOFs of the generic element. In Equation (15), K0
e and Ke are

the non-penalized and the penalized conductivity matrices of element e, expressed in the
global reference frame of the FE model, whilst Le is the connectivity matrix of element e.

In the context of the NURBS-based SIMP method, the pseudo-density field for a TO
problem of dimension D is represented through a NURBS hyper-surface of dimension
D + 1. Therefore, for a 3D problem a 4D entity is needed and the pseudo-density field reads:

ρ(ζ1, ζ2, ζ3) =
n1

∑
i1=0

n2

∑
i2=0

n3

∑
i3=0

Ri1,i2,i3(ζ1, ζ2, ζ3)ρi1,i2,i3 . (16)

In Equation (16), nCP = (n1 + 1)(n2 + 1)(n3 + 1) is the total number of CPs, ρ(ζ1, ζ2, ζ3)
constitutes the fourth coordinate of the array h of Equation (1), while Ri1,i2,i3(ζ1, ζ2, ζ3) are
the NURBS rational basis functions of Equation (2). The dimensionless parameter ζ j can be
related to the Cartesian coordinates as follows:

ζ j =
xj

aj
, j = 1, 2, 3. (17)

Among the parameters tuning the shape of the NURBS entity, only the pseudo-density
at CPs and the associated weights are identified as design variables and are collected in the
vectors ξ1 and ξ2, respectively, defined as:

ξT
1 := (ρ0,0,0, . . . , ρn1,n2,n3), ξT

2 := (w0,0,0, . . . , wn1,n2,n3). (18)

The dimension of these arrays is equal to nCP. Accordingly, in the most general case,
the overall number of design variables is nvar = 2nCP. Thus, the classic TO problem of
thermal compliance minimization subject to an inequality constraint on the volume can be
formulated as:
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min
ξ1,ξ2

W
Wref

, s.t. :



Ku = f,

V
Vref
− γ ≤ 0,

ξ1k ∈ [ρmin, ρmax], ξ2k ∈ [ωmin, ωmax],

∀k = 1, . . . , nCP.

(19)

In Equation (19), Vref is a reference volume, V is the volume of the material domain
Ω, while γ is the fixed volume fraction; Ve is the volume of element e, and ρmin represents
the lower bound, imposed to the density field to prevent any singularity for the solution
of the equilibrium problem. The objective function is divided by a reference compliance,
Wref, to obtain a dimensionless value. The volume of the material domain appearing in
Equation (19) is defined as:

V :=
Ne

∑
e=1

ρeVe, (20)

where Ve is the volume of element e. Moreover, in Equation (19), the linear index k has been
introduced for the sake of compactness. The relationship between k and ij , (j = 1, 2, 3) is:

k := 1 + i1 + i2(n1 + 1) + i3(n1 + 1)(n2 + 1). (21)

The other parameters involved in the definition of the NURBS entity (i.e., degrees,
knot-vector components and number of CPs) are set a-priori at the beginning of the TO
analysis and are not optimized.

The computation of the derivatives of both objective and constraint functions with
respect to the design variables is needed to solve problem (19) through a deterministic
algorithm. This task is achieved by exploiting the local support property of Equation (9).
For instance, the general expressions of the derivatives of both the thermal compliance (in
the case uBC = 0) and the volume read

∂W
∂ξik

= −α ∑
e∈Sk

we

ρe

∂ρe

∂ξik
, i = 1, 2, k = 1, . . . , nCP, (22)

∂V
∂ξik

= ∑
e∈Sk

Ve
∂ρe

∂ξik
, i = 1, 2, k = 1, . . . , nCP, (23)

where we is the compliance of the generic element, Sk is the discretized version of the local
support of Equation (9), while ∂ρe

∂ξik
reads

∂ρe

∂ξik
=


Re

k, if i = 1,

Re
k

ξ2k
(ξ1k − ρe), if i = 2.

(24)

The scalar quantity Re
k, appearing in Equation (24), is the NURBS rational basis

function of Equation (2) evaluated at the element centroid. More details on the analytical
passages to derive the gradient of each response function are available in [32,33].

4. Numerical Results

The effectiveness of the proposed method is illustrated on 2D and 3D benchmark
problems taken from the literature. For each case, the pseudo-density field and the optimum
topology are shown. The results presented in this section are obtained by means of the code
SANTO (SIMP And NURBS for Topology Optimization) developed at the I2M laboratory
in Bordeaux [32,33]. SANTO is coded in the Python® environment and exhibits an easily
operable code, with a structure adapted to work with any FE code. In this study, the
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commercial code ANSYS® is used to build the FE models and assess the responses of the
structure, i.e., nodal temperature and thermal compliance.

Moreover, the Globally-Convergent Method of Moving Asymptotes (GC-MMA) al-
gorithm [42] has been used to perform the solution search for the constrained non-linear
programming problem (CNLPP) of Equation (19). The parameters governing the behavior
of the the GC-MMA algorithm are given in Table 1.

Table 1. GC-MMA algorithm parameters.

Parameter Value

move 0.1
albefa 0.1

Stop Criterion Value

Maximum n. of function evaluations 100× nvar
Maximum n. of iterations 1000

Tolerance on objective function 10−12

Tolerance on constraints 10−12

Tolerance on input variables change 10−12

Tolerance on Karush–Kuhn–Tucker norm 10−6

As far as numerical tests are concerned, the following aspects are considered: (1) the
influence of the geometric entity, i.e., B-spline or NURBS, used to describe the pseudo-
density field on the optimized topology is studied for 2D and 3D cases; (2) the influence of
the integer parameters, i.e., blending functions degree and CPs number, on the optimized
topology is investigated only on 2D benchmark problems for the sake of brevity; (3) the
effect of the minimum member size requirement on the optimized topology is highlighted
for both 2D and 3D cases.

Regarding the design space of the CNLPP of Equation (19), lower and upper bounds
of design variables are set as: ρmin = 10−3, ρmax = 1; ωmin = 0.5, ωmax = 10. Moreover,
the non-trivial knot vectors components in Equation (19) are evenly distributed in the
interval [0, 1] for each benchmark problem.

The material thermal conductivity used for all the considered test cases is km =
1 Wm−1K−1.

4.1. 2D Benchmark Problems

Two 2D benchmark problems are considered here: for each problem, the reference
volume Vref, appearing in the CNLPP formulation of Equation (19), is the overall area of the
domain where the structure is embedded. The geometrical parameters and the BCs of each
test case are illustrated in Figure 1. Benchmark 1 (BK1-2D), which has been taken from [43],
is a plate having the following dimensions: a1 = a2 = 20 m, t = 1 m. A heating source
sh = 0.001 Wm−2 is evenly distributed over the whole design domain. As far as BCs are
concerned, the temperature is set to zero for nodes located at x1 ∈ [ a1−at

2 , a1+at
2 ], x2 = a2

with at = 2 m, while, on the rest of the boundary the adiabatic wall condition (q = 0) is
imposed. The FE model is made of Ne = 80× 80 PLANE55 elements (4 nodes with a single
DOF per node).

The second benchmark problem (BK2-2D) is characterized by the same geometrical
and material properties of BK1-2D, the only difference being in the applied BCs. In this case,
a zero temperature is applied on four heat skins located at

(
x1 ∈ [ a1−at

2 , a1+at
2 ], x2 = ja2

)
and

(
x1 = ja1, x2 ∈ [ a2−at

2 , a2+at
2 ]

)
, with j = 0, 1, whilst a heat flux q = 0 is set on the other

regions of the boundary. In addition, in this case, the mesh of the FE model is made of
Ne = 80× 80 PLANE55 elements.

For both test cases, the reference volume is Vref = a1a2 and the volume fraction
appearing in Equation (19) has been set as γ = 0.3. An initial guess characterized by a
uniform pseudo-density field ρ(ζ1, ζ2) = γ has been considered for each analysis. The
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reference thermal compliance Wref appearing in Equation (19) corresponds to the thermal
compliance of the initial guess: its value is 5.956 WK for BK1-2D and 1.0389 WK for BK2-2D.

(a) (b)

Figure 1. Geometry and boundary conditions of benchmark problems (a) BK1-2D and (b) BK2-2D.

4.1.1. BK1-2D: Sensitivity of the Optimized Topology to the B-Spline and NURBS Entities
Integer Parameters

An extensive numerical campaign of tests has been performed on BK1-2D: the aim is
to study the sensitivity of the optimized topology to the integer parameters involved in
the definition of B-spline and NURBS entities. In particular, the CNLPP of Equation (19)
is solved by considering the following combinations of blending functions degrees and
CPs numbers: (a) pj = 2, 3, 4, (j = 1, 2); (b) nCP = 40× 40, 56× 56, 68× 68 for both B-spline
and NURBS entities. Moreover, in this case, the CNLPP formulation has been enhanced by
adding a symmetry constraint with respect to plane x1 = a1

2 .

Results are provided in terms of dimensionless thermal compliance
W

Wref
and number

of iterations Niter to achieve convergence for B-spline and NURBS entities in Figures 2 and 3,
respectively. For each solution, the requirement on the volume fraction is always satisfied.
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(a) p1 = p2 = 2, nCP = 40 × 40,
W

Wref
= 0.0800, Niter = 112

(b) p1 = p2 = 2, nCP = 56 × 56,
W

Wref
= 0.0726, Niter = 358

(c) p1 = p2 = 2, nCP = 68 × 68,
W

Wref
= 0.0685, Niter = 555

(d) p1 = p2 = 3, nCP = 40 × 40,
W

Wref
= 0.0833, Niter = 309

(e) p1 = p2 = 3, nCP = 56 × 56,
W

Wref
= 0.0756, Niter = 415

(f) p1 = p2 = 3, nCP = 68 × 68,
W

Wref
= 0.0714, Niter = 463

(g) p1 = p2 = 4, nCP = 40 × 40,
W

Wref
= 0.0857, Niter = 571

(h) p1 = p2 = 4, nCP = 56 × 56,
W

Wref
= 0.0779, Niter = 467

Figure 2. Cont.
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(i) p1 = p2 = 4, nCP = 68 × 68,
W

Wref
= 0.0736, Niter = 418

Figure 2. Benchmark problem BK1-2D: sensitivity of the optimized topology to CP number and basis
functions degrees, B-spline solutions of problem (19); the grey-scale bar refers to the pseudo-density
field of Equation (16).

(a) p1 = p2 = 2, nCP = 40 × 40,
W

Wref
= 0.0712, Niter = 573

(b) p1 = p2 = 2, nCP = 56 × 56,
W

Wref
= 0.0647, Niter = 667

(c) p1 = p2 = 2, nCP = 68 × 68,
W

Wref
= 0.0604, Niter = 752

(d) p1 = p2 = 3, nCP = 40 × 40,
W

Wref
= 0.0741, Niter = 767

(e) p1 = p2 = 3, nCP = 56 × 56,
W

Wref
= 0.0677, Niter = 707

(f) p1 = p2 = 3, nCP = 68 × 68,
W

Wref
= 0.0637, Niter = 701

Figure 3. Cont.
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(g) p1 = p2 = 4, nCP = 40 × 40,
W

Wref
= 0.0761, Niter = 597

(h) p1 = p2 = 4, nCP = 56 × 56,
W

Wref
= 0.0700, Niter = 658

(i) p1 = p2 = 4, nCP = 68 × 68,
W

Wref
= 0.0657, Niter = 797

Figure 3. Benchmark problem BK1-2D: sensitivity of the optimized topology to CP number and basis
functions degrees, NURBS solutions of problem (19); the grey-scale bar refers to the pseudo-density
field of Equation (16).

A synthesis of the results illustrated in Figures 2 and 3 is shown in Figure 4, where
the dimensionless thermal compliance is plotted versus the number of CPs and blending
functions degrees. Some remarks can be inferred from the analysis of these results.

Figure 4. Benchmark problem BK1-2D: dimensionless thermal compliance versus CPs number and
degrees for B-spline and NURBS solutions
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• For B-spline and NURBS solutions, the higher the number of CPs (or the lower the
degree) the smaller the objective function value. As explained in [32,33], this is due to
the local support size: the higher the CPs number for a given degree (or the lower the
degree for a given number of CPs) the smaller the local support size, consequently
smaller topological branches appear in optimized topologies. Moreover, the higher
the degree (for a given CPs number) the smoother the boundary of the final topology.

• The NURBS local support can be associated to the concept of the filter zone in standard
density-based TO algorithms, as stated in Section 3. According to the definition of the
local support of Equation (9), the higher the degree (or the smaller the CPs number)
the wider the local support; thus, a single control point affects a wider region of the
computation domain. Indeed, as discussed in [35], the local support of Equation (9)
enforces a minimum length scale in the optimized topology. Consequently, it can be
stated that a high number of CPs and small degrees should be considered if minimum
member size does not constitute a restriction for the problem at hand. High degrees
and/or small CPs number should be considered otherwise.

• The effect of including the weights among the design variables is twofold: on the one
hand, weights contribute to improve the final performances (the objective function
of a NURBS solution is always lower than the one of a B-spline solution), whilst, on
the other hand, they allow for obtaining optimized topologies characterized by a
boundary smoother than the B-spline counterpart.

• The constraint on the volume fraction gets a very small negative value (between
−1 × 10−6 and 0) for the optimized topologies resulting from problem (19); thus, the
local minimizer is located on the boundary between feasible and infeasible regions.

• All the analyses were performed on a work-station with an Intel Xeon E5-2697v2
processor (2.70–3.50 GHz, Santa Clara, CA, USA) and four cores dedicated to the
optimization calculations. The highest computational time occurs for the NURBS
solution illustrated in Figure 3 (i), which required about 1.5 h to find the local feasi-
ble minimizer.

4.1.2. BK2-2D: Minimum Member Size Effect on the Optimized Topology

The influence of the minimum member size requirement is investigated on BK2-2D.
In particular, the CNLPP formulation of Equation (19) has been enhanced by considering
a constraint on the minimum length scale requirement: the minimum dimension of the
optimized topology should be greater than or equal to dmin = 0.3 m. To automatically
satisfy the minimum length scale requirement without introducing an explicit constraint
in the problem formulation, according to the methodology presented in [35], B-spline
and NURBS entities with p1 = p2 = 3 and nCP = 68× 68 CPs are used for this analysis.
Moreover, the topology is constrained to be symmetric with respect to planes x1 = a1

2 and
x2 = a2

2 .
The optimized topologies solution of problem (19) are shown in Figure 5, for both

B-spline and NURBS entities: numerical results are provided in terms of dimensionless

thermal compliance
W

Wref
, number of iterations Niter to achieve convergence and mea-

sured minimum member size dm
min, i.e., the minimum length scale measured after CAD

reconstruction of the boundary of the optimized topology [35]. For each solution, the
requirement on the volume fraction is always satisfied (this constraint is always almost
active, in the sense that it takes a very small negative value between −1 × 10−6 and 0).

As expected, the NURBS solution is characterized by a dimensionless thermal compli-
ance lower than the B-spline counterpart. Moreover, thanks to the geometrical properties
of the NURBS blending functions, the requirement on the minimum length scale is always
satisfied. In particular, it is noteworthy that the minimum length scale constraint is almost
active for the NURBS solution illustrated in Figure 5.
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(a) W
Wref

= 0.0980, Niter = 475, dm
min = 0.48 m (b) W

Wref
= 0.0818, Niter = 570, dm

min = 0.40 m

Figure 5. Benchmark problem BK2-2D: (a) B-spline and (b) NURBS solutions of problem (19) with p1 = p2 = 3 and
nCP = 68× 68; the grey-scale bar refers to the pseudo-density field of Equation (16).

4.2. A 3D Benchmark Problem

The third benchmark (BK1-3D) deals with the TO of the 3D cubic domain illus-
trated in Figure 6; the geometry of BK1-3D is characterized by the following dimensions:
a1 = a2 = a3 = 20 m, at = 2 m. The material properties are the same as those used in test
cases BK1-2D and BK2-2D.

Figure 6. Geometry and boundary conditions of benchmark problem BK1-3D.

The FE model is made of Ne = 64, 000 SOLID279 elements (eight nodes, one DOF per
node). A null temperature is imposed on the nodes belonging to the heat skin located at(

x1 ∈
[

a1−at
2 , a1+at

2

]
, x2 ∈

[
a2−at

2 , a2+at
2

]
, x3 = a3

)
, while a zero heat flux is imposed on the

rest of the boundary. A heating source sh = 0.001 Wm−3 is evenly distributed over the
whole design domain.

Regarding problem (19), the reference volume and the volume fraction are Vref = a1a2a3
and γ = 0.3, respectively. An initial guess characterized by a uniform pseudo-density field
ρ(ζ1, ζ2, ζ3) = γ is considered. The reference thermal compliance associated to the starting
point is Wref = 503.32 WK. Furthermore, three design requirements have been added to the
CNLPP formulation of Equation (19): a minimum member size requirement dmin = 0.7 m
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and a double orthogonal symmetry constraint with respect to planes x1 = a1
2 and x2 = a2

2 .
According to the methodology described in [35], the minimum length scale requirement is
fulfilled by choosing a B-spline/NURBS entity characterized by pj = 2, (j = 1, 2, 3) and
nCP = 30× 30× 30.

The optimized topologies are illustrated in Figure 7, for both B-spline and NURBS

entities: numerical results are provided in terms of dimensionless thermal compliance
W

Wref
,

number of iterations Niter and measured minimum member size dm
min. For each solution,

the requirement on the volume fraction is active. The same remarks already done for
benchmark problem BK2-2D can be repeated here.

(a) W
Wref

= 0.0356, Niter = 351, dm
min = 0.81 m (b) W

Wref
= 0.034, Niter = 441, dm

min = 0.75 m

Figure 7. Benchmark problem BK1-3D: (a) B-spline and (b) NURBS solutions of problem (19) with p1 = p2 = 2 and
nCP = 30× 30× 30.

5. Conclusions

In this work, steady-state thermal conduction TO problems have been revisited in
the context of a special SIMP approach reformulated in the framework of the NURBS
hyper-surfaces theory. Some features of this approach have to be highlighted.

• NURBS hyper-surfaces bring three advantages: (a) unlike the classical SIMP approach,
a filter zone does not need to be introduced because the NURBS local support es-
tablishes an implicit relationship among the pseudo-density of contiguous mesh
elements; (b) when compared to the classical SIMP approach, the number of design
variables is reduced; (c) the CAD reconstruction of the boundary of the optimized
topology is an easy task.

• A sensitivity analysis of the optimized topology to the NURBS integer parameters has
been performed. Some general rules about the choice of the integer parameters can be
drawn: the higher the number of CPs (for a given degree) or the lower the degree (for
a given number of CPs) the smaller the objective function value, for both B-spline and
NURBS solutions.

• The role of NURBS weights has been evaluated. In particular, by keeping the same
number of CPs and the same degrees, the objective function of the NURBS solution is
lower than that of the B-spline counterpart.

• The minimum-length scale requirement is correctly taken into account, without intro-
ducing an explicit optimization constraint, by properly setting the integer parameters
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of the NURBS entity. This is one of the most important advantages of the NURBS-
based SIMP approach.

• The topological descriptor is not related to the mesh of the FE model. The FE model
is only used to assess the physical responses of the problem at hand. The optimized
topology can be easily extracted at the end of the optimization process because it is
described by means of a pure geometrical entity, i.e., a CAD-compatible entity.

Relevant paths to take for future works include: (i) the integration of the transient
regime within the TO problem formulation; (ii) the implementation of thermo-mechanics
problems (by considering both weak and strong couplings); (iii) the extension of the
proposed approach to design-dependent boundary conditions in order to deal with more
realistic engineering applications. Research is ongoing on all the above aspects.
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