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Abstract: A general optimal iterative method, for approximating the solution of nonlinear equations,
of (n + 1) steps with 2n+1 order of convergence is presented. Cases n = 0 and n = 1 correspond to
Newton’s and Ostrowski’s schemes, respectively. The basins of attraction of the proposed schemes on
different test functions are analyzed and compared with the corresponding to other known methods.
The dynamical planes showing the different symmetries of the basins of attraction of new and known
methods are presented. The performance of different methods on some test functions is shown.
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1. Introduction

Nonlinear equations and systems appear in many problems in computer science and
other disciplines when they are modeled mathematically. In general, these equations
have no analytical solution and we must resort to iterative processes to approximate
their solutions.

In the literature, methods or families of iterative schemes, designed from different
procedures, have proliferated in recent years to approximate the simple or multiple roots
α of a nonlinear equation f (x) = 0, where f : D ⊆ R → R is a real function defined
on an open interval D. In the books [1,2], we can find many of the iterative schemes
published in recent years and classified from different points of view. With them, we
can have an overview of the state of the art in the research area of iterative processes
for solving nonlinear equations. Of course, each scheme has a different behavior. This
behavior is characterized with efficiency and stability criteria provided by the tools of
complex dynamics.

The efficiency of these schemes has been widely considered, usually based on the
efficiency index presented by Ostrowski [3]. The expression of this index, I = p1/d, involves
the order of convergence of the method p and the number of functional evaluations in
each iteration, d. The methods with higher convergence order are not necessarily the
most efficient, as the complexity of the iterative expression also plays an important role.
In [4], Kung and Traub established that the order of convergence of an iterative method
without memory, which used n functional evaluations per iteration, is less than or equal
to 2n−1. When an iterative scheme reaches this upper bound, it is said to be an optimal
method. Many optimal schemes have been designed in the last years with different order
of convergence (see, e.g., [5–10] and the references therein).

One of the more used iterative schemes is Newton’s method, thanks to its efficiency
and simplicity,

xk+1 = xk −
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . (1)

Under certain conditions, this method has quadratic convergence and it is optimal.
It is known that Newton’s method can be combined with itself an arbitrary times

n + 1, obtaining a new scheme of order 2n+1, n = 1, 2, 3, . . . (see [11]).
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y1 = xk −
f (xk)

f ′(xk)
,

y2 = y1 −
f (y1)

f ′(y1)
,

...

yj+1 = yj −
f (yj)

f ′(yj)
, j = 2, . . . , n− 2

...

yn = yn−1 −
f (yn−1)

f ′(yn−1)
,

xk+1 = yn −
f (yn)

f ′(yn)
,

(2)

for k = 0, 1, 2, . . .. This method is not optimal following the Kung–Traub conjecture [4]. We
modify expression (2) to obtain an optimal iterative scheme of order 2n+1. To do this, we
approximate the derivatives appearing in (2) after the first step by polynomials satisfying
certain conditions.

In the remainder of this paper, we discuss the following points. In Section 2, the iterative
expression of the proposed schemes is obtained, while its order of convergence is proven
in Section 3. Section 4 is devoted to analyzing the dynamical planes of the proposed
methods and other known ones when they are applied to different nonlinear equations.
The numerical results are described in Section 5. With some conclusions and the references
used in this manuscript, we finish the paper.

2. Design of the Class of Iterative Procedures

Now, we design the proposed family and prove its converge. From expression (2) and
approximating the derivative after the first step, we obtain the following iterative expression:

y1 = xk −
f (xk)

f ′(xk)
,

y2 = y1 −
f (y1)

P′2(y1)
,

...

yn−1 = yn−2 −
f (yn−2)

P′n−1(yn−2)
,

yn = yn−1 −
f (yn−1)

P′n(yn−1)
,

xk+1 = yn −
f (yn)

P′n+1(yn)
,

(3)

where y0 = xk and Pj(x) =
j

∑
i=0

ai(x − yj−1)
i, for j = 2, . . . , n + 1, and polynomials Pj(x)

satisfy

1. Pj(yi) = f (yi) for i = 0, . . . , j− 1.
2. P′j (y0) = f ′(y0).

Now, we obtain an explicit expression for P′j (yj−1), j = 2, 3, . . . , n + 1, which we use
in each step. To simplify the expression, we take j = n + 1. Thus,

Pn+1(x) = an+1(x− yn)
n+1 + an−1(x− yn)

n−1 + . . . + a1(x− yn) + a0.
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From the conditions that polynomial must be satisfied, it is easy to observe that
Pn+1(yn) = a0 = f (yn) and that we need the expression of a1 since P′n+1(yn) = a1. Thus,
we need to solve

(yn−1 − yn)n+1 (yn−1 − yn)n . . . (yn−1 − yn) 1
(yn−2 − yn)n+1 (yn−2 − yn)n . . . (yn−2 − yn) 1

...
...

...
...

(y0 − yn)n+1 (y0 − yn)n . . . (y0 − yn) 1
(n + 1)(y0 − yn)n n(y0 − yn)n−1 . . . 1 0





an+1
an
...

a2
a1
a0


=


f (yn−1)
f (yn−2)

...
f (y0)
f ′(y0)

,

which is equivalent to
(yn−1 − yn)n (yn−1 − yn)n−1 . . . (yn−1 − yn) 1
(yn−2 − yn)n (yn−2 − yn)n−1 . . . (yn−2 − yn) 1

...
...

...
...

(y0 − yn)n (y0 − yn)n−1 . . . (y0 − yn) 1
(n + 1)(y0 − yn)n n(y0 − yn)n−1 . . . 2(y0 − yn) 1




an+1

an
...

a2
a1

 =


f [yn−1, yn]
f [yn−2, yn]

...
f [y0, yn]
f ′(y0)

,

where f [yj, yn] are the divided differences of yj and yn in f , that is, f [yj, yn] =
f (yj)− f (yn)

yj−yn
.

By using algebraic operations between the two last rows, we obtain
(yn−1 − yn)n (yn−1 − yn)n−1 . . . (yn−1 − yn) 1
(yn−2 − yn)n (yn−2 − yn)n−1 . . . (yn−2 − yn) 1

...
...

...
...

(y0 − yn)n (y0 − yn)n−1 . . . (y0 − yn) 1
n(y0 − yn)n−1 (n− 1)(y0 − yn)n−2 . . . 1 0




an+1

an
...

a2
a1

 =



f [yn−1, yn]
f [yn−2, yn]

...
f [y0, yn]

f ′(y0)− f [y0,yn ]
(y0−yn)

.

Then, the coefficient matrix of the system is a Vandermonde confluent matrix; thus, it
is invertible, and the system can be solved.

Let us see how a system with Vandermonde confluent matrix is solved, which can be
found in more detail in [12,13]. For solving the previous system, we denote by bi = yi − yn,
i = 0, 1, . . . , n− 1, define P(x) = (x − b0)

2(x − b1) . . . (x − bn−1) and the Vandermonde
confluent matrix

V =


1 0 1 . . . 1
b0 1 b1 . . . bn−1
b2

0 2b0 b2
1 . . . b2

n−1
...

...
...

...
bn

0 nbn−1
0 bn

1 . . . bn
n−1

.

Let Pj(x) = P(x)
(x−bj)

mj be a polynomial, where mj is the maximum exponent of x− bj,

that is,

P0(x) =
P(x)

(x− b0)2 =
n−1

∏
i=1

(x− bi),

Pj(x) = (x− b0)
n−1

∏
i=0,i 6=j

(x− bi), ∀j 6= 0.

We define gj(x) = 1
Pj(x) and

Lj,kj
(x) = Pj(x)(x− bj)

kj

mj−kj−1

∑
i=0

1
i!

g(i)j (bj)(x− bj)
i, 0 ≤ k j ≤ mj − 1.
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Then, we have

V−1 =



L0,0(0) L′0,0(0) . . . 1
(n−1)! L(n−1)

0,0 (0)

L0,1(0) L′0,1(0) . . . 1
(n−1)! L(n−1)

0,1 (0)

L1,0(0) L′1,0(0) . . . 1
(n−1)! L(n−1)

1,0 (0)
...

...
...

Ln−1,0(0) L′n−1,0(0) . . . 1
(n−1)! L(n−1)

n−1,0 (0)


.

Since VT is involved in our system, we use the transpose of V−1 to obtain the values
of parameters ai.

Thus, in our case, we need the first component of the following matrix product:
L0,0(0) L0,1(0) L1,0(0) . . . Ln−1,0(0)
L′0,0(0) L′0,1(0) L′1,0(0) . . . L′n−1,0(0)

...
...

...
...

1
(n−1)! L(n−1)

0,0 (0) 1
(n−1)! L(n−1)

0,1 (0) 1
(n−1)! L(n−1)

1,0 (0) . . . 1
(n−1)! L(n−1)

n−1,0 (0)





f [y0, yn]
f ′(y0)− f [y0,yn ]

(y0−yn)

f [y1, yn]
...

f [yn−1, yn]

.

It follows that

a1 = L0,1(0)
f ′(y0)− f [y0, yn]

(y0 − yn)
+

n−1

∑
j=0

Lj,0(0) f [yj, yn].

We now determine L0,1(0) and Lj,0(0) for j = 0, . . . , n− 1. We have,

g0(x) =
1

∏n−1
i=1 (x− bi)

,

g′0(x) = − 1

∏n−1
i=1 (x− bi)

n−1

∑
i=1

1
(x− bi)

,

gj(x) =
1

(x− b0)∏n−1
i=0,i 6=j(x− bi)

.

Therefore, the expressions of L0,0(0), L0,1(x) and Lj,0 when j 6= 0, are

L0,0(0) = (−1)n−1
n−1

∏
i=1

bi
b0 − bi

(
1 + b0

n−1

∑
i=1

1
(b0 − bi)

)
,

L0,1(0) = (−1)nb0

n−1

∏
i=1

bi
(b0 − bi)

,

Lj,0(0) = (−1)n b0

(bj − b0)

n−1

∏
i=0,i 6=j

(bi)

(bj − bi)
.

Thus, by grouping the terms properly, we get that a1 has the form

a1 =(−1)n
n−1

∏
i=1

bi
b0 − bi

(
f ′(y0)−

(
2 +

n−1

∑
i=1

b0

b0 − bi

)
f [y0, yn]

)

+ (−1)n
n−1

∑
j=1

b0

bj − b0

n−1

∏
i=0,i 6=j

bi
bj − bi

f [yj, yn].

Thus, we get the form of the term a1 in each step.
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Some of the members of this class are as follows.
The two-step method has the iterative expression

y1 = xk −
f (xk)

f ′(xk)
,

xk+1 = y1 −
f (y1)

2 f [x0, x1]− f ′(x0)
,

(4)

This is the Ostrowski’s method, with order of convergence four. We denote by M4
scheme (4).

Let us now look at the three-step method:

y1 = xk −
f (xk)

f ′(xk)
,

y2 = y1 −
f (y1)

2 f [x0, x1]− f ′(x0)
,

xk+1 = y2 −
f (y2)

a1
,

(5)

where

a1 =
f [y1, y2](xk − y2)

2 + (y1 − y2)( f ′(xk)(xk − y1) + f [xk, y2](−3xk + 2y1 + y2))

(xk − y1)2 ,

whose order of convergence is 8. We denote method (5) by M8.
Let us remark that the extension of this family for solving nonlinear systems is not

straightforward, except in the first step, as it involves vectorial interpolation polynomials.

3. Convergence Analysis

Let f : D ⊂ R→ R be a sufficiently differentiable function in an open interval D that
contains a zero α of f . We consider the divided difference operator

f [x + h, x] =
∫ 1

0
f ′(x + th)dt, (6)

as defined by Genochi-Hermite [14]. By using Taylor’s expression of f ′(x + th) around x,
we obtain

f [x + h, x] = f ′(x) +
1
2

f ′′(x)h +
1
6

f ′′′(x)h2 + O(h3), (7)

which we employ to prove the following theorem, where the order of convergence of the
method defined in (3) is established.

Theorem 1. Let f : D ⊂ R −→ R be a sufficiently differentiable function in a neighbourhood
D of α, such that f (α) = 0 and f ′(α) 6= 0. Then, choosing an initial estimation x0 close to α,
sequence {xk} generated by the (n + 1)-step method (3) converge to α with order of convergence
2n+1.

Proof. We prove this result by induction on the number of steps. The one-step method
defined in (3) is the Newton’s scheme, so we know that the one-step method has order of
convergence 2. Now, we assume that the i-step method has order of convergence 2i where
i ≤ j. Thus, we prove that the j + 1-step method has order 2j+1.

We denote that y0 = x0 and yi is defined in (3). First, we calculate the expression of
the polynomial Pj+1.

Pj+1(x) = Pj(x) + ( f (yj)− Pj(yj))

(
j−1

∏
i=0

x− yi
yj − yi

)
x− x0

yj − x0
.
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Moreover,

f (x)− Pj+1(x) =
f (j+2)(ε)

(j + 2)!
(x− yj) · · · (x− y1)(x− x0)

2,

where ε is a point in the interpolation interval. Thus, we know that

f ′(x)− P′j+1(x) =
f (j+2)(ε)

(j + 2)!

(
(x− x0)

(
j

∑
r=0

j

∏
i=0,i 6=r

(x− yi)

)
+ 2

j

∏
i=0

(x− yi)

)
.

Evaluating the last expression in yj, we have

f ′(yj)− P′j+1(yj) =
f (j+2)(α)

(j + 2)!
(yj − x0)

j−1

∏
i=0

(yj − yi).

Defining Ci =
1
i!

f (i)(α)
f ′(α) , we obtain

P′j+1(yj) = f ′(yj)− Cj+2 f ′(α)(yj − x0)
j−1

∏
i=0

(yj − yi).

Using the Taylor’s expression of f (yi) around α:

f (yi) = f ′(α)
(

yi − α + C2(yi − α)2 + O((yi − α)3)
)

. (8)

Then, f ′(yi) around α has the following expression:

f ′(yi) = f ′(α)(1 + 2C2(yi − α)) + O((yi − α)2). (9)

Using the last part of the expression of Pj+1, we deduce that

P′j+1(yj) = f ′(α)
(
1 + 2C2(yj − α)

)
+ O((yj − α)2)− Cj+2 f ′(α)(yj − x0)

j−1

∏
i=0

(yj − yi).

We assume that the i-step method has order of convergence 2i for i ≤ j, that is,
yi − α = Mi(x0 − α)2i

+ O((x0 − α)2i+1). Taking e = x0 − α, we obtain

yi − α = Mie2i
+ O(e2i+1).

Now, we calculate
j−1
∏
i=0

(yj − yi). We have that

yj − yi = (yj − α)− (yi − α) = Mje2j −Mie2i
+ O(e2i+1) = −Mie2i

+ O(e2i+1).

From the above expression, we obtain

j−1

∏
i=0

(yj − yi) =
j−1

∏
i=0

(−Mie2i
+ O(e2i+1)) (10)

= (
j−1

∏
i=0
−Mi)e

j−1
∑

i=0
2i

+ O(e

j−1
∑

i=0
2i+1

)) (11)

= (−1)je2j−1
j−1

∏
i=0

Mi + O(e2j
)). (12)
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Then,

P′j+1(yj) = f ′(α)
(
1 + 2C2(yj − α)

)
+ O((yj − α)2)

− Cj+2 f ′(α)(yj − x0)((−1)je2j−1
j−1

∏
i=0

Mi + O(e2j
)).

As yj − x0 = −e + O(e2) and yj − α = Mje2j
+ O(e2j+1) is satisfied,

P′j+1(yj) = f ′(α)
(

1 + 2C2Mje2j
)
− Cj+2 f ′(α)((−1)j+1e2j

j−1

∏
i=0

Mi) + O(e2j+1) (13)

= f ′(α)

(
1 + e2j

(2C2Mj + Cj+2(−1)j
j−1

∏
i=0

Mi)

)
+ O(e2j+1). (14)

We need to calculate now the expression of
f (yj)

P′j+1(yj)
.

f (yj)

P′j+1(yj)
=

(
yj − α + C2(yj − α)2 + O((yj − α)3)

)(
1 + e2j

(2C2Mj + Cj+2(−1)j
j−1
∏
i=0

Mi)

)
+ O(e2j+1)

(15)

=
(yj − α) + C2M2

j e2j+1
+ O(e2j+1+1)

1 + e2j
(2C2Mj + Cj+2(−1)j

j−1
∏
i=0

Mi) + O(e2j+1)

. (16)

Thus,

yj+1 − α = yj − α− f (yj)

P′j+1(yj)

= yj − α−
(yj − α) + C2 M2

j e2j+1
+ O(e2j+1+1)

1 + e2j
(2C2 Mj + Cj+2(−1)j

j−1
∏
i=0

Mi) + O(e2j+1)

=

(yj − α)

(
e2j

(2C2 Mj + Cj+2(−1)j
j−1
∏
i=0

Mi) + O(e2j+1)

)
− C2 M2

j e2j+1
+ O(e2j+1+1)

1 + e2j
(2C2 Mj + Cj+2(−1)j

j−1
∏
i=0

Mi) + O(e2j+1)

=

(
e2j+1

(2C2 M2
j + Cj+2(−1)j

j
∏
i=0

Mi)

)
− C2 M2

j e2j+1
+ O(e2j+1+1)

1 + e2j
(2C2 Mj + Cj+2(−1)j

j−1
∏
i=0

Mi) + O(e2j+1)

=

e2j+1
(C2 M2

j + Cj+2(−1)j
j

∏
i=0

Mi) + O(e2j+1+1)

1 + e2j
(2C2 Mj + Cj+2(−1)j

j−1
∏
i=0

Mi) + O(e2j+1)

.

From the last expression, we obtain

yj+1 − α = e2j+1
(C2M2

j + Cj+2(−1)j
j

∏
i=0

Mi) + O(e2j+1+1).

Thus, we prove that the j + 1-step method (3) has order of convergence 2j+1; thus, by
induction, the n + 1-step method has order of convergence 2n+1.

In this case, our n + 1-step method carries out n + 2 evaluations, since we carry out
the derivative of f in x0 and also the image of f in the approximations x0, y1, . . . , yn. For
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this reason, we have that the proposed family of methods (3) is optimal according to the
conjecture of Kung and Traub, because 2n+1 = 2n+2−1.

4. Complex Dynamics

The order of convergence is not the only criterion that must be analyzed in an iterative
scheme. The relevance of the method also depends on how it behaves according to the
initial estimations, so it is necessary to analyze the dynamics of the method, that is, the
dynamics of the rational operator obtained when the scheme is applied on polynomials
with low degree.

The dynamical study of a family of iterative methods allows classifying them, based
on their behavior with respect to the initial approximations taken, into stable methods and
chaotic ones. This analysis also provides important information on the reliability of the
methods [15–19].

In this section, we focus on studying the complex dynamics of the methods M4,
defined in (4), and M8, defined in (5), members of the proposed family (3). Now, we
remember some concepts of complex dynamics. These contents can be enlarged by viewing
different classical books (see, e.g., [20]).

Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a
point z0 ∈ Ĉ is defined as:

{z0, R(z0), R2(z0), ..., Rn(z0), ...}.

A z0 ∈ Ĉ is called a fixed point if R(z0) = z0. For the proposed methods, the roots of
the polynomial are fixed points, but there may be other fixed points, different from the
roots, which we call strange fixed points. A critical point z0 is a point such that R′(z0) = 0,
and it is called free critical point when it is different from the roots of f (x). The stability of a
fixed point z0 depends on the value of the derivative R′ in it. In fact, it is called attractor
if |R′(z0)| < 1, superattractor if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if
|R′(z0)| = 1.

The basin of attraction of an attractor α is defined as the set of points whose orbit
tends to α:

A(α) = {z0 ∈ Ĉ : Rn(z0)→α, n→∞}.

Theorem 2. (Cayley Quadratic Test (CQT)).
Let Op(z) be the rational operator obtained from a general iteration formula applied to the

quadratic polynomial q(z) = (z− α1)(z− α2), with α1 6= α2. Suppose that Op(z) is conjugate
to the operator z → zp, by the Möbius transformation M(z) = z−α1

z−α2
. Then, p is the order of

the iterative method associated to Op(z). Moreover, the corresponding Julia set J(Op(z)) is the
circumference of center zero and radius 1.

Methods M4 and M8 verify the Cayley quadratic test, that is, the associated operator
to each of them can be transformed by Möbius transformation into the operator zp, being
p the order of the method, so it follows that they are stable methods, where the only
superattractors fixed points are the roots of the quadratic polynomial, the strange fixed
points are repulsors and there are no free critical points.

In addition, when the Cayley quadratic test is satisfied, the Julia set of these methods
on a quadratic polynomial is the circumference of center zero and unit radius.

Now, we construct the dynamical planes of methods M4 and M8 on other equations,
and we compare them with those obtained with other known schemes of order 4 and 8.
We compare the proposed schemes with Newton’s method, since we generate our methods
from it. The two methods of order 4 used in the comparison are Jarratt’s scheme, which
can be found in [21], whose iterative expression is
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y1 = xk −

2
3

f (xk)

f ′(xk)
,

xk+1 = y1 −
1
2

f (xk)

f ′(xk)

3 f ′(y1) + f ′(xk)

3 f ′(y1)− f ′(xk)
,

(17)

and the King’s family method, with β = 1, which can be found in [22],
y1 = xk −

f (xk)

f ′(xk)
,

xk+1 = y1 −
f (y1)

f ′(xk)

f (xk) + f (y1)

f (xk)− f (y1)
,

(18)

Method (17) is denoted by J4 and method (18) by K4.
On the other hand, methods of order 8 used in the comparison are the method denoted

by J8, defined in [23], whose expression is

y1 = xk −
f (xk)

f ′(xk)
,

η = xk −
1
8

f (xk)

f ′(xk)
− 3

8
f (xk)

f ′(y1)
,

y2 = xk − 6
f (xk)

f ′(xk) + f ′(y1) + 4 f ′(η)
,

xk+1 = y2 −
f (y2)

f ′(xk)

f ′(xk) + f ′(y1)− f ′(η)
2 f ′(y1)− f ′(η)

,

(19)

and the method denoted by K8, defined in [24], which is defined as

y1 = xk −
f (xk)

f ′(xk)
,

y2 = y1 −
f (y1)

f ′(xk)

f (xk) + f (y1)

f (xk)− f (y1)
,

xk+1 = y2 −
H3(y2)

f ′(y2)
,

(20)

where

H3(y2) = f (xk) + f ′(xk)
(y2 − y1)

2(y2 − xk)

(y1 − xk)(xk + 2y1 − 3y2)
+ f ′(y2)

(y2 − y1)(xk − y2)

(xk + 2y1 − 3y2)

− f [xk, y1]
(y2 − xk)

3

(y1 − xk)(xk + 2y1 − 3y2)
,

which, as we can see in [24], is obtained from King’s family schemes.
We apply all these methods on the following equations, which are also the equations

that we use in the numerical experiments.

• cos(x)− x = 0;
• (x− 1)6 − 1 = 0;
• arctan(x) = 0; and
• arctan(x)− 2x

x2+1 = 0.

We select a region of the complex plane and establish a mesh. Each point of the mesh
is considered as an initial approximation for the iterative method and painted in a certain
color depending on where it converges to. For the dynamic planes, we choose a mesh
of 400× 400 points and a maximum number of 40 iterations per point. Fixed points are
represented by white circles while superattractors are represented by stars. All dynamical
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planes show different kinds of symmetries, with independence of the number of attracting
fixed points of the related operator.

We can examine the dynamic planes associated with the different methods mentioned
above for the equation cos(x)− x = 0 in Figure 1. In this case, the points of the plane that
converge to the approximate solution 0.73908513 are colored orange; the points that tend
to infinity are colored blue, which we determine as the points whose value of the iteration
in absolute value is greater than 800; and the points that do not converge are colored black.
The dynamic planes that have a more complex structure are those associated with the
K4 and K8 methods, in Figure 1c,f, while those corresponding to the rest of the methods
present fewer intersections between the different basins.
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We can examine the dynamic planes associated with the different methods mentioned
above for the equation cos(x)− x = 0 in Figure 1. In this case, the points of the plane
that converge to the approximate solution 0.73908513 are coloured orange, the points that
tend to infinity are coloured blue, which we have determined as the points whose value
of the iteration in absolute value is greater than 800, and the points that do not converge
are coloured black. The dynamic planes that have a more complex structure are those
associated with the K4 and K8 methods, in Figures 1c and 1f, while those corresponding to
the rest of the methods present fewer intersections between the different basins.

Let us now see what happens in the case of the equation (x − 1)6 − 1 = 0, whose
dynamical planes are shown in Figure 2. In this case, there are more noticeable changes
between the different dynamic planes, although in all cases we have the same superattractor
fixed points, to which we associate each of the colours represented in the planes, except
for the black colour which is associated with the initial points that do not converge to any
superattractor fixed point and the blue colour which is associated with the initial estimates
whose iterations, in absolute value, are greater than 800.

In this case, it can be seen that the planes that stand out most for their non-convergence
zones in the centre are those associated to the methods K4 and K8 as can be seen in Figures
2c and 2f, for this reason these methods would not be recommended for initial estimations
that are in that zone. On the other hand, we can see that Newton’s method has a larger
black area than the methods Jarratt type or the methods proposed in the paper. If we

Figure 1. Dynamical planes of cos(x)− x = 0 for the new and known methods: (a) Newton, (b) M4
(4), (c) K4 (18), (d) J4 (18), (e) M8 (5), (f) K8 (20) and (g) J8 (19).

Let us now see what happens in the case of the equation (x − 1)6 − 1 = 0, whose
dynamical planes are shown in Figure 2. In this case, there are more noticeable changes
between the different dynamic planes, although in all cases we have the same superattractor
fixed points, to which we associate each of the colors represented in the planes, except for
black, which is associated with the initial points that do not converge to any superattractor
fixed point, and blue, which is associated with the initial estimates whose iterations, in
absolute value, are greater than 800.
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(a) Newton method

(b) M4 method (c) K4 method (d) J4 method

(e) M8 method (f) K8 method (g) J8 method

Figure 2. Dynamical planes of (x− 1)6 − 1 = 0

estimations that are in that zone. On the other hand, we can see that Newton’s method has
a larger black area than the methods Jarratt type or the methods proposed in the paper. If
we analyse the dynamic planes associated to M4 and J4, we can see that it is a little simpler
in the case of M4 method, but if we compare the M8 and J8 methods, the dynamic plane is
considerably simpler in the case of M8 scheme. For this equation, we have not studied the
strange fixed points, since we need to solve polynomials of high degree. As a conclusion,
from these figures it is highlighted that the most stable method for this example is M8
scheme.

Let us now analyze the dynamical planes associated with the equation arctan x = 0,
that we can see in Figure 3. In this case, the initial estimations converging to the solution
0 are painted in orange and those converging to ∞ are painted in blue, which have been
determined as the initial estimates whose iterations, in absolute value, are greater than 800.
We note that most of the planes are similar, except those associated with methods M4 and
M8, since they have a basin of attraction for the 0 point much larger than in the rest of the
cases, being a little greater that of method M4, for this reason it is more convenient in this
case to take one of these two methods since we have a greater number of initial estimations
that converge to the solution that we are looking for.

Let us now look at the dynamic planes associated with the equation arctan(x) −
2x

x2+1 = 0 in the Figure 4. In this case, we paint in purple the initial estimates that converge

Figure 2. Dynamical planes of (x− 1)6 − 1 = 0 for the new and known methods: (a) Newton, (b)
M4 (4), (c) K4 (18), (d) J4 (18), (e) M8 (5), (f) K8 (20) and (g) J8 (19).

In this case, it can be seen that the planes that stand out most for their non-convergence
zones in the center are those associated to the methods K4 and K8, as shown in Figure 2c,f; for
this reason, these methods would not be recommended for initial estimations that are in
that zone. On the other hand, we can see that Newton’s method has a larger black area
than the Jarratt type methods or the methods proposed in the paper. If we analyze the
dynamic planes associated to M4 and J4, we can see that it is a little simpler in the case of
M4 method, but, if we compare the M8 and J8 methods, the dynamic plane is considerably
simpler in the case of M8 scheme. For this equation, we do not study the strange fixed
points, since we need to solve polynomials of high degree. As a conclusion, from these
figures, it is highlighted that the most stable method for this example is M8 scheme.

Let us now analyze the dynamical planes associated with the equation arctan x = 0,
which is shown in Figure 3. In this case, the initial estimations converging to the solution 0
are in orange and those converging to ∞ are in blue, which are determined as the initial
estimates whose iterations, in absolute value, are greater than 800. We note that most of
the planes are similar, except those associated with methods M4 and M8, since they have
a basin of attraction for the 0 point much larger than in the rest of the cases, being a little
greater that of method M4; for this reason, it is more convenient in this case to take one of
these two methods since we have a greater number of initial estimations that converge to
the solution that we are looking for.
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(a) Newton method

(b) M4 method (c) K4 method (d) J4 method
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Figure 3. Dynamical planes of arctan(x) = 0

to the solution x = 0, in green the initial estimates that converge to the solution x ≈ −1.3917,
in orange those that converge to the solution x ≈ 1.3917 and in blue the initial estimates
that converge to x ≈ 1.3917, which have been determined as the initial estimates whose
iteration in absolute value is greater than 800.

In this example, we observe that most of the planes are similar, except for those
associated with methods M4, J4 and M8, but among these three we can see that the one
with the largest convergence area to ∞ is method J4, so it would be less convenient to use
this method. If we look at the dynamic planes associated with the M4 and M8 methods we
can see that they are similar, although we emphasise the M8 method a little more as it has
a smaller blue region.

After commenting on the dynamic planes of these cases, what we see is that in general,
for these examples, the methods that have given good results and have been the most
convenient are the M4 and M8 methods, since they have had a larger basin of attraction
in the cases we were interested in, they have not generated other basins of attraction
from strange fixed points and their dynamic planes have not been as complex as others in
general.

Figure 3. Dynamical planes of arctan(x) = 0 for the new and known methods: (a) Newton, (b) M4
(4), (c) K4 (18), (d) J4 (18), (e) M8 (5), (f) K8 (20) and (g) J8 (19).

Let us now look at the dynamic planes associated with the equation arctan(x) −
2x

x2+1 = 0 in Figure 4. In this case, we illustrate in purple the initial estimates that converge
to the solution x = 0, in green the initial estimates that converge to the solution x ≈ −1.3917,
in orange those that converge to the solution x ≈ 1.3917 and in blue the initial estimates
that converge to x ≈ 1.3917, which are determined as the initial estimates whose iteration
in absolute value is greater than 800.

In this example, we observe that most of the planes are similar, except for those
associated with methods M4, J4 and M8, but among these three we can see that the one
with the largest convergence area to ∞ is method J4, so it would be less convenient to use
this method. If we look at the dynamic planes associated with the M4 and M8 methods,
we can see that they are similar, although we emphasize the M8 method a little more as it
has a smaller blue region.
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Figure 4. Dynamical planes of arctan(x)− 2x
x2+1 = 0

5. Numerical experiments

In this section, we solve some nonlinear equations to compare our proposed methods
with other schemes of the same order of convergence and to confirm the information
obtained in the previous section.

For the computational calculations, we use Matlab R2020b, with arithmetic precision
variable of 1000 digits, iterating from an initial estimate x0 and with the stopping criterium
| f (xk+1)| < 10−100 and |xk+1 − xk| < 10−100.

In the different tables we show, for each test function and iterative scheme, the
approximation of the root, the value of the function in the last iteration, the number of
iterations required, the distance between the last two iterations, the computational time in
seconds and the approximate computational convergence order (ACOC), defined in [8],
the expression of which is

p ≈ ACOC =
ln(|xk+1 − xk|/|xk − xk−1|)

ln(|xk − xk−1|/|xk−1 − xk−2|)
.

We are going to work with the same methods used in the previous section and with
equations:

Figure 4. Dynamical planes of arctan(x)− 2x
x2+1 = 0 for the new and known methods: (a) Newton,

(b) M4 (4), (c) K4 (18), (d) J4 (18), (e) M8 (5), (f) K8 (20) and (g) J8 (19).

After commenting on the dynamic planes of these cases, what we see is that, in general,
for these examples, the methods that have given good results and have been the most
convenient are the M4 and M8 methods, since they have a larger basin of attraction in the
cases we are interested in, they do not generate other basins of attraction from strange fixed
points and their dynamic planes are not as complex as the others in general.

5. Numerical Experiments

In this section, we solve some nonlinear equations to compare our proposed methods
with other schemes of the same order of convergence to confirm the information obtained
in the previous section.

For the computational calculations, we used Matlab R2020b, with arithmetic precision
variable of 1000 digits, iterating from an initial estimate x0 and with the stopping criterium
| f (xk+1)| < 10−100 and |xk+1 − xk| < 10−100.

In the different tables we show, for each test function and iterative scheme, the
approximation of the root, the value of the function in the last iteration, the number of
iterations required, the distance between the last two iterations, the computational time in
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seconds and the approximate computational convergence order (ACOC), defined in [25],
the expression of which is

p ≈ ACOC =
ln(|xk+1 − xk|/|xk − xk−1|)

ln(|xk − xk−1|/|xk−1 − xk−2|)
.

We work with the same methods used in the previous section and with equations:

• Equation cos(x)− x = 0, which has an approximate solution at x ≈ 0, 73908513, and
we take as the initial estimate for all methods x0 = 1.

• Equation (x− 1)6 − 1 = 0, which has a solution at x = 2, and we take as the initial
estimate for all methods x0 = 1.5.

• Equation arctan(x) = 0, which has a solution at x = 0, and we take as the initial
estimate for all methods x0 = 1.5.

• Equation arctan(x)− 2x
x2+1 = 0, which has a solution at x = 0, and we take as the

initial estimate for all methods x0 = 0.4.

In Table 1, we show the results obtained for equation cos(x)− x = 0. In this case,
all methods converge to the solution, although there are differences between them. As
expected, Newton’s method performs more iterations than the rest and thus also has a
longer time. It also has the longest distance between the last two iterations.

Among the fourth-order methods, we can see that all the results are similar in terms
of the number of iterations, the computational time and the value of the function at the
last iteration.

If we now look at the results of the methods of order 8, we can see that they perform
the same number of iterations, but in this case the M8 method has less computational time,
followed by the J8 method, as happens in the case of the norm of the equation evaluated in
the last iteration, i.e., in this case the M8 method gives us better results than the J8 method,
and the latter better than the K8 method.

The conclusion of this numerical experiment is that all methods obtain similar results,
although it would be advisable in this case to use the M8 method as it is the one that takes
the least computational time, one of the fewest iterations and obtains the highest order,
and it is by far the method that obtains the closest approximation to the solution, as can be
seen in Columns 2 and 3 of Table 1.

Table 1. Results for the equation cos(x)− x = 0.

Method ‖ f (xk)‖2 ‖xk+1− xk‖2 Iteration ACOC Time

Newton 7.11815 × 10−167 1.8724 ×10−333 8 2 0.2856
M4 4.21403 × 10−296 1.41767 ×10−1008 5 4 0.1984
K4 1.90125 × 10−279 1.41767 ×10−1008 5 4 0.1922
J4 1.6318 × 10−299 1.41767 ×10−1008 5 4 0.1906

M8 5.27514 × 10−640 1.41767 ×10−1008 4 8 0.1875
K8 9.74433 × 10−270 9.91668 ×10−1008 4 6 0.1944
J8 6.51848 × 10−608 1.41767 ×10−1008 4 8 0.2031

The results obtained for the equation (x− 1)6 − 1 = 0 are shown in Table 2. In this case,
not all the methods converge to the solution, since the methods K4 and K8 do not converge
taking as initial estimate x0 = 1.5, as can be seen in the dynamic planes associated with these
methods for the equation (x− 1)6 − 1 = 0. This fact is denoted in the table as n.c.

Let us now comment on the methods that do converge. In the previous case, Newton’s
method was different from the rest of the methods, and in this case it is the same, although
the difference between them is more notable since the number of iterations has grown
considerably, as has the computational time. This is also the method that converges with
the greatest distance between the last two iterations. Among the fourth-order methods, we
can see that the results are similar in terms of number of iterations, computational time and
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the value of the function in the last iteration. If we now look at the eighth-order methods,
we can see that the same number of iterations is performed, but in this case the M8 method
has less computational time, although what stands out most from this table is that the
norm of the equation evaluated in the last iteration of the M8 method is smaller than in the
rest of the methods, and it is considerably smaller than in the case of the J8 method. As a
conclusion of this numerical experiment, we obtain that among the converging methods
we have similar results in most cases, although the M8 method stands out since it is one of
those that makes fewer iterations and obtains a higher order, and it is by far the method
that obtains a closer approximation to the solution, as can be seen in Column 2 and 3 of
Table 2.

Table 2. Results for the equation (x− 1)6 − 1 = 0.

Method ‖ f (xk)‖2 ‖xk+1− xk‖2 Iteration ACOC Time

Newton 2.72448 × 10−119 1.11342 × 10−166 19 2 0.5164
M4 2.83553 × 10−271 0 9 4 0.3250
K4 n.c. n.c. n.c. n.c. n.c.
J4 2.02789 × 10−263 0 9 4 0.3328

M8 3.7096 × 10−468 0 7 8 0.3281
K8 n.c. n.c. n.c. n.c. n.c.
J8 3.10018 × 10−130 0 7 7.9992 0.3641

The results obtained for the equation arctan(x) = 0 are presented in Table 3. In this
case, not all the methods converge to the solution, since the Newton, K4 and K8 methods
do not converge taking as initial estimation x0 = 1.5, as can be seen in the dynamic planes
associated to these methods for the equation arctan(x) = 0. Let us discuss the methods
that do converge. Among the fourth-order methods, we can see that the results of number
of iterations, computational time and the value of the equation in the last iteration are
similar. If we now look at the eighth-order methods, we can observe that the M8 method
performs fewer iterations and also has the shortest computational time, although what
stands out most in this table is the value of the ACOC of the M8 method, which in this case
increases to 11 instead of 8, although it is true that the J8 method also increases to 9 and
has the smallest value of the norm of the equation evaluated in the last iteration, although,
by performing one more iteration than the M8 method, it is logical for this to happen.

As a conclusion of this numerical experiment, we obtain similar results among the
converging methods, although the M4 and M8 methods stand out due to their dynamic
planes, but especially the M8 method since it is the one that makes fewer iterations and
obtains the highest order, besides being the one that takes the least time.

Table 3. Results for the equation arctan(x) = 0.

Method ‖ f (xk)‖2 ‖xk+1− xk‖2 Iteration ACOC Time

Newton n.c. n.c. n.c. n.c. n.c.
M4 2.55693 × 10−252 2.42873 × 10−1259 6 5 0.2250
K4 n.c. n.c. n.c. n.c. n.c.
J4 7.27099 × 10−263 1.80085 × 10−1270 6 5 0.2594

M8 5.654 × 10−126 1.11859 × 10−1379 4 10.9979 0.1891
K8 n.c. n.c. n.c. n.c. n.c.
J8 1.98863 × 10−777 0 5 9 0.2672

We show the results obtained for the equation arctan(x)− 2x
x2+1 = 0 in Table 4. In this

case, all methods converge to the solution, as can be seen in the dynamic planes associated
with these methods for the equation arctan(x)− 2x

x2+1 = 0.
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Let us comment the methods as they appear in the table. As we can see, Newton’s
method is the one that performs more iterations to reach the same tolerance, although it is
true that for this example the ACOC increases by one unit.

If we look at the methods of order 4, we can see that in all of them the value of the
ACOC is 5, when the expected value is 4. Among these methods, the one that performs the
most iterations is the K4 method, and therefore the one that takes the longest. If we look
at the M4 and J4 methods, the results are similar, although the M4 method gives a better
approximation in this case with the same number of iterations, and also takes less time;
thus, for this example, the most convenient method of order 4 would be the M4 method.

Regarding methods of order 8, we can see that K8 method performs more iterations
than the rest of the schemes, as well as being one of the methods that uses the most
computational time. We also observe that M8 method has the shortest computational
time, although what stands out most in this table is the value of the ACOC of the M8
method, since in this case it increases to 11 instead of 8, although it is true that the J8 and K8
methods also increase to 9. In addition, M8 method obtains a more accurate approximation
than the rest of the order 8 methods.

As a conclusion of this numerical experiment, we obtain that there are notable dif-
ferences among the methods, highlighting as less convenient in this case the Newton and
King type methods, and as more convenient methods we highlight for their results and
dynamic planes the M4 and M8 methods, but especially the M4 method for its dynamic
planes and the M8 method since it is the one that performs fewer iterations and obtains
greater order, besides being the one that takes less time.

Table 4. Results for the function arctan(x)− 2x
x2+1 .

Method | f (x(k))| |x(k+1)− x(k)| Iteration ACOC Time

Newton 2.63224 × 10−843 9.24306 × 10−282 14 3 0.5891
M4 1.67544 × 10−2131 4.96455 × 10−427 6 5 0.3359
K4 4.84918 × 10−2200 9.73169 × 10−441 11 5 0.6359
J4 2.27536 × 10445 9.05734 × 10−438 6 5 0.4297

M8 6.46592 × 10−2102 1.33304 × 10−219 4 11 0.2797
K8 3.25561 × 10−1343 2.25726 × 10−269 7 9 0.5328
J8 5.74708 × 10−1218 4.84986 × 10−136 4 9.00019 0.3141

After performing these experiments, we can conclude that in these cases the most
recommendable methods are M4 and M8 because they are the only methods, together with
J4, that converge to the solution in all cases, and because they are the methods that stand
out for their numerical results in all examples, although the one that stands out most from
these two methods that we propose is the M8 method.

6. Conclusions

In this manuscript, we design a family of optimal iterative methods with n + 1 steps
and order of convergence 2n+1, for n = 0, 1, 2, . . ..

From this class, we can select an optimal iterative scheme with the desired order of
convergence. Some classical methods are members of this class.

We work, from the dynamic and numerical point of view, with the elements of this
family of orders 4 and 8, comparing the results obtained with those of other known
methods. The results provided by the two elements of the family are very satisfactory, both
numerical (number of iterations, error bounds, etc.) and stability related (amplitude of the
convergence basins, existence of strange fixed points, etc.).
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