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Abstract: The paper presents an analytical review of theoretical methods for modeling functional
nanostructures. The main evolutionary changes in the approaches of quantum-mechanical modeling
are described. The foundations of the first-principal theory are considered, including the stationery
and time-dependent Schrödinger equations, wave functions, the form of writing energy operators,
and the principles of solving equations. The idea and specifics of describing the motion and inter-
action of nuclei and electrons in the framework of the theory of the electron density functional are
presented. Common approximations and approaches in the methods of quantum mechanics are
presented, including the Born–Oppenheimer approximation, the Hartree–Fock approximation, the
Thomas–Fermi theory, the Hohenberg–Kohn theorems, and the Kohn–Sham formalism. Various
options for describing the exchange–correlation energy in the theory of the electron density functional
are considered, such as the local density approximation, generalized and meta-generalized gradient
approximations, and hybridization of the generalized gradient method. The development of methods
of quantum mechanics to quantum molecular dynamics or the dynamics of Car–Parrinello is shown.
The basic idea of combining classical molecular modeling with calculations of the electronic structure,
which is reflected in the potentials of the embedded atom, is described.

Keywords: mathematical modeling; quantum mechanics; electron density functional theory; DFT;
local density approximation; generalized gradient approximation; dispersion forces; quantum molec-
ular dynamics; embedded atom method

1. Introduction

Symmetry effects and the corresponding structure of objects are ubiquitous in the
nanoworld. These effects can appear at the structure level of individual atoms or molecules,
where a symmetric distribution of electron clouds, their stable energy state in a similar spa-
tial arrangement, is observed. Symmetric phenomena are also required when considering
large groups of atoms, which may form individual clusters or may arise within the structure
of a material, e.g., within nanocomposites. A proper analysis of symmetric effects allows
us to systematize the interacting mechanisms between atoms, molecules and nanoparticles,
and lay the foundation for further research. An example is the introduction of the crystal
lattice types classification [1,2], which in its time allowed us to considerably simplify the
description of the solid materials structure and the analysis of their structure defects.
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Developing modern science makes it possible to create new promising materials,
design high-tech devices, and improve existing industrial and production facilities. As
a result, science is currently in close integration with many branches of technology and
human activity, and its applied significance is growing. Scientific research has now reached
such a level that the individual atoms or molecules manipulating mechanisms [3–5] fall
under observation, and sometimes the impact on materials reaches the level of single
electrons [6,7], bosons [8,9], fermions [10,11], photons [12,13] or other elementary particles.

A particular promising area of research is nanocomposites, i.e., a multicomponent
material with nanoscale dimensional, physical or structural characteristics. Because of
improved and sometimes fundamentally new properties, nanocomposites are widely
used in various industry fields. Finely dispersed composite materials are actively used
as catalysts, adsorption and electrochemical agents [14–16]. The constituent elements of
nanocomposites–nanoparticles also have similar reactive characteristics [17,18]. Nanoclus-
ters or nanostructures are independent functional materials, but they require stabilization
and isolated storage due to their increased agglomeration [19]. Medium-grained nanocom-
posites have effective optical, electrical and thermal properties [20–22]. Larger (about
100 nm) multicomponent samples are used for mechanical reinforcement [23], fracture
resistance and simultaneous lightening of structures [24], and for obtaining new mate-
rials with improved magnetic characteristics [25,26]. The division into spheres of using
nanocomposites, depending on the dispersion and internal structure should be understood
as rather arbitrary. Often, there is a complex improvement in the properties of designed
samples, in contrast to the components integrated in their composition.

Another popular area of implementing nano-objects is developing nanoelectromechan-
ical systems [27,28]. In such systems, nanomaterials change their properties or create an
electromagnetic response under the influence of an external force, electric field or luminous
flux. With the computing devices evolution and the trend towards their miniaturization,
nanoelectromechanical systems function as nanoscale recording devices: resonators [29],
nanomotors [30], thermal sensors [31] and various other sensors. An example of the de-
scribed devices is a nanomechanical resonator in the form of a multilayer gallium arsenide
nanostructure proposed in [29]. The nano resonator is capable of converting the natural
vibrations energy into radiation, thus observing the change in external forces. The develop-
ers [29] plan to create highly accurate sensors for medical and chemical analysis, based on
such systems.

A decrease in the size of technical devices brings about a significant increase in their
total surface area, and in the fraction of the friction force of the nanosystem relative general
mechanical behavior. The increase in contributing the friction force causes appearing
excessive heat release, which is not always useful, and often has no need. A similar problem
also arises in nanoelectromechanical systems for electronic computing purposes [32]. The
density of integrated circuit structural elements is currently reaching such a level that
heat release limits their further miniaturization. This difficulty can be solved by scientific
research in such an area of quantum electronics as spintronics. Spintronics devices and
materials are based on the energy transfer using a spin current, rather than an electron
current, which provides fundamentally new prospects for implementing these objects into
microprocessors [33], memory cards [34] and sensors [35]. For example, Josephson contacts
with a tunable critical current are extremely important for the creation of Josephson neurons
and synapses. Such tunable nonlinear elements with memory can be created on the basis
of hybrid superconductor–ferromagnetic (S/F) structures [36–44]. On the basis of F1-S-F2
structures, configurable linear elements with memory (controllable kinetic inductors) can
also be manufactured [45,46]. Quantum-mechanical modeling of such artificial materials
and functional nanostructures with specified properties remains one of the most urgent
tasks of modern electronics and spintronics. To give an example: for efficient operation of
multilayer structures in tunable Josephson and inductive elements it is extremely important
to select materials and technological modes of their sputtering so as to ensure the required
quality of boundaries and layers. Only a thorough first-principles simulation of the entire
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process of multilayer heterostructures formation gives chances to obtain devices with the
specified characteristics on their basis. The required procedure is described in detail in
Section 6 of this article.

Despite all the advances in modern nanotechnology, research at the molecular level
remains an extremely challenging task. An undoubtedly important part is experiments
and direct work with new materials. However, theoretical research methods play an
important role in improving and optimizing the technology for manufacturing nanoscale
objects. This work is an overview with elements of applying mathematical models to
specific applied problems. The aim of the work is to demonstrate the relevance of using
the family of quantum mechanics methods, their evolution and optimization to study
various properties and structure features of nanomaterials, including symmetry effects, for
example, in Josephson contacts in spintronics devices. The use of mathematical modeling
methods for the study of specific technological processes and nanostructured materials is
described in the authors’ previously published works [47–54].

2. First-Principal Modeling for Studying the Properties of Nanomaterials

Understanding, describing and modeling the structure and properties of nanomate-
rials is based on the quantum mechanics methods. These methods appeared some time
ago, but they are still successfully used for research and analysis of nanotechnology ob-
jects [55,56]. The quantum mechanics mechanism describes the nature and electronic
structure of matter in a physically reasonable way and is constantly being supplemented
and improved, so that it has not lost its relevance. A review of the quantum mechanics
theory, approximations and evolutionary approaches is given in [57–59].

The Schrödinger equation is the basis for describing the atom’s dynamics using
quantum mechanics. In the general nonrelativistic case, the Schrödinger equation describes
the motion of nuclei and electrons by the following equation

i}∂Ψ(R1, . . . , RNn , r1, . . . , rNe , t)
∂t

= ĤΨ(R1, . . . , RNn , r1, . . . , rNe , t), (1)

where i is unit imaginary number; } is Planck’s constant; Ψ(R1, . . . , RNn , r1, . . . , rNe , t) is
common wave function of nuclei and electrons; Nn is number of nuclei in the system; Ne is
number of electrons; t is time; Ri and rj are the radius-vectors of the nuclei and the electron
at a certain point in time; Ĥ is Hamilton operator.

The Hamilton operator includes the compound interaction operators, as well as the
nuclei and electrons kinetic energy

Ĥ = −∑
i

}2

2Mi
∇2

i −∑
j

}2

2m
∇2

j −∑
i,j

Zie2∣∣Ri − rj
∣∣ + 1

2 ∑
i,j,i 6=j

ZiZje2∣∣Ri −Rj
∣∣ + 1

2 ∑
i,j,i 6=j

e2∣∣ri − rj
∣∣ , (2)

where Mi and Zi are masses and charges of nuclei; m and e is mass and charge of the
electron, respectively. Hereinafter, the summation relative to nuclei is made up to the
variable Nn, and the summation in the electron operators to the variable Ne.

To describe the atomic and electronic structure of a nanomaterial, it is necessary to
solve an Equation (1). The Schrödinger equation solution involves a large amount of
variables, limiting its exact solution. The separation of the variables into slow nuclei and
fast electrons, called the adiabatic approximation or Born–Oppenheimer approximation,
allows us to significantly simplify the equation [57]{

Mi
..
Ri = − ∂E

∂Ri
,

ĤBO(R1, . . . , RNn , r1, . . . , rNe , t)Ψ(r1, . . . , rNe , t) = E(R1, . . . , RNn , t)Ψ(r1, . . . , rNe , t),
(3)

where ĤBO is Hamilton operator in the Born–Oppenheimer approximation.
The adiabatic approximation allows us to solve the Schrödinger equation gradually.

At each time step, the motion of electrons in the stationary field of the nuclei is considered
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first. Then, based on the total electron distribution in the system, new nuclei positions
are calculated. The primary interest in constructing quantum-mechanical fields is aimed
at studying the contribution of the electronic component, so the stationary Schrödinger
equation for the multielectron subsystem located in the field of stationary nuclei will be
considered further, but taking into account the spin state of electrons

ĤBOΨ(r1, s1 . . . , rNe , sNe) = EΨ(r1, s1 . . . , rNe , sNe), (4)

ĤBO = −∑
j

}2

2m
∇2

j −∑
i,j

Zie2∣∣Ri − rj
∣∣ + 1

2 ∑
i,j,i 6=j

e2∣∣ri − rj
∣∣ , (5)

where E is energy of the considered system; si is electron spin. The solution of Equation (4)
makes it possible to calculate the ground state of the nanosystem corresponding to the
lowest energy, as well as its excitation spectrum formed by solutions with higher energy.

The simplest assumption for solving an Equation (4) is the electrons’ noninteraction,
which allows us to represent the Hamiltonian operator through the sum and total wave
function through the product of the individual contributions

Ĥ = ∑
i

(
− }2

2m
∇2

i + vion(ri)

)
, vion(ri) =−∑

j

Zje2∣∣Rj− ri
∣∣, Ψ(r1,s1 . . . ,rNe,sNe) = ∏

i
ψ(ri,si), (6)

where vion(ri) is the electron external field in the field of the nucleus; ψ(ri, si) are one-
electron wave functions.

Due to the electrons noninteraction hypothesis, the equations for particles can be
separated (

− }2

2m
∇2

i + vion(ri)

)
ψiσ(r) = εiσψiσ(r), (7)

where ψiσ(r) and εiσ is single-particle wave function and energy of the electron in the spin
state σ. The characteristics of the electron gas are found by elementary summation

E = ∑
i,σ

f (εiσ) εiσ, n(r) = ∑
i,σ

f (εiσ)ψiσ(r)ψ
∗
iσ(r), f (εiσ) =

1
eβ(εiσ−µ) + 1

, (8)

where E is average nanosystem energy; n(r) is particles density; ψ∗iσ(r) is conjugate wave
function of the electron; f (εiσ) is Fermi function; µ is chemical potential; β is reverse
temperature.

The Hartree–Fock approximation [60,61] also simplifies the solution of the Schrödinger
equation via single-particle wave functions, with the assumption that each electron moves
in an averaged field. This field U(r) is created by all electrons of the nanosystem and is
gradually refined, so it is called self-consistent(

− }2

2m∇2
i + U(ri)

)
ψiσ(r) + ∑

j,σi

∫
dr
′
ψ∗jσj

(
r
′
)

e2

|r−r′ |ψjσj

(
r
′
)
ψiσi

(r)

−∑
j

∫
dr
′
ψ∗jσ

(
r
′
)
ψiσ

(
r
′
)

e2

|r−r′ | ψjσ(r) = εiσψiσ(r).
(9)

The first term in the left side of Equation (9) describes the one-electron contribution to
the nanosystem energy, the second term is responsible for the Coulomb interaction and
the third term corresponds to the exchange energy. The multielectron wave function is
calculated in the form of the matrix determinant

Ψ(r1, s1 . . . , rNe , sNe) =
1√
Ne!

det
[
ψj(ri, si)

]
. (10)

The Hartree–Fock approximation allows one-particle wave functions to be used as
variational quantities, simultaneously setting the value of the parameter εiσ equal to the
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one-electron excitations energy. Despite its importance for developing quantum-mechanical
approaches, this method has not solved the problem of increasing the number of the system
degrees of freedom with increasing numbers of atoms and electrons in it, which means
that the question of rationalizing the numerical solution of the Schrödinger equation
remains open.

3. The Family of Electron Density Functional Methods

Further evolution of the first-principal methods for modeling the properties and
structure of nanomaterials made it possible to solve the problem of increasing complexity
and dimensionality with increasing observation particles. An approach appeared where
the nanosystem state energy for nuclei and electrons interacting in some external field
began to be described in the form of a functional depending on the particle density. Since
all properties of the system were exhaustively determined by its electron density, this
method is called the electron density functional due to the principles of mathematical
apparatus construction [62,63]. In this case, the electron density is a function of space
but does not depend on the simultaneous arrangement of all nuclei and electrons, which
significantly reduces the complexity of the equations to be solved. Hereinafter, unless
otherwise indicated, mathematical calculations will be given in the atomic system of units
for convenience.

The most primitive representative of the group of electron density functional methods
is the Thomas–Fermi theory [64–66]. In the framework of this theory, the kinetic energy of
interacting electrons is approximated by the corresponding expression for free particles

T[n(r)] = CF

∫
n

5
3 (r) dr =

3
10

(
3π2

) 2
3
∫

n
5
3 (r) dr,

∫
n(r) dr = Ne, (11)

where T[n(r)] is kinetic energy; CF is numeric constant; n(r) is electrons density; Ne is total
amount of electrons. The last expression in (11) is a normalization requirement.

When calculating the total energy of a nanosystem in the Thomas–Fermi model, the
contribution of the exchange and correlation component is neglected, which gives the
following expression

ETF[n(r)] =
3

10

(
3π2

) 2
3
∫

n
5
3 (r) dr +

∫
n(r) vion(r) dr +

1
2

∫ ∫ n(r) n
(

r
′
)

∣∣r′ − r
∣∣ dr dr

′
, (12)

where vion(r) is external potential field for a particular electron at a point in space. In
expression (12), the second term describes the nuclei and electrons interaction and the last
term is responsible for the Coulomb exchange of energy between the electrons. It should be
noted that the Thomas–Fermi theory relies on the pseudo classical approximation, describes
the kinetic energy of particles in a simplified way, and does not consider the exchange and
correlation contributions in the interelectron interaction. Although this theory is not used
to study the properties of real nanosystems, it is an important step in developing quantum
mechanics methods.

The family of electron density functional methods was further developed in the works
of Hohenberg–Kohn [67]. In these studies, it was proved that any system of interacting
electron gas affected by an external potential can be clearly represented by the electron
density, and there exists a universal functional with an extremum at the point of the electron
density ground state to describe the external potential. The Hamiltonian for the system of
interacting electrons in this case will have the form

Ĥ = −1
2∑

i
∇2

i + ∑
i

vion(ri) +
1
2 ∑

i,j,i 6=j

1∣∣ri − rj
∣∣ , vion(ri) = −∑

j

Zj∣∣ri −Rj
∣∣ , (13)

where vion(ri) is the external potential created by the atomic nuclei; Zj are atomic nucleus
charges.
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All properties of a nanosystem are clearly defined by the electron density, which, in
turn, is identified by the energy functional

ETF[n(r)] = FHK[n(r)] +
∫

n(r) vion(r) dr, FHK[n(r)] = T[n(r)] + Vee[n(r)], (14)

where n(r) is electron density; FHK[n(r)] is system internal state functional; T[n(r)] is
kinetic energy functional; Vee[n(r)] is interelectronic interaction functional.

The Hohenberg–Kohn theory can be generalized and extended to nonstationary
nanosystems, systems with external magnetic and electric fields and spin-polarized config-
urations. In the case of spin-polarized systems, it is necessary to distinguish several groups
of electrons with different densities. In this case, the external potential will be clearly
identified as a function of these electron densities. For the variant of magnetic and electric
fields, an additional vector field is introduced along with the scalar external potential.

The next development of the electron density theory was aimed at elaborating and
investigating features of the system internal state functional FHK[n(r)]. The approach
proposed by Kohn–Sham [68] implies a decomposition of the internal state functional into
a number of components that have a physical justification

FHK[n(r)] = TS[n(r)] + 1
2

∫ ∫ n(r) n
(

r
′)

|r′−r| dr dr
′
+ EXC[n(r)],

E[n(r)] = TS + VH + EXC + Vion,
(15)

where TS is kinetic energy of non-interacting free electrons; VH is Hartree or Coulomb interelectron
interaction energy; EXC is exchange–correlation contribution to energy; Vion =

∫
n(r) vion(r) dr

is the external potential of the nanosystem affecting the electrons. Hartree potential is used
for the Coulomb repulsion energy of electrons

vH(r) =
∫ n

(
r
′
)

∣∣r′ − r
∣∣dr

′
, VH =

∫
n(r) vH(r) dr =

1
2

∫ ∫ n(r) n
(

r
′
)

∣∣r′ − r
∣∣ dr dr

′
. (16)

The Kohn–Sham formalism allows the electron density of the nanosystem ground
state to be replaced by the density of free electrons and to search for a solution using single-
particle orbitals ψiσ(r). The index i runs through the one-electron states, the identifier σ is
introduced to account for their spin. Then the nanosystem total electron density will be
calculated according to the following expression

n(r) = ∑
i,σ
|ψi$(r)|2. (17)

The system of self-consistent Kohn–Sham equations is a set of one-particle Schrödinger
equations[

−1
2
∇2

i + vKS(r)
]
ψiσ(r) = εiσψiσ(r), vKS(r) = vion(r) + vH(r) + vXC(r), (18)

where VKS(r) is Kohn–Sham potential, also called effective potential; vXC(r) is exchange–
correlation potential. The general energy state of the nanosystem is determined by a set of
wave functions ψiσ(r) and Equation (18) have a variational character, i.e., they are solved
by iterative methods. The energy functional has a single form for a given set of electrons.
The difference between the Kohn–Sham theory and the Hartree method is the presence
of exchange–correlation energy, which arises due to bound, not independent, motion of
the electrons and the difference in energy due to their antisymmetry. There is no exact
analytical description for interpreting the exchange–correlation energy and potential, so
various approximations are used to estimate their value and represent the structure.
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The simplest approximation for the nanosystem exchange–correlation energy is the
Local-Density Approximation (LDA). This approximation is used for systems with slowly
changing electron densities [69,70] and is based on the approximation of a homogeneous
electron gas

ELDA
XC [n(r)] =

∫
n(r) εLDA

XC [n(r)] dr, (19)

where εLDA
XC [n(r)] is exchange–correlation energy of a single electron in a homogeneous field.

There are several ways to parameterize the energy of the form (19). The approximation
quite accurately describes the long-range Coulomb interaction, the kinetic component of
the Hamiltonian, and the structural characteristics of real systems. The disadvantages of
the local density approximation include the potential independent of the orbital type and
the inclusion of the interaction of electrons with their own field, which in LDA and further
modifications can be refined and eliminated.

Generalized Gradient Approximations (GGA), which take into account inhomoge-
neous electron density distribution, are more widely used in the theory of the electron
density functional [71,72]. In GGA model, the exchange–correlation energy includes elec-
tron density gradient and is represented in the following form

EGGA
XC [n(r)] =

∫
n(r) εGGA

XC [n(r),∇n(r)] dr, (20)

where ∇n(r) is electron density gradient.
If it is necessary to consider the spin state of the electrons, several groups of electrons

with densities n↑ and n↓ are in for consideration. The expressions for the exchange–
correlation energy (19) and (20) will be written accordingly

ELDA
XC

[
n↑, n↓

]
=
∫

n(r) εLDA
XC

[
n↑, n↓

]
dr,

EGGA
XC

[
n↑, n↓

]
=
∫

n(r) εGGA
XC

[
n↑, n↓,∇n↑,∇n↓

]
dr.

(21)

Due to its construction, the GGA approximation only partially takes into account the
inhomogeneity of the electron density distribution; therefore, the functionals of this method
are also called semilocal. Improving the approach by introducing additional terms of the
Taylor series energy expansion into consideration allows us to eliminate the drawback
of the GGA approximation, which is transformed into the Meta-Generalized Gradient
Approximations (MGGA) [73,74]. The exchange–correlation energy has a higher order
of accuracy

EMGGA
XC [n(r)] =

∫
n(r) εMGGA

XC

[
n(r),∇n(r),∇2n(r), τ(r),µ(r), . . . , γ(r)

]
dr, (22)

where τ(r) is kinetic energy density of non-interacting particles; µ(r), . . . , γ(r) are local
model factors. Functionals εGGA

XC and εMGGA
XC do not have clearly defined configuration and

are chosen individually for different physical processes and problems. When constructing
theoretical MGGA dependences, a sufficiently large number of experimental parameters
are used. Finding and justifying these experimental quantities is a difficult task, which is a
disadvantage of this approach and limits its application.

The next modification of the exchange–correlation energy in the electron density
functional theory is the hybridization of the GGA method [75,76]. The general form of the
expression for energy calculation is

EHybrid
XC [n(r)] = αEEXX

X [n(r)] + (1− α)EGGA
X [n(r)] + EGGA

C [n(r)], (23)

where EEXX
X [n(r)] is a precisely defined exchange energy potential, i.e., the Hartree–Fock-

like potential; EGGA
X [n(r)] is exchange component in the form of a GGA functional; α is

proportionality coefficient regulating the share of exchange energies calculated by different
approximations; EGGA

C [n(r)] is correlation energy functional.
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Due to their high accuracy, hybrid functionals are popular for determining molecular
configurations, atomization and ionization energies, and studies of harmonic and relaxation
vibrational processes. Nevertheless, for all of the previously considered approaches in
the theory of the electron density functional, the question of the choice of basis wave
functions and the form of the potential remains open. For these, there are currently a large
number of varieties (attached plane waves (APW), atomic sphere approximation (ASA),
base construction based on Vannier functions (VF), base selection in the form of Muffin-tin
orbitals (MTO) and linearized Muffin-tin orbitals (LMTO), Gaussian orbitals, Slater-type
orbitals, and numerical orbital basis sets), but they will not be considered within this work.

In addition, the standard electron density functionals do not take into account the
contribution of dispersion or Van der Waals forces. These forces are induced by the motion
of charged particles and lead to electron density fluctuations. For a number of problems,
the dispersion forces in a nanosystem can be neglected due to the smallness of their
contribution, but Van der Waals forces have a significant effect on such parameters as the
mechanical characteristics of ionic crystals, the cohesion energy and the surface properties
of semiconductors.

Describing the energy of dispersion forces in quantum mechanics is variational [77].
Two alternative approaches are used to calculate them, which, in one form or another, bring
about corrections to the interaction energies of particles. In the first case, the arising dipole
fluctuations are considered as a result of the electrons’ motion, so corrections are introduced
into the exchange–correlation part of the energy and the corresponding functionals

EXC[n(r)] = EGGA
X [n(r)] + ELDA

C [n(r)] + Enl
C [n(r)] ,

Enl
C [n(r)] =

∫ ∫
dr dr

′
n(r)ϕ

(
r, r
′
)

n
(

r
′
)

,
(24)

where EGGA
X [n(r)] is the energy exchange contribution obtained in the generalized gradient

approximation is often written in the form of the Perdew–Burke–Ernzerhof functional
EGGA

X [n(r)] = EPBE
X [n(r)]; ELDA

C [n(r)] is correlation energy fraction for the local density
method; Enl

C [n(r)] is the long-range nonlinear energy correlations functional, which in-

cludes dispersion forces. The interaction function ϕ
(

r, r
′
)

is called the core because it is
the function that accounts for the differences and changes in the charge density gradient.
The choice of the form of this function is important. Depending on the form Enl

C [n(r)], the
scientific literature distinguishes between calculating the dispersion forces using the Dion
method (vdW-DF) [78] and Random Phase Approximation (RPA) [79].

An alternative approach to describe the dispersion forces is their representation, not
in terms of electron density, but through the atom’s interaction. The total energy of the
nanosystem also contains an additional summand

Etot = EDFT + Edisp, Edisp = −∑
i,j

∑
k=6,8,10,...

Ck∣∣Ri −Rj
∣∣k , (25)

where Etot is total energy; EDFT is energy obtained by the electron density functional method
within the Kohn–Sham formalism; Edisp is dispersion correction including interaction
between instantaneous and induced dipoles, permanent and induced dipoles; Ck are
numerical coefficients; Ri иRj are radius vectors of atomic nuclei. The summation in the
second expression (25) by i and j is performed on all pairs of atoms in the nanosystem,
the index k being responsible for the varieties and perturbations arising from Van der
Waals interactions.

Due to the high degrees in the denominator of the dispersion correction, these forces
decrease rapidly with distance. Therefore, quantum-mechanical calculations often make
do with one or two terms in the summation (25). The first element of the sum, which is
inversely proportional to distance to the sixth power, characterizes the dipole interaction.
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The description of dispersion forces through pair potentials using the damping function
fdmf is common in the scientific literature

Edisp = −s6∑
i,j

C6,ij

|Ri−Rj|6
fdmf

(∣∣Ri −Rj
∣∣),

fdmf
(∣∣Ri −Rj

∣∣) = [1 + exp
(
−α
(
|Ri−Rj|

sRRr
− 1
))]−1

,
(26)

where C6,ij is pairwise dispersion coefficient, depending on the types of interacting atoms;
s6 is the scaling factor determined by the type of damping function.

The damping function is used to avoid singularities at small distances and to prevent
double-counting of correlations. The form of the function is variational, depending on the
method used to compute the dispersion forces. In (26) we present the expression formu-
lated in the Grimme methods (DFT-D, DFT-D2, DFT-D3) [80], for which the parameters
of the equations have the following valuations: C6,ij =

√
C6,iC6,j, Rr = RvdW,i + RvdW,j

is the sum of the Van der Waals radii for the two atoms, sR = 1, 0, α = 20.0. An alterna-
tive form of damping function notation is used in the Tkachenko and Scheffler method
(DFT+vdW) [81], bound cluster theory (DFT/CC) [82], Becke and Johnson approxima-
tion (XDM) [83]. There are also approaches for calculating the dispersion forces not only
through pairwise interaction, but also taking into account the multi-particle contribution,
e.g., the multi-electron dispersion method (MBD) [84].

4. Quantum Molecular Dynamics Method

A specific direction in quantum mechanics is developing theoretical methods for
studying the properties of complex molecular systems called quantum molecular dynam-
ics. The method is based on the Born–Oppenheimer approximation, which assumes the
partitioning of variables into massive nuclei and fast electrons. The essence of this for-
malism has been previously described by relations (3)–(5). In the approach originally
described, the solution of a partial differential equations system (3) was obtained through a
decomposition into basis functions with a further diagonalization. The quantum molecular
dynamics method proposed by Car–Parrinello [85] uses function minimization.

The idea of Car–Parrinello molecular dynamics (CPMD) is the combined calculation
of electronic and atomic subsystems. The motion of nuclei is determined by the set of their
coordinates {Ri| i = 1, . . . , Nn}, the electronic degrees of freedom are characterized by a
set of quantum-mechanical wave functions

{
ψj

∣∣∣ j = 1, . . . , Ne

}
Mi

..
Ri = −

∂E
∂Ri

= Fi, µ
..
ψj(r, t) = −Ĥψj(r, t) + ∑

k
Λjkψk(r, t), (27)

where Fi is the resultant force exerted on the atom; E and Ĥ is the energy functional and
the Kohn–Sham Hamiltonian; µ is fictitious electron mass; Λjk are indefinite Lagrange
multipliers. The fictitious electron mass is chosen to organize the convergence of the
algorithm as quickly as possible. The Lagrange multipliers are responsible for the additional
forces that ensure the orthonormality of the wave functions.

In the Car–Parrinello theory, nanosystem total energy is a function of the total coeffi-
cients of the wave electron function expansion on some basis. When minimized by a given
coefficient, there is a cooling and stabilization of the system state. The first part of expres-
sions (27) is the classical Newton motion equations for a set of particles, which are solved
iteratively until the equilibrium condition is reached. Consistency of the ion and electron
subsystems is achieved by simultaneous minimization of the energy functional. It should
be noted that this method does not describe the true nanosystem dynamics, but rather
its fictitious evolution, leading to an equilibrium energy-stable state of a multielectron
particle system.
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The Car–Parrinello molecular dynamics is known now to reproduce the properties of
semiconductor and dielectric materials quite well. For metallic systems near the band gap,
there are many states with closely spaced eigenvalues, which brings about significant vari-
ations in the electron density even with a small change in the total energy [86]. In addition,
the use of the Car–Parrinello approach is limited to a small number of nanosystem atoms
due to the high complexity of solving the equations and significant computational costs.

There is another approach to quantum molecular dynamics, which is based on the
Born-Oppenheimer approximation. This approach consists in separating the description of
the nuclear and electron subsystems, hence it is called the Born-Oppenheimer molecular
dynamics (BOMD) [87,88]. The motion of the nuclei is described by the classical equation
of mechanics, but the energy and forces acting on them are calculated by solving the
Schrödinger equation at each time step for the electronic wave functions. The essence of
this approach results in the following expression

Mi
..
Ri = −∇i

[
min

ψ1,...,ψNe

E
(
R1, . . . , RNn ,ψ1, , . . . ,ψNe

)]
, (28)

where E is the total energy, which is minimized by the set of electron wave functions at
fixed coordinates of the nuclei. Minimization is usually performed through the solution of
the Kohn–Scham equations or by means of multidimensional optimization algorithms.

The BOMD method is highly accurate and can sufficiently describe, for example, the
properties of dielectrics and metals. Nevertheless, the implementation of this approach, as
well as the CPMD method, requires significant computational costs. Therefore, BOMD and
CPMD are mainly used for nanosystems of small size and volume.

In order to reduce the complexity and increase the capacity of the system under study,
methods of combining classical molecular modeling with electronic structure calculations
have been actively developed. This idea has found application in the embedded atom poten-
tials (Embedded Atom Model–EAM, Modified Embedded Atom Method–MEAM) [89,90].
The Embedded Atom Method derives from the theoretical positions of the electron density
functional and describes the behavior of a nanosystem in the form of the following set
of equations

Mi
..
Ri = −

∂Ui
∂Ri

= Fi, Ui = F(ρi) + ∑
j,i 6=j

φ
(∣∣Ri −Rj

∣∣), ρi = ∑
j,i 6=j

ψ
(∣∣Ri −Rj

∣∣), (29)

where F(ρi) is immersion function characterizing the interaction of an individual atom
with a medium with electron density ρi; φ

(∣∣Ri −Rj
∣∣) is pair potential; ψ

(∣∣Ri −Rj
∣∣) is the

electron density created by the j-th atom at the location of the i-th atom.
The use of immersion functions in the EAM and MEAM methods makes these po-

tentials multi-particle, more accurately reflecting the properties of many nanomaterials,
including metals. A limitation of this theory is the need to prepare potential parameters as
there are a rather large number of them. Parameters are obtained mainly by experimental
methods or by other theoretical approaches. Nevertheless, due to its speed and ability to
analyze huge nanosystems (millions of atoms), the embedded atom method remains one
of the popular methods for studying the properties of nanomaterials.

In conclusion of this section, we present a general scheme of methods for modeling
nanostructures, shown in Figure 1, which allows us to evaluate the areas of different
methods application in terms of mathematical complexity to the practical problems of
nanosystems design and research.
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5. Application of Quantum Mechanics Methods to Calculate the Optimal Structure of
Molecules and Parameters of Force Potentials

The results presented in this section illustrate the application of quantum mechanics
methods to optimize the geometry of molecular systems and find their interaction parame-
ters. In applied problems, there are often special-purpose compositions where modeling
parameters are not known. This problem is particularly relevant for metal salts found,
for example, in condensation problems or technological processes. The above problem
can be solved by using the quantum mechanics apparatus at the preliminary stage of
modeling, which provides the search for interaction parameters and necessary constants
for further investigation of mechanisms of agglomeration and structuring nanoparticles of
the target composition.

We show the effectiveness of quantum-mechanical modeling of the functional nanos-
tructure properties using the example of a relevant applied problem. We consider the
effectiveness of preliminary preparation of nanoparticle composition modeling param-
eters used to fertilize plants with nanoparticles through the pores formed in the gas
medium [49,91]. Fertilizing the soil is ineffective because most of it does not reach the root
system, and hence does not get inside the crops. Therefore, developing new approaches of
directed feeding to increase their yields is currently in demand. There is a fairly efficient
and economically valid method of introducing minerals by burning a smoke composite
pellet, which contains in its composition a complex of necessary nutrients. The expediency
and economic validity of the approach of applying fertilizer through the gas medium is
currently confirmed by agronomic studies, and the method is actively used in agriculture.

For the above-described problem of feeding plants from a gas medium, its molecular
composition was determined. The study of the condensation processes of the mixture
molecules was impossible without setting the parameters of the force potentials and
molecules’ equilibrium states. Equilibrium optimal configurations were determined for
all types of considered molecules. To calculate the equilibrium structure of the initial
substance molecules, quantum mechanics was used, based on the Hartree–Fock method
and the approximation of the linear combination of atomic orbitals for calculating molecular
orbitals. The stationary Schrödinger equation in the Born–Oppenheimer formulation (1)–(3)
is solved. The method was implemented in the HyperChem program. The 6-31G* basis
was chosen as the basis, which sufficiently describes a wide class of chemical elements and
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compounds. This basis was used because it covers different types of electronic orbitals,
and therefore is able to describe the energy states and behavior of metals and their salts,
which is important for this applied problem.

The equilibrium geometry of the molecules was calculated by the Fletcher–Reeves
conjugate gradient method [92,93]. As a result of the optimization and energy analysis of
the nanosystem elements molecular structure, such data as standard bond lengths between
atoms, values of equilibrium angles, intramolecular charge redistribution due to orbital
rearrangement, and force-field interaction constants were obtained.

For simple and well-known molecules such as H2O, N2, O2, and CO2, the obtained
geometrical data were used for comparison with the already known results in order to
confirm the accuracy of the mathematical model construction and completeness of the
chosen basis. The calculated values for comparison with the previously known confirmed
data [94–98] are shown in Table 1. A graphical representation of molecules with optimized
geometry for the example is demonstrated in Figure 2: (a) carbon dioxide molecule,
(b) water molecule, and (c) potassium carbonate molecule.

Table 1. Comparison of quantum-mechanical modeling results with previously known theoretical data.

Molecule Optimization Parameters Confirmed Data Simulation Data Error, %

H2O

H-O bond length, nm 0.0957 0.0947 1.05
H-O-H angle size, deg 104.523 105.502 0.94

H Atom charge, 10−19 C +0.668 +0.695 4.04
O Atom charge, 10−19 C −1.336 −1.391 4.19

N2 N-N bond length, nm 0.1095 0.1078 1.55

O2 O-O bond length, nm 0.1210 0.1166 3.64

CO2
C-O bond length, nm 0.1163 0.1143 1.72
O-C-O angle size, deg 180.00 180.00 0.00
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Figure 2. Example of molecules’ equilibrium configurations involved in nanoparticle condensation
processes, which are used to feed plants from the gas medium. Atoms are represented by spheres,
connections between them are shown by lines. The structure of (a) a carbon dioxide molecule (O is an
oxygen atom, C is a carbon atom), (b) a water molecule (O is an oxygen atom, H is a hydrogen atom),
(c) a potassium carbonate molecule (O is an oxygen atom, C is a carbon atom, K is a potassium atom).

The data comparison presented in Table 1 for nitrogen, oxygen, water, and carbon
dioxide molecules shows a good correlation of the obtained results and a small error
value. These types of molecules were chosen as test molecules because of their prevalence
and availability of reliable information. The absolute value for the bond length did not
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differ from the previously known data by more than 0.005 nm. The relative value of
the compression–expansion error of the interatomic bond was 3.64% in the maximum
calculation and was obtained for an oxygen molecule. The effective charges in the molecules
in question were determined without exceeding a deviation of 5%. The insignificant
difference between the quantum-mechanical calculations and the information obtained by
other authors testifies to the accuracy of the chosen orbital basis and the adequacy of the
constructed mathematical model.

To summarize, we can conclude that the quantum mechanics exact methods can be
and are used for the problems where detailed distributing electron clouds, accounting for
their equilibrium state and full energy spectrum are important. Modeling data in such
problems largely depend on the wave function basis, but at the moment there is a fairly
wide set of suitable bases. Also, when using the exact methods of quantum mechanics,
there is a strong correlation between the complexity of solving the problem and the number
of atoms and electrons under consideration. Therefore, such modeling approaches are
common for the study of small systems.

6. Application of the Methods of the Density Functional Theory to Analyze the
Structure of Nanomaterials

The next applied problem in this work is the application of the density functional
theory to the study of the nanomaterials structure. Structure analysis problems in the
nanotechnology area are commonplace; often they need to be solved with adaptation to
specific technological parameters and processes. The number of atoms considered in a
nanosystem is determined individually in each problem, but structural defects often have
an extended spatial character and cannot be investigated by direct methods of quantum
mechanics. A way out of the situation can be, for example, the use of the molecular
dynamics apparatus with force potentials that take into account the electron clouds nature
and distribution in the system.

Below we will consider an example of modeling the relaxation of pure metal nanocrys-
tals at constant normal temperature and pressure, and periodic boundary conditions. The
force interaction in the problem was described using the modified embedded atom method.
At the initial moment of time, the atoms of the considered metal were located in the nodes
of the crystal lattice. The lattice structure and its dimensional properties depended on
the type of the initial metal. For Cu and Au a cubic face-centered structure with crystal
parameters of 3.615 Å and 4.0781 Å is typical. The appearance of the simulated crystal
cube is demonstrated in Figure 3a. Computational experiments were aimed at studying
the relaxation and self-organization processes of metal atoms in the solid state. Atoms
moved near their crystal lattice nodes at rest and in the absence of external forces, but did
not leave them.
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The concept of short-range order helps to investigate the internal structure of a material
in detail. Short-range order is a mutual ordering in the arrangement of particles in a material
that is translated and repeated over insignificant distances commensurate with the size
of the atom. Analysis and description of short-range order reveals patterns in structure
based on the calculation of pairwise correlation and radial functions. The radial material
function maps independent correlations between atoms in a nanosystem and characterizes
the mutual arrangement of particles as a function of the central object radius. The radial
function determines the probability that other atoms are placed in an elementary spherical
layer. The principle of calculating the radial function is illustrated in Figure 3b.

For gold and copper, radial functions were calculated by modeling to compare with
previously known theoretical or experimental data. Due to their similar crystal structure,
the graphs of the obtained functions in Figure 4 are of the same type; the markers show
a set of reference points of previously confirmed similar data by other authors [99,100].
Comparison of the radial functions for nanocrystals of the considered elements with the
previously obtained data shows satisfactory agreement of the results. The radial functions
have a harmonic character with a varying amplitude. Peaks and change of decreasing and
increasing intervals on graphs coincide; points of extremums are close on the numerical
values between them.
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temperature and their comparison with previously confirmed data of other authors [99,100].

The obtained correspondence between the radial functions of the modeled system and
the previously known reliable theoretical and experimental data allows us to speak of a
properly chosen and adequately functioning potential. The structure of the nanocrystal
in the modeling process is preserved, the atoms move vibrationally near the lattice nodes,
as justified from a physical point of view and is completely accurate. The first and most
significant maximum of radial functions corresponds to the number of nearest neighbors
in the crystal structure.

Further analysis of the nanocrystal atom behavior was aimed at investigating the
accuracy of the initial and current atom velocity distributions. The distribution of the
nanosystem velocities was controlled by their autocorrelation function, for different mo-
ments of time presented in Figure 5.

The autocorrelation function shows the mutual dependence between the initial velocity
of the atoms and the calculated velocity values at subsequent points in time. For the
considered nanosystem, the instantaneous values in Figure 5 vary, but the autocorrelation
function’s average value is zero. The limiting tendency to zero indicates the independence
of the velocity distribution in relation to time, as it should be for correctly solved atom
motion equations.
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The results obtained in solving this applied problem show that it is possible to re-
liably describe the properties and structure of atomic systems of large size (millions of
atoms and more) using potentials based on the theory of the electron density functional.
These potentials are being actively improved and adapted for a more physically based
reproduction of the wide range of element properties. In contrast to the direct quantum
mechanics methods, the density functional theory enables the analysis of large-scale defects
of material structure, such as pores, channels, cracks, and dislocation accumulations.

As an example to illustrate the modeling of a real material structure, we consider
the structure of a multilayer Nb-Co spin valve nanosystem, the detailed formation mod-
eling of which was performed by the molecular dynamics method using the embedded
atom potential [101].

The images in Figure 6 characterize the qualitative view of the processes of spin
valve formation from the niobium and cobalt layers and the structure of the layers. The
structure of the layers formed by niobium atoms is close to crystalline. The groups of
atoms are combined into nanocrystallites with vertical spatial orientation. In Figure 6,
thin vertical solid lines highlight the boundaries of these nanocrystals. Cobalt nanofilms
have an amorphous structure. The obtained results are in good correspondence with the
experimental studies of the similar multilayer nanosystems structure [102].
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7. Conclusions

The quantum mechanics methods undoubtedly occupy a key position in the study
of the nanosystems’ behavior and their properties. Obtaining information on the crystal
structure, their surface properties, energy characteristics, point effects, optical parametrons,
activation energies and other important features is often based on first-principles calcu-
lations. High accuracy of quantum mechanics methods is closely connected with the
complexity of used algorithms and approaches, which to some extent is a limitation of
this theory.

Various assumptions and modifications are able to eliminate limitations of the quan-
tum mechanics model, as well as reduce complexity and dimensionality of solved problems
by reducing the number of investigated objects’ degrees of freedom. The basic approxima-
tions of the first-principles methods include the Born–Oppenheimer approximation, which
assumes the separation of variables into massive nuclei and fast electrons, and the Hartree–
Fock approximation, which transforms the dependence of the Schrödinger equations on
the multi-electron wave function into a correlation relation of one-electron functions.

An important place in the quantum mechanics methods is occupied by the theory
of the electron density functional, which allowed us to solve the problem of increasing
complexity and dimensionality when the number of observation particles increases. In
this approach, the nanosystem state energy for nuclei and electrons interacting in a certain
external field is described in the form of a functional that depends on the particle density.
Evolutionary changes and variants of describing the exchange–correlation energy, including
Thomas–Fermi theory, Hohenberg–Kohn theorems, Kohn–Sham formalism, local density
approximation, generalized and meta-generalized approximations and hybridization of the
generalized gradient method demonstrate the relevance and importance of the electronic
density functional theory, and show the development of this method.

There are approaches for introducing corrections to the quantum mechanics theory to
account for dispersion or Van der Waals forces, which are essential in determining such
parameters as mechanical characteristics of ionic crystals, cohesion energy and surface
properties of semiconductors. Known methods for introducing dispersion corrections
consider them as part of the exchange–correlation energy of the system and as an element
of pair interaction of atoms. The development of quantum mechanics methods to quantum
molecular dynamics or Car–Parrinello dynamics is shown. The basic idea of combining
classical molecular modeling with calculations of the electronic structure, which is reflected
in the embedded atom potentials, is described.

Despite the successful use of quantum mechanics methods to study the properties
of real nanomaterials and nanosystems, the improvement of these approaches continues.
At present, theoretical methods and practical implementations in the field of magnetic
and superconducting materials, quasi-particle interactions, high-temperature and ultra-
low-temperature behavior of nano cells are under close attention. The development of
quantum mechanics approaches in these scientific fields will make it possible to obtain
fundamentally new materials and discover promising properties of already known objects
in the future.

To summarize, we can conclude that the applicability of a particular quantum me-
chanics method depends on the type of problem to be solved. Exact methods, including
the Hartree–Fock approximation, are appropriate when the size of the nanosystem is
small, for example, in the case of calculating the optimal configuration of molecules or
obtaining energy constants for molecular dynamics. The theory of the electron density
functional is indispensable when electronic, phonon, and spin effects are important, but the
size of the nanosystem exceeds the limitations of the quantum mechanics exact methods,
and additional approximations cannot be avoided. There are also a number of problems
where the order and arrangement of atoms in a nanomaterial is under close consideration.
The influence of edge effects and structuring mechanisms, defect migration and issues of
their occurrence arising during the nanofilm deposition or nanocomposite deformation
require considering a large number of atoms. Such problems have been successfully solved
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by embedded atom methods within the framework of molecular dynamics theory, since
these approaches reproduce the behavior and describe the properties of metals and closely
packed nanoobjects quite accurately.

Despite their rather long existence, the quantum mechanics methods are actively
developed and successfully used to study the properties of atomistic systems, to analyze
the mechanisms of their interaction, self-organization and structuring. Depending on the
structural features, atomic or molecular symmetry, nanomaterials can significantly change
their properties. For example, fullerenes and nanotubes can become semiconductors or
have high-temperature superconductivity if their molecular symmetry is broken. Devia-
tion from symmetrical contact between nanofilms can negatively affect their functional
properties. Symmetry effects and cases of symmetry breaking make nanomaterials unique,
which requires a comprehensive study using, among other things, mathematical modeling.
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