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Abstract: Cross-efficiency evaluation effectively distinguishes a set of decision-making units (DMUs)
via self- and peer-evaluations. In constant returns to scale, this evaluation technique is usually
applied for data envelopment analysis (DEA) models because negative efficiencies will not occur in
this case. For situations of variable returns to scale, the negative cross-efficiencies may occur in this
evaluation method. In the real world, the observations could be uncertain and difficult to measure
precisely. The existing fuzzy cross-evaluation methods are restricted to production technologies with
constant returns to scale. Generally, symmetry is a fundamental characteristic of binary relations used
when modeling optimization problems. Additionally, the notion of symmetry appeared in many
studies about uncertain theories employed in DEA problems, and this approach can be considered
an engineering tool for supporting decision-making. This paper proposes a fuzzy cross-efficiency
evaluation model with fuzzy observations under variable returns to scale. Since all possible weights
of all DMUs are considered, a choice of weights is not required. Most importantly, negative cross-
efficiencies are not produced. An example shows that this paper’s fuzzy cross-efficiency evaluation
method has discriminative power in ranking the DMUs when observations are fuzzy numbers.

Keywords: data envelopment analysis; cross-efficiency; fuzzy set; ranking

1. Introduction

Data envelopment analysis (DEA) is a data-oriented methodology for measuring
the performance of a set of decision-making units (DMUs) that apply multiple inputs
to produce multiple outputs. Because DEA requires very few assumptions, it brought
the opportunity to other approaches because of the complex property of the relations
between the inputs and outputs involved in DMUs [1]. As pointed out in [2], DEA models
can provide new insights into activities that other methods have previously evaluated.
Researchers have recognized that DEA is an easily used methodology for performance
evaluations in many fields since it was first introduced in 1978. Thousands of applications
and theories have been reported (see, e.g., [3–5]). According to the calculated efficiencies,
the DMUs can be ranked. When DMUs represent the alternatives for a decision-making
problem, the rankings of the DMUs can be used for selecting alternatives.

In traditional DEA, each DMU is evaluated against the remaining DMUs via a ratio of
the sum of weighted outputs to the sum of weighted inputs, thereby distinguishing efficient
units and inefficient ones. Due to the weight flexibility allowed in DEA, the obtained results
may cause the situation in which many DMUs are measured as efficient, and the efficient
units are impossible to be further distinguished. Cross-efficiency evaluation is an effective
method to discriminate the efficient units. The evaluation method has been touted as
a powerful extension of DEA since it was first proposed [6,7]. In performing the cross-
evaluation, once the DMU selects a weighting approach to apply to all DMUs, the efficiency
score provided to each DMU is set aside, forming a cross-efficiency matrix. Each DMU
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has its self-evaluation and the peer evaluations it has obtained from the other DMUs. We
receive a DMU’s final cross-efficiency through averaging across self- and peer-evaluations.
A DMU has a high cross-efficiency, which indicates that it can make itself measure well
and is considered more efficient by the majority of its peers.

Two main advantages of the cross-efficiency evaluation are often stated. First, it
usually creates a unique ordering among the DMUs [7]. Second, it appears to eliminate
unrealistic weights that the DMUs might use [8]. Since the seminal works of Sexton
et al. [6] and Doyle and Green [7], many cross-efficiency models and applications have
been reported in the literature. Örkcü et al. [9] and Wu et al. [10] provided good reviews on
models. Kao and Liu [11] extended the calculation of cross efficiency to two-stage systems.
Sexton et al. [6] and Doyle and Green [7] used an additional criterion for the selection
of weights.

In constant returns to scale, Liang et al. [12] developed a game cross-efficiency that
constitutes a Nash equilibrium point for DMUs. Lam [13] proposed applied a super-
efficiency DEA model and a mixed-integer linear programming method to decide the
suitable weight for calculating the cross-evaluation. Wang and Chin [14] investigated a
neutral DEA model for cross-efficiency evaluation that could determine the associated
input and output weights for each DMU. Some methods selected suitable weights from
alternative solutions to avoid significant differences among the weights. Imposing lower
bounds [15,16], applying ordered weighted averaging operators [17], and evaluating the
robustness of the proposed methodology [18] are some examples. Additionally, Oral
et al. [19] integrated both the first- and second-order voices of all DMUs to calculate the
cross-efficiency. Al-Siyabi et al. [20] developed a mean-variance goal programming model
for minimizing the risk of changing the DEA weights for DEA cross-efficiency evaluation.
All of the studies mentioned above require a secondary goal in selecting the weights. Apart
from the secondary goal approach, an alternative strategy is to consider all possible weights
in the weight space to obtain an efficiency interval for the DMU being measured [21–24].
Different DMUs used different sets of weights in calculating the cross efficiency.

For variable returns to scale, Soares de Mello et al. [25] proposed the idea of producing
positive efficiencies only for all DMUs by restricting the multiplier values in the model.
Lim and Zhu [26] translated the coordinates to let negative efficiencies become positive.
Kao and Liu [27] proposed a slacks-based measure to calculate the cross efficiency.

Cross-efficiency evaluation is usually applied for DEA models with the production
technology of constant returns to scale because negative efficiencies never occur in this
situation. However, negative efficiencies may happen for cases of variable returns to scale.
Negative efficiencies are unreasonable and lead to difficulties in measuring the final cross-
efficiency. Generally, symmetry is a fundamental characteristic of binary relations used
when modeling optimization problems. Additionally, the notion of symmetry appeared
in many studies about uncertain theories employed in DEA problems, and this approach
can be considered an engineering tool for supporting decision-making and belongs to
the scope of mathematics and symmetry. The fuzzy set theory is available in the existing
studies to deal with uncertainties. In the literature, some studies are discussing fuzzy
cross-efficiency evaluation in the fuzzy environment. Dotoli et al. [28] and Change and
Wang [29] integrated the fuzzy DEA technique with the cross-efficiency method to evaluate
DMUs, and the Doyle and Green method (1994) was applied for selecting the weights to
calculate the fuzzy cross-efficiency. Ruiz and Sirvent [30] proposed a fuzzy cross-efficiency
evaluation based on the possibility approach and developed the aggressive and benevolent
formulations for determining the weights to calculate the fuzzy cross-efficiency. Liu and
Lee [31] proposed a novel method that considered all possible weights of all the DMUs at
the same time to calculate the fuzzy cross-efficiency directly, and the choice of weights is not
required. However, these studies are all restricted to the assumptions of constant returns
to scale, and the literature gives very little attention to the issue that the cross-efficiency
evaluation with fuzzy data and the production technology of variable returns to scale.
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This paper proposes a novel method to measure the fuzzy cross-efficiency scores for
DMUs with fuzzy observations and variable returns to scale. Following the basic ideas of
Yang et al. [21] and Soares de Mello [25], we construct a fuzzy cross-efficiency evaluation
model. A set of secondary goals is added to tackle the problem of multiple optimal weights.
Since all possible weights of all DMUs are considered, the choice of weights is not required.
Most importantly, negative cross-efficiencies are not produced in the proposed model. In
the literature, the α-level based approach is one of the most popular fuzzy DEA models for
decision makers to set up their acceptable α levels [32,33]; we also use the α-level based
approach to construct the fuzzy cross-efficiency model. A pair of mathematical programs
is formulated to measure the fuzzy cross-efficiency. At a specific α-cut, solving this pair of
programs produces the minimal and maximal cross-efficiencies. The final cross-efficiency
of a DMU is obtained by averaging the derived minimal and maximal cross-efficiencies.
With several α-cuts of the final cross-efficiencies, the ranking of DMUs is determined.

In the following, we first introduce the conventional cross-efficiency evaluation
methodology. Then, based on the α-level based approach, we formulate a fuzzy cross-
efficiency evaluation model with a technology of variable returns to scale. After that, an
example is used to illustrate the idea proposed in this study. Finally, some conclusions of
this work are presented.

2. Background

Under the technology of variable returns to scale, the DEA model for measuring the
efficiency of a DMU is referred to as the BCC model [34]. This model originated from the
CCR model [35] by adding a constraint, which introduces an additional variable into the
multiplier problems. This additional variable makes it possible to affect the returns-to-scale
evaluation (increasing, constant and decreasing). Suppose that we have n DMUs, where
every DMU j, j = 1, . . . , n, produces the same s outputs in different amounts, Yrj (r = 1,
. . . , s), using the same m inputs, Xij (i = 1, . . . , m) in different amounts. The BCC model
for measuring the efficiency of DMU d has the input and output forms, which can be
formulated as:

Output form

1
Edd

= min

m
∑

i=1
vidXid+v0d

s
∑

r=1
urdYrd

s.t. (
m
∑

i=1
vidXij + v0d)−

s
∑

r=1
urdYrj ≥ 0, j = 1, · · · , n,

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, v0d free in sign.

(1)

Input form

Edd = max

s
∑

r=1
urdYrd−u0d

m
∑

i=1
vidXid

s.t.
m
∑

i=1
vidXij − (

s
∑

r=1
urdYrj − u0d) ≥ 0, j = 1, . . . , n,

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign,

(2)

where urd and vid are the weights selected by DMU d to calculate efficiencies. When v0d
= 0 in (1) and u0d = 0 in (2), these two models reduce to the same CCR model [35], with a
technology of constant returns to scale.

In DEA, each DMU selects the most favorable weights to measure its own efficiency.
Since different DMUs use different weights, the efficiency scores among the DMUs may be
incomparable. Using the weights selected by every DMU to calculate the efficiencies of all
other DMUs is a way to make them comparable. Let v∗id (i = 1, . . . , m) and u∗rd (r = 1, . . . ,
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s) be an optimal solution of (2) for a given DMU d and Edj denote the efficiency of DMU j
calculated from the weights selected by DMU d. We then have the cross-efficiency

Edj =

s
∑

r=1
u∗rdYrj − u0d

m
∑

i=1
v∗idXij

(3a)

We can repeat this process and use the weights selected by every DMU in calculating
the efficiencies of all DMUs. The final cross-efficiency of DMU j is the average of Edj, d = 1,
. . . , n, that is,

Ej =
1
n

n

∑
d=1

Edj (3b)

The cross-efficiency score Ej gives a peer-evaluation of DMU j, and these derived
values can thus be used for ranking DMUs. However, Equation (3a) has an unrestricted
variable u0d in the numerator. Therefore, we cannot ensure the non-negativity of the cross-
efficiency when the derived weights v∗id and u∗rd are used to evaluate other DMUs in (3a).
It should be noted that the negative efficiencies will not occur in the CCR model or the
output form of the BCC model. The latter constitutes greater or equal type constraints in
the model, which guarantees non-negative efficiency measures.

In Model (2), the negative efficiencies occur only if ∑s
r=1 urdYrj − u0d < 0, j = 1, . . . , n.

To avoid the negative efficiencies, Soares de Mello et al. [25] proposed inserting a constraint
for retaining ∑s

r=1 urdYrj − u0d ≥ 0, j = 1, . . . , n. With this additional constraint, Model
(2) becomes

Edd = max

s
∑

r=1
urdYrd−u0d

m
∑

i=1
vidXid

s.t.
m
∑

i=1
vidXij − (

s
∑

r=1
urdYrj − u0d) ≥ 0, j = 1, . . . , n,

s
∑

r=1
urdYrj − u0d ≥ 0, j = 1, . . . , n,

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign,

(4)

Negative efficiencies will not occur in the approach of Soares de Mello et al. [25].
Presume that the observations of input and output items can be represented as convex
fuzzy numbers X̃ij and Ỹrj, respectively. Since the input and output data are fuzzy numbers,
we should rewrite (4) in the following mathematical form to satisfy the fuzzy environment.

Ẽdd = max
s
∑

r=1
urdỸrd − u0d

s.t.
m
∑

i=1
vidX̃id = 1,

m
∑

i=1
vidX̃ij − (

s
∑

r=1
urdỸrj − u0d) ≥ 0, j = 1, . . . , n,

s
∑

r=1
urdỸrj − u0d ≥ 0, j = 1, . . . , n,

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign.

(5)

Let (Xij)α
= [(Xij)

L
α
, (Xij)

U
α

], (Yrj)α
= [(Yrj)

L
α
, (Yrj)

U
α

], and (Edd)α = [(Edd)
L
α , (Edd)

U
α ]

denote the α-level sets of X̃ij, Ỹrj, and Ẽdd, respectively. In search for the minimal and
maximal efficiencies for DMU d at a specified α-level under the assumption of variable
returns to scale, Kao and Liu [36] provided the following formulations:



Symmetry 2021, 13, 882 5 of 15

(Edd)
L
α = max

s
∑

r=1
urd(Yrd)

L
α − u0d

s.t.
m
∑

i=1
vid(Xid)

U
α = 1

m
∑

i=1
vid(Xid)

U
α − (

s
∑

r=1
urd(Yrd)

L
α − u0d) ≥ 0

m
∑

i=1
vid(Xij)

L
α
− (

s
∑

r=1
urd(Yrj)

U
α
− u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urd(Yrd)

L
α − u0d ≥ 0

s
∑

r=1
urd(Yrj)

U
α
− u0d ≥ 0, j = 1, . . . , n, j 6= d

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign.

(6)

(Edd)
U
α = max

s
∑

r=1
urd(Yrd)

U
α

s.t.
m
∑

i=1
vid(Xid)

L
α = 1

m
∑

i=1
vid(Xid)

L
α − (

s
∑

r=1
urd(Yrd)

U
α − u0d) ≥ 0

m
∑

i=1
vid(Xij)

U
α
− (

s
∑

r=1
urd(Yrj)

L
α
− u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urd(Yrd)

U
α − u0d ≥ 0

s
∑

r=1
urd(Yrj)

L
α
− u0d ≥ 0, j = 1, . . . , n, j 6= d

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign.

(7)

The detailed explanations of (6) and (7) were described by Kao and Liu [36].
Soares de Mello et al. [25] did not use the secondary goals to tackle multiple optimal

weights and is restricted to the aggressive formulation. Yang et al. [21] considered the
secondary goals and the aggressive and benevolent formulations. In their approach, all
the possible weight sets in the weight space are considered, and the following two models
measure the minimal and maximal cross-efficiency cross-efficiencies:

EA(CCR)
dj = min

s
∑

r=1
urdYrd

s.t.
m
∑

i=1
vidXid = 1,

s
∑

r=1
urdYrd − Edd

m
∑

i=1
vidXid = 0,

m
∑

i=1
vidXij −

s
∑

r=1
urdYrj ≥ 0, j = 1, . . . , n, j 6= d

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m.

(8)

EB(CCR)
dj = max

s
∑

r=1
urdYrd

s.t.
m
∑

i=1
vidXid = 1,

s
∑

r=1
urdYrd − Edd

m
∑

i=1
vidXid = 0,

m
∑

i=1
vidXij −

s
∑

r=1
urdYrj ≥ 0, j = 1, . . . , n, j 6= d

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m.

(9)
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The first constraint ∑s
r=1 urdYrd − Edd∑m

i=1 vidXid = 0 is to maintain the efficiency score
Edd of DMU d at its current level. Yang et al. [21] developed their method under the
assumption of constant returns to scale. We need to modify their approach to the input-
oriented form of the BCC model, and, similar to the idea of Soares de Mello et al. [25],
a constraint ∑s

r=1 urdYrj − u0d ≥ 0, j = 1, . . . , n, is added to avoid the occurrence of
negative cross-efficiencies. In other words, Models (8) and (9) are rewritten in the following
mathematical forms:

EA(BCC)
dj = min

s
∑

r=1
urdYrd − u0d

s.t.
m
∑

i=1
vidXid = 1,

(
s
∑

r=1
urdYrd − u0d)− Edd

m
∑

i=1
vidXid = 0,

m
∑

i=1
vidXij − (

s
∑

r=1
urdYrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdYrj − u0d ≥ 0, j = 1, . . . , n,

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign.

(10)

EB(BCC)
dj = max

s
∑

r=1
urdYrd − u0d

s.t.
m
∑

i=1
vidXid = 1,

(
s
∑

r=1
urdYrd − u0d)− Edd

m
∑

i=1
vidXid = 0,

m
∑

i=1
vidXij − (

s
∑

r=1
urdYrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdYrj − u0d ≥ 0, j = 1, . . . , n,

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign.

(11)

Although Models (10) and (11) avoid negative efficiencies, they can only deal with the
crisp observations. When the observations are fuzzy numbers, we cannot apply these two
models to calculate the cross-efficiency and need to develop a novel solution procedure
to solve this issue. In the next section, we create a fuzzy BCC cross-efficiency evaluation
model, where the observations are represented as fuzzy numbers, to measure the fuzzy
cross-efficiency, with a technology of variable returns to scale.

3. Fuzzy BCC Cross-Efficiency Evaluation

Most studies investigated fuzzy cross-efficiency evaluation methods under the cases of
returns to scale. Unlike these studies, we propose a novel approach to measure fuzzy cross-
efficiency scores with variable returns to scale. All possible weights of all DMUs are consid-
ered in the proposed method, and the choice of weights is not required. Most importantly,
negative cross-efficiencies are not produced in the model under the fuzzy environment.

Similar to Model (4), the mathematical forms of Models (10) and (11) with fuzzy
observations can be reformulated, respectively, as:
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ẼA(BCC)
dj = min

s
∑

r=1
urdỸrd − u0d

s.t.
m
∑

i=1
vidX̃id = 1

(
s
∑

r=1
urdỸrd − u0d)−Edd

m
∑

i=1
vidX̃id = 0

m
∑

i=1
vidX̃ij − (

s
∑

r=1
urdỸrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdỸrj − u0d ≥ 0, j = 1, . . . , n

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign.

(12)

ẼB(BCC)
dj = max

s
∑

r=1
urdỸrd − u0d

s.t.
m
∑

i=1
vidX̃id = 1

(
s
∑

r=1
urdỸrd − u0d)−Edd

m
∑

i=1
vidX̃id = 0

m
∑

i=1
vidX̃ij − (

s
∑

r=1
urdỸrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdỸrj − u0d ≥ 0, j = 1, . . . , n

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign.

(13)

Hatami-Marbini et al. [32] indicated that the α-level based approach is the most
adopted method for investigating fuzzy DEA models. Therefore, we also employ this
popular approach to develop the fuzzy BCC cross-efficiency evaluation model.

Since Models (12) and (13) are to find the minimal and maximal cross-efficiency
scores for every DMU with fuzzy observations through the aggressive and benevolent
formulations, using the α-level based approach, we can formulate these two models as:

(EA(BCC)
dj )

L

α
= min

(Edd)
L
α ≤ edd ≤ (Edd)

U
α

(Xij)
L
α
≤ xij ≤ (Xij)

U
α

(Yrj)
L
α
≤ yrj ≤ (Yrj)

U
α

∀i, j, r

EA
dj(x,y,e)

(14)

(EB(BCC)
dj )

U

α
= max

(Edd)
L
α ≤ edd ≤ (Edd)

U
α

(Xij)
L
α
≤ xij ≤ (Xij)

U
α

(Yrj)
L
α
≤ yrj ≤ (Yrj)

U
α

∀i, j, r

EB
dj(x,y,e)

(15)

where EA
dj(x,y,e) and EB

dj(x,y,e) are defined in Models (7) and (8), respectively.
According to the mathematical forms of (14) and (15), we can transform these two

models into (16) and (17), the two-level mathematical programs, respectively:
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(EB(BCC)
dj )

L

α
= min

(Edd)
L
α ≤ edd ≤ (Edd)

U
α

(Xij)
L
α
≤ xij ≤ (Xij)

U
α

(Yrj)
L
α
≤ yrj ≤ (Yrj)

U
α

∀i, j, r
.



max
s
∑

r=1
urdYrd − u0d

s.t.
m
∑

i=1
vidxid = 1

(
s
∑

r=1
urdyrd − u0d)− edd

m
∑

i=1
vidxid = 0

m
∑

i=1
vidxij − (

s
∑

r=1
urdyrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdYrj − u0d ≥ 0, j = 1, . . . , n

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m,
u0d free in sign.

(16)

(EB(BCC)
dj )

U

α
= max

(Edd)
L
α ≤ edd ≤ (Edd)

U
α

(Xij)
L
α
≤ xij ≤ (Xij)

U
α

(Yrj)
L
α
≤ yrj ≤ (Yrj)

U
α

∀i, j, r
.



max
s
∑

r=1
urdYrd − u0d

s.t.
m
∑

i=1
vidxid = 1

(
s
∑

r=1
urdyrd − u0d)− edd

m
∑

i=1
vidxid = 0

m
∑

i=1
vidxij − (

s
∑

r=1
urdyrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdYrj − u0d ≥ 0, j = 1, . . . , n

urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m,
u0d free in sign.

(17)

In Model (16), the inner-level and outer-level programs have the same minimum
operation, and we can combine these two programs into a one-level mathematical program.
The minimum operation is the overall objective function of this combined one-level pro-
gram, and the constraints at the two different levels are regarded as the overall constraints.
Similarly, the maximum operation is the final objective function of Model (17), and the
associated constraints are integrated as the overall constraints. Now, we can reduce Models
(16) and (17) to the following mathematical programs:

(EA(BCC)
dj )

L

α
= min

s
∑

r=1
urdyrd − u0d

s.t.
m
∑

i=1
vidxid = 1

(
s
∑

r=1
urdyrd − u0d)−edd

m
∑

i=1
vidxid = 0

m
∑

i=1
vidxij − (

s
∑

r=1
urdyrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdyrj − u0d ≥ 0, j = 1, . . . , n

(Edd)
L
α ≤ edd ≤ (Edd)

U
α

(Xij)
L
α
≤ xij ≤ (Xij)

U
α

, i = 1, . . . , m, j = 1, . . . , n
(Yrj)

L
α
≤ yrj ≤ (Yrj)

U
α

, r = 1, . . . , s, j = 1, . . . , n
urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign,

(18)
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(EB(BCC)
dj )

U

α
= max

s
∑

r=1
urdyrd − u0d

s.t.
m
∑

i=1
vidxid = 1

(
s
∑

r=1
urdyrd − u0d)−edd

m
∑

i=1
vidxid = 0

m
∑

i=1
vidxij − (

s
∑

r=1
urdyrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
urdyrj − u0d ≥ 0, j = 1, . . . , n

(Edd)
L
α ≤ edd ≤ (Edd)

U
α ,

(Xij)
L
α
≤ xij ≤ (Xij)

U
α

, i = 1, . . . , m, j = 1, . . . , n
(Yrj)

L
α
≤ yrj ≤ (Yrj)

U
α

, r = 1, . . . , s, j = 1, . . . , n
urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign,

(19)

In (18) and (19), there are nonlinear terms urdyrj and vidxij. The variable transfor-
mation technique is used to transform the nonlinear terms into linear ones to simplify
these two models. We let x̂ij = vidxij, ∀i, j, and ŷrj = urdyrj, ∀r, j, and multiply the con-
straints (Xij)

L
α
≤ xij ≤ (Xij)

U
α

and (Yrj)
L
α
≤ yrj ≤ (Yrj)

U
α

by vid and urd, respectively, and

we have vid(Xij)
L
α
≤ x̂ij≤ vid(Xij)

U
α

, ∀i, j, and urd(Yrj)
L
α
≤≤ ŷrj ≤urd(Yrj)

U
α

, ∀r, j. This
transformation makes Models (18) and (19) become

(EA(BCC)
dj )

L

α
= min

s
∑

r=1
ŷrd − u0d

s.t.
m
∑

i=1
x̂id = 1

(
s
∑

r=1
ŷrd − u0d)−edd

m
∑

i=1
x̂id = 0

m
∑

i=1
x̂ij − (

s
∑

r=1
ŷrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
ŷrj − u0d ≥ 0, j = 1, . . . , n

(Edd)
L
α ≤ edd ≤ (Edd)

U
α

vid(Xij)
L
α
≤ x̂ij ≤ vid(Xij)

U
α

, i = 1, . . . , m, j = 1, . . . , n
urd(Yrj)

L
α
≤ ŷrj ≤ urd(Yrj)

U
α

, r = 1, . . . , s, j = 1, . . . , n
urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign,

(20)

(EB(BCC)
dj )

U

α
= max

s
∑

r=1
urdyrd − u0d

s.t.
m
∑

i=1
x̂id = 1

(
s
∑

r=1
ŷrd − u0d)−edd

m
∑

i=1
x̂id = 0

m
∑

i=1
x̂ij − (

s
∑

r=1
ŷrj − u0d) ≥ 0, j = 1, . . . , n, j 6= d

s
∑

r=1
ŷrj − u0d ≥ 0, j = 1, . . . , n

(Edd)
L
α ≤ edd ≤ (Edd)

U
α

vid(Xij)
L
α
≤ x̂ij ≤ vid(Xij)

U
α

, i = 1, . . . , m, j = 1, . . . , n
urd(Yrj)

L
α
≤ ŷrj ≤ urd(Yrj)

U
α

, r = 1, . . . , s, j = 1, . . . , n
urd, vid ≥ 0, r = 1, . . . , s, i = 1, . . . , m, u0d free in sign,

(21)

The nonlinear term edd∑m
i=1 x̂id in the second constraint of (20) and (21) cannot be lin-

earized further. Fortunately, the term edd∑m
i=1 x̂id is bounded between ∑m

i=1 vid(Xid)
L
α(Edd)

L
α

and ∑m
i=1 vid(Xid)

U
α (Edd)

U
α . Since the nonlinearity of the second constraint is not strong

in this case, any commercial software can solve this problem easily. At a specific α-level,
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the lower bound (EA(BCC)
dj )

L

α
and upper bound (EB(BCC)

dj )
U

α
of the cross-efficiency can be

derived by solving (20) and (21), respectively. Similar to Equation (3b), we can obtain the
final fuzzy cross-efficiency score via (22).

(Ej)α
= [(Ej)

L
α

, (Ej)
U
α
] =

1
n

n

∑
d=1

[(EA(BCC)
dj )

L

α
, (EB(BCC)

dj )
U

α
] (22)

For ranking the derived fuzzy cross-efficiencies, a fuzzy number ranking method is
required to discriminate the DMUs. Some strategies for ranking fuzzy numbers [37–40] are
introduced in the literature. Among these approaches, the Chen and Klein [37] method
does not require the exact membership functions of the fuzzy numbers, and this method
is suitable for ranking the fuzzy cross-efficiency scores. Chen and Klein [37] devised the
following index for ranking fuzzy numbers:

I(Ẽj) =
∞

∑
p=0

((Ej)
U
αp − β)/

[
∞

∑
p=0

((Ej)
U
αp − β)−

∞

∑
p=0

((Ej)
L
αp − γ)

]
(23)

where β = min
j, p
{(Ej)

L
αp
} and γ = max

j, p
{(Ej)

U
αp
}. Chen and Klein [37] suggested that three

or four α-levels are sufficient to discriminate the differences. However, from (23), more
α-levels should be used to derive the ranking indices more accurately. Additionally, the
larger is the value of the ranking index I(Ẽj), the larger is the fuzzy number. Based on the
ranking index I(Ẽj), the rankings of DMUs are determined.

4. An Example

In the real-world applications, some data are uncertain and need to be estimated.
For example, Liu [41] used the cost and floor space requirements as the inputs and the
improvements in the qualitative factor, work-in-process (WIP), numbers of tardy jobs,
and yield as the outputs to evaluate the performance of flexible manufacturing system
(FMS) alternatives. The cost includes purchasing cost and the estimated operation and
maintenance costs of an FMS alternative. Since the maintenance cost relies on the robot
operating appropriately, they are not known beforehand. The item of cost is treated as
an uncertain number. Because of the lack of sufficient historical cost data, estimating the
probability distribution is not easy for this item. In the case of the absence of data, one may
ask experts for their subjective estimates of the data. The triangular fuzzy number of the
cost item can be established from the pessimistic, optimistic, and most likely estimates.
The fuzzy input and output data are denoted as (a, b, c), where a, b, and c represent the
pessimistic, most likely, and optimistic estimates of a fuzzy number, respectively.

To show the generality of the proposed method, we should have fuzzy and crisp
input/output observations due to crisp observations can be treated as degenerated fuzzy
numbers. In this example, we use the datasets of Liu [41], as listed in Table 1, to calculate
the fuzzy BCC cross-efficiencies of the FMS alternatives. Ruiz et al. [30] and Liu and
Lee [31] also used the datasets of Liu [41] to illustrate their ideas for the measurement of
CCR cross-efficiency scores.

Before measuring the fuzzy BCC cross-efficiencies, we should calculate the fuzzy BCC
efficiency scores of the FMS alternatives first. In this regard, Models (6) and (7) are used
to calculate the lower bound (Edd)

L
α and upper bound (Edd)

U
α of the fuzzy BCC efficiency

scores. Enumerating the calculation process for all FMS alternatives at α = 0.0, 0.1, . . . , 1.0,
we obtain the fuzzy BCC efficiencies at eleven different α-levels, with the results shown in
Table 2. Since the fuzzy BCC efficiency scores vary in ranges, the different values of the
α-level show the various intervals of the efficiencies. Moreover, the smaller is the α-level,
the wider is the interval. Especially α-level = 0 offers the broadest range that the BCC
efficiency will appear, while α-level = 1.0 gives the most likely efficiency. For example,
while the BCC efficiency of FMS 8 in Table 2 is fuzzy, its value cannot exceed 1.000 or fall
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below 0.859. At α-level = 1, this FMS’s most likely efficiency value is 0.989. Among the
twelve FMS alternatives, four FMS alternatives are being measured as BCC-efficient at all
α-levels, namely FMS 2, 5, 6, and 9, although some of the input and output data are fuzzy,
and their ranks are indistinguishable.

Table 1. Data used to measure the fuzzy cross-efficiency scores of FMS alternatives.

FMS Inputs Outputs

Cost Space Qualitative WIP No. of Tardy Yield

1 (16.17, 17.02, 17.87) 5 42 (43.0, 45.3, 47.6) (13.5, 14.2, 14.9) (28.6, 30.1, 31.6)
2 (15.64, 16.46, 17.28) 4.5 39 (38.1, 40.1, 42.1) (12.4, 13.0, 13.7) (28.3, 29.8, 31.3)
3 (11.17, 11.76, 12.35) 6 26 (37.6, 39.6, 41.6) (13.1, 13.8, 14.5) (23.3, 24.5, 25.7)
4 (9.99, 10.52, 11.05) 4 22 (34.2, 36.0, 37.8) (10.7, 11.3, 11.9) (23.8, 25.0, 26.3)
5 (9.03, 9.50, 9.98) 3.8 21 (32.5, 34.2, 35.9) (11.4, 12.0, 12.6) (19.4, 20.4, 21.4)
6 (4.55, 4.79, 5.03) 5.4 10 (19.1, 20.1, 21.1) (4.8, 5.0, 5.3) (15.7, 16.5, 17.3)
7 (5.90, 6.21, 6.52) 6.2 14 (25.2, 26.5, 27.8) (6.7, 7.0, 7.4) (18.7, 19.7, 20.7)
8 (10.56, 11.12, 11.68) 6 25 (34.1, 35.9, 37.7) (8.6, 9.0, 9.5) (23.5, 24.7, 25.9)
9 (3.49, 3.67, 3.85) 8 4 (16.5, 17.4, 18.3) (0.1, 0.1, 0.1) (17.2, 18.1, 19.0)
10 (8.48, 8.93, 9.38) 7 16 (32.6, 34.3, 36.0) (6.2, 6.5, 6.8) (19.6, 20.6, 21.6)
11 (16.85, 17.74, 18.63) 7.1 43 (43.3, 45.6, 47.9) (13.3, 14.0, 14.7) (29.5, 31.1, 32.7)
12 (14.11, 14.85, 15.59) 6.2 27 (36.8, 38.7, 40.6) (13.1, 13.8, 14.5) (24.1, 25.4, 26.7)

Table 2. The bounds of the fuzzy BCC efficiency scores for FMS alternatives.

FMS α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 L 0.977 0.977 0.977 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 L 0.868 0.880 0.892 0.911 0.929 0.949 0.968 0.993 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 L 0.991 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 L 0.930 0.943 0.958 0.974 0.991 1.000 1.000 1.000 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8 L 0.859 0.867 0.876 0.884 0.893 0.902 0.915 0.931 0.949 0.969 0.989
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989

9 L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 L 0.824 0.846 0.868 0.891 0.914 0.938 0.962 0.987 1.000 1.000 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

11 L 0.891 0.900 0.909 0.918 0.927 0.937 0.946 0.956 0.968 0.995 1.000
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

12 L 0.708 0.717 0.727 0.739 0.753 0.767 0.782 0.798 0.813 0.829 0.845
U 1.000 1.000 1.000 1.000 0.974 0.948 0.923 0.900 0.878 0.862 0.845

After obtaining the fuzzy BCC efficiencies, every FMS alternative can apply (20) and
(21) to calculate the associated fuzzy cross-efficiency scores. At a specific α-level, we can
enumerate this process for all FMS alternatives to obtain the cross-efficiency score for FMS
alternative j. Table 3 shows the lower bound and upper bound of the fuzzy cross efficiencies
of the twelve FMS alternative, with the calculation results at α = 0.0, 0.1, . . . , 1. The last
two rows are the lower bound and upper bound of the final cross-efficiencies of the twelve
FMS alternative by applying (22). We can find that the efficiencies in the self-evaluation
are greater than or equal to the corresponding efficiencies in the cross-evaluation. The
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obtained results coincide with the study of Liu and Lee [31], and this is because that the
self-evaluation measured the efficiency scores from the most favorable weights of itself,
while the cross-evaluation calculated the efficiency scores from the weights determined by
all the other DMUs.

Table 3. The fuzzy cross-efficiency at eleven α-levels for FMS alternatives.

FMS α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 L 0.339 0.348 0.457 0.515 0.584 1.000 0.742 0.448 0.366 0.506 0.314
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 L 0.342 0.353 0.461 0.522 0.591 1.000 0.752 0.454 0.370 0.512 0.317
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 L 0.346 0.358 0.464 0.529 0.597 1.000 0.757 0.460 0.374 0.519 0.319
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 L 0.349 0.363 0.468 0.537 0.602 1.000 0.763 0.467 0.378 0.525 0.322
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 L 0.352 0.366 0.472 0.544 0.607 1.000 0.768 0.473 0.382 0.532 0.325
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 L 0.355 0.370 0.476 0.552 0.612 1.000 0.774 0.479 0.386 0.539 0.328
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 L 0.358 0.373 0.480 0.560 0.617 1.000 0.779 0.486 0.390 0.546 0.331
U 1.000 1.000 0.993 1.000 1.000 1.000 1.000 0.999 1.000 0.986 1.000

8 L 0.361 0.377 0.484 0.566 0.623 1.000 0.785 0.493 0.394 0.553 0.333
U 1.000 1.000 0.975 1.000 1.000 1.000 1.000 0.988 1.000 0.971 0.995

9 L 0.365 0.380 0.488 0.571 0.628 1.000 0.790 0.499 0.398 0.560 0.336
U 1.000 1.000 0.960 1.000 1.000 1.000 1.000 0.977 1.000 0.956 0.986

10 L 0.368 0.383 0.492 0.576 0.634 1.000 0.796 0.506 0.403 0.567 0.339
U 1.000 1.000 0.951 1.000 1.000 1.000 1.000 0.966 1.000 0.941 0.977

11 L 0.371 0.387 0.496 0.581 0.639 1.000 0.801 0.513 0.407 0.575 0.342
U 1.000 0.990 0.942 1.000 1.000 1.000 1.000 0.955 1.000 0.926 0.967

12 L 0.339 0.348 0.457 0.515 0.584 1.000 0.742 0.448 0.366 0.506 0.314
U 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Final L 0.499 0.504 0.509 0.513 0.517 0.522 0.526 0.530 0.535 0.539 0.543
U 0.993 0.992 0.990 0.989 0.988 0.986 0.984 0.979 0.974 0.969 0.964

To discriminate among the twelve FMS alternatives, we employ Equation (23) to
derive the ranking indices of the alternatives, and the number of α-cuts is set to eleven.
The calculation results are listed in Table 4 under the headings of “Index”. Based on the
derived ranking indices, the rankings of FMS alternatives are determined and shown in
the last column of Table 4. FMS 7 is the preferred one.

Table 4. The bounds of the final fuzzy cross-efficiency scores and their ranks of FMS alternatives.

FMS α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0 Index Rank

1 L 0.362 0.373 0.383 0.399 0.424 0.434 0.443 0.453 0.461 0.466 0.472 0.527 10
U 1.000 0.917 0.917 1.000 0.998 0.996 0.993 0.989 0.986 0.981 0.974

2 L 0.342 0.352 0.362 0.373 0.382 0.392 0.401 0.409 0.416 0.423 0.428 0.504 12
U 0.993 0.990 0.987 0.981 0.972 0.962 0.950 0.937 0.925 0.914 0.904

3 L 0.384 0.403 0.424 0.450 0.477 0.510 0.544 0.585 0.610 0.627 0.644 0.572 5
U 1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.974 0.964 0.958 0.950

4 L 0.414 0.431 0.449 0.462 0.475 0.486 0.497 0.505 0.512 0.519 0.527 0.559 8
U 1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.988 0.986

5 L 0.463 0.469 0.475 0.480 0.486 0.491 0.497 0.502 0.508 0.513 0.519 0.563 6
U 1.000 1.000 1.000 0.997 0.995 0.992 0.989 0.986 0.984 0.981 0.976

6 L 0.499 0.504 0.509 0.513 0.517 0.522 0.526 0.530 0.535 0.539 0.543 0.575 4
U 0.993 0.992 0.990 0.989 0.988 0.986 0.984 0.979 0.974 0.969 0.964

7 L 0.471 0.498 0.530 0.563 0.598 0.624 0.637 0.651 0.664 0.678 0.693 0.622 1
U 1.000 1.000 0.999 0.997 0.995 0.993 0.991 0.989 0.988 0.987 0.984

8 L 0.402 0.423 0.446 0.469 0.494 0.521 0.553 0.596 0.665 0.781 0.917 0.600 2
U 0.917 1.000 1.000 1.000 0.997 0.995 0.993 0.990 0.988 0.979 0.917
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Table 4. Cont.

FMS α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0 Index Rank

9 L 0.335 0.342 0.348 0.353 0.359 0.364 0.369 0.375 0.381 0.386 0.392 0.506 11
U 1.000 0.998 0.996 0.993 0.991 0.989 0.987 0.984 0.978 0.971 0.957

10 L 0.426 0.451 0.478 0.505 0.534 0.568 0.606 0.647 0.676 0.693 0.710 0.599 3
U 1.000 1.000 1.000 0.999 0.996 0.993 0.986 0.964 0.944 0.932 0.920

11 L 0.373 0.393 0.413 0.434 0.456 0.478 0.501 0.523 0.550 0.595 0.619 0.558 9
U 1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.987 0.956 0.927

12 L 0.358 0.376 0.395 0.373 0.447 0.478 0.509 0.543 0.600 0.670 0.782 0.559 7
U 1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.986 0.958 0.909 0.782

5. Conclusions

In the literature, the cross-efficiency evaluation is proposed to improve the discrimina-
tive power among DMUs. This evaluation method is mostly used for DEA models under
the assumption of constant returns to scale. However, due to the negative efficiencies in
the evaluation process, the cross-evaluation for input-oriented BCC models receives little
attention in the literature. In particular, when observations are uncertain and expressed by
fuzzy numbers, the problem becomes a cross-efficiency evaluation with variable returns to
scale and fuzzy observations. Nevertheless, existing fuzzy cross-evaluation methods are
restricted to production technologies with constant returns to scale. This paper develops
an evaluation method to calculate the fuzzy cross-efficiencies for the input-oriented BCC
model with fuzzy observations.

In the proposed model, a set of secondary goals is added to tackle multiple optimal
weights in calculating the cross-efficiency. Moreover, since this model considers all possible
weights of all DMUs in the weight space, a choice of weights is not required. The most
significant merit is that this model does not produce negative efficiencies, making it
appropriate for variable returns to scale. A pair of two-level mathematical programs is
developed to calculate the fuzzy cross-efficiency. The lower bound and upper bound of the
fuzzy cross-efficiency can be easily derived by solving this pair of mathematical programs.
The proposed method is applied to a case involving selecting the most efficient FMS system
for production. The calculated results help identify the top-ranked FMS system in the
fuzzy environment.

With the approach developed in this paper, we can measure the fuzzy cross-efficiency
scores for cases of variable returns to scale with fuzzy observation and apply to different
fields of engineering applications (e.g., [42–47]) for decision-making. In this paper, the
inputs and outputs are treated as triangular fuzzy numbers. Nevertheless, any convex fuzzy
number can be applied in this method since convex fuzzy numbers can be represented as
forms of α-level sets.
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