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Abstract: In this paper, we develop a Hermite cubic spline collocation method (HCSCM) for solving
variable-order nonlinear fractional differential equations, which apply C1-continuous nodal basis
functions to an approximate problem. We also verify that the order of convergence of the HCSCM
is about O(hmin{4−α,p}) while the interpolating function belongs to Cp(p ≥ 1), where h is the mesh
size and α the order of the fractional derivative. Many numerical tests are performed to confirm
the effectiveness of the HCSCM for fractional differential equations, which include Helmholtz
equations and the fractional Burgers equation of constant-order and variable-order with Riemann-
Liouville, Caputo and Patie-Simon sense as well as two-sided cases.

Keywords: collocation method; fractional calculus; hermite cubic spline; fractional burgers equation

1. Introduction

As a powerful tool for modeling a broad range of non-classical phenomena, fractional
calculus has already gained much attention from various science and engineering fields
during recent decades. For models of anomalous transport processes and diffusion, there
are a lot of fractional partial differential equations proposed in publications [1,2] as well as
for the modeling of frequency dependent damping behavior such as in viscoelastic, contin-
uum and statistical mechanics, solid mechanic, economics [3,4], and so on. For modelling
the energy supply-demand system, the Caputo-Fabrizio fractional derivative is applied
and leads to an interesting fractional energy supply–demand equation [5]. With extensive
applications of fractional calculus operators, many fractional differential equations (FDEs)
are presented.

Meanwhile, there is increasing demand for a robust method to produce a high accuracy
solution to FDEs. Publications on numerical methods for FDEs are largely substantial.
A considerable number of them are based on finite difference, see [6–17] and the references
therein. There are many works based on finite element methods, see [18–23]. Methods
based on spectral/pseudo-spectral or collocation methods, even the spectral element
method, can be seen in [24–33].

The main challenge of approximating FDEs is the precision deterioration caused by
singularity of fractional derivatives [34]. For the spectral-type methods, which are one of
the most popular numerical methods due to their high accuracy [35–38], the singularity
of endpoints may damage “the spectral accuracy”. Spectral or collocation methods using
fractional polynomials rather than polynomials as basis functions provide a promising way
to develop an efficient algorithm for numerically solving FDEs and even fractional operator-
related problems. There are theoretical and practical efforts involved in publications such
as [29,39–48].

The demand of flexibility may lead researchers to pursue a multi-domain method or
domain decomposition method. A multi-domain spectral collocation method (MDSCM)
is suggested to numerically solve FDEs [49]. Authors make use of piecewise continuous
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(C0) nodal basis functions to approximate the problem. However, a piecewise continuous
function may have infinite derivatives of fractional-order. Let us introduce the following
result from [49]:

Lemma 1. Let α ∈ (0, 2) be a constant, and a, b, c ∈ R such that a < c < b. If u ∈ C2[a, c] ∩
C2[c, b] ∩ C[a, b] and u′(c−) and u′(c+) exist, then

RLDα
a,xu(x) =

1

∑
k=0

(x− a)k−α

Γ(k + 1− α)
u(k)(a) +

(x− c)1−α

Γ(2− α)
[u′(c+)− u′(c−)] + s(x),

for any x ∈ (c, b), where

s(x) =

{ 1
Γ(3−α)

d
dx
[∫ x

a u′′(τ)(x− τ)2−αdτ
]
, if α ∈ (0, 1),

1
Γ(4−α)

d2

dx2

[∫ x
a u′′(τ)(x− τ)3−αdτ

]
, if α ∈ (1, 2).

Here, the RLDα
a,x denotes the left Riemann-Liouville fractional derivative of α-order; we will

give its definition in the following section. The above lemma shows that limx→c RLDα
a,xu(x) =

∞ if the conditions u′(c+) 6= u′(c−) and α > 1 are satisfied. To overcome this drawback,
C1-continuous nodal basis functions are needed. It is well-known that spline functions are
a special class of piecewise polynomials, which provide continuous differentiable solutions over
the whole spatial domain with great accuracy. One promising candidate as a C1-continuous
nodal basis function is the Hermite cubic spline function.

Spline collocation methods are successfully applied to numerical approximation of
differential equations (see [50–52] and references therein). However, there are a few publi-
cations devoted to the spline collocation method for FDEs. Recently, Liu et al. [53] presented
an interesting result of stability and convergence of quadratic spline collocation method
for time-dependent fractional diffusion equations. Majeed et al. [54] applied the cubic
B-spline collocation method to solve time fractional Burgers’ and Fisher’s equations. Khalid
et al. [55] presented a non-polynomial quintic spline collocation method to solve fourth-
order fractional boundary value problems involving products terms. Emadifar et al. [56]
explored exponential spline interpolation with multiple parameters to find solutions of
fractional boundary value problem and conducted the convergence analysis for this tech-
nique.

In this paper, our aim is to develop a Hermite cubic spline collocation method
(HCSCM) for solving variable-order nonlinear fractional differential equations, which
makes use of C1-continuous nodal basis functions to approximate a problem. In particular,
the collocation fractional differentiation matrix is derived for fractional derivatives in vari-
ous senses including Riemann-Liouville, Caputo, Patie-Simon. The main contributions of
this work are as follows:

• A set of C1 nodal basis functions are constructed and the corresponding collocation
fractional differentiation matrix is derived for the discretization.

• Making use of the Hermite cubic spline collocation method, numerical solution could
be found for variable-order nonlinear fractional differential equations. The order of
convergence of the HCSCM is also analysed for the left Riemann-Liouville case.

• The effectiveness of the HCSCM is confirmed by solving fractional Helmholtz equa-
tions of constant-order and variable-order. With application the HCSCM to the frac-
tional Burgers equation, the numerical fractional diffusion is simulated with differ-
ent senses.

The paper is organized as follows: in the next Section, some definitions and properties
are reviewed for later discussion. The Hermite cubic spline collocation method (HCSCM)
is presented in Section 3. The key part is to set up the collocation fractional differentiation
matrix. In Section 4, the order of convergence of the HCSCM approximation is analyzed
for the left Riemann-Liouville case. Several numerical tests are presented in Section 5.
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This includes applying HCSCM to fractional Helmholtz equations and fractional Burgers
equations. Finally, we conclude in Section 6.

2. Preliminaries

In this Section, some definitions of fractional calculus are reviewed for subsequent
discussions. The most common-used definitions of fractional derivatives are possibly the
Riemann-Liouville’s and the Caputo’s, found in various publications, such as ([57,58]).
The following definitions are variable-order versions, which provide constant-order defini-
tions when α(x) ≡ α is a constant in the formulas.

Definition 1. For a function f (x), x ∈ [xL, xR], the left Riemann-Liouville fractional integral of
order α(x) > 0 is defined as

xL Iα(x)
x f (x) :=

1
Γ(α(x))

∫ x

xL

(x− s)α(x)−1 f (s)ds, (1)

and the right Riemann-Liouville fractional integral of order α(x) > 0 is defined as

x Iα(x)
xR f (x) :=

1
Γ(α(x))

∫ xR

x
(s− x)α(x)−1 f (s)ds, (2)

where Γ(·) is the Euler’s gamma function.

Definition 2. For a function f (x), x ∈ [xL, xR], the left Riemann-Liouville fractional derivative
of order α(x) > 0 is defined as

RLDα(x)
xL ,x f (x) :=

1
Γ(n− α(x))

[
dn

dξn

∫ ξ

xL

(ξ − s)n−α(x)−1 f (s)ds
]

ξ=x
, (3)

and the right Riemann-Liouville fractional derivative of order α(x) > 0 is defined as

RLDα(x)
x,xR f (x) :=

(−1)n

Γ(n− α(x))

[
dn

dξn

∫ xR

ξ
(s− ξ)n−α(x)−1 f (s)ds

]
ξ=x

, (4)

where n is the positive integer such that n− 1 < α(x) < n.

Definition 3. For a function f (x), x ∈ [xL, xR], the left Caputo fractional derivative of order
α(x) > 0 is defined as

CDα(x)
xL ,x f (x) :=

1
Γ(n− α(x))

∫ x

xL

(x− s)n−α(x)−1 f (n)(s)ds, (5)

and the right Caputo fractional derivative of order α(x) > 0 is defined as

CDα(x)
x,xR f (x) :=

(−1)n

Γ(n− α(x))

∫ xR

x
(s− x)n−α(x)−1 f (n)(s)ds, (6)

where n is the positive integer such that n− 1 < α(x) < n.

The well-known relationship between Riemann-Liouville and the Caputo derivative
is as follows:

Lemma 2. If RLDα(x)
xL ,x f (x), CDα(x)

xL ,x f (x), RLDα(x)
x,xR f (x) and CDα(x)

x,xR f (x) exist, then

RLDα(x)
xL ,x f (x) = CDα(x)

xL ,x f (x) +
n−1

∑
k=0

f (k)(xL)

Γ(k + 1− α(x))
(x− xL)

k−α(x), (7)
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and

RLDα(x)
x,xR f (x) = CDα(x)

x,xR f (x) +
n−1

∑
k=0

(−1)n−j f (k)(xR)

Γ(k + 1− α(x))
(xR − x)k−α(x). (8)

Besides the common-used definitions above, the fractional diffusion operators which
limit the order 1 < α(x) ≤ 2 are also considered. A definition was proposed by Patie and
Simon in [59] as follows.

Definition 4. For a function f (x), x ∈ [xL, xR], the left Patie-Simon (or mixed Caputo) fractional
derivative of order 1 < α(x) < 2 is defined as

PSDα(x)
xL ,x f (x) :=

1
Γ(2− α(x))

[
d

dξ

∫ ξ

xL

(ξ − s)1−α(x) f
′
(s)ds

]
ξ=x

, (9)

and the right Patie-Simon (or mixed Caputo) fractional derivative of order 1 < α(x) < 2 is
defined as

PSDα(x)
x,xR f (x) :=

1
Γ(2− α(x))

[
d

dξ

∫ xR

ξ
(s− ξ)1−α(x) f

′
(s)ds

]
ξ=x

. (10)

From the above definitions and Lemma 2, hold the following relationships:

Lemma 3. If 1 < α(x) < 2 and RLDα(x)
xL ,x f (x), CDα(x)

xL ,x f (x), PSDα(x)
xL ,x f (x), RLDα(x)

x,xR f (x), CDα(x)
x,xR

and PSDα(x)
x,xR f (x) exist, then

RLDα(x)
xL ,x f (x) = PSDα(x)

xL ,x f (x) +
f (xL)

Γ(1− α(x))
(x− xL)

−α(x), (11)

and

RLDα(x)
x,xR f (x) = PSDα(x)

x,xR f (x) +
f (xR)

Γ(1− α(x))
(xR − x)−α(x), (12)

and

PSDα(x)
xL ,x f (x) = CDα(x)

xL ,x f (x) +
f ′(xL)

Γ(2− α(x))
(x− xL)

1−α(x), (13)

and

PSDα(x)
x,xR f (x) = CDα(x)

x,xR f (x) +
f ′(xR)

Γ(2− α(x))
(xR − x)1−α(x). (14)

Proof. Since∫ ξ

xL

(ξ − s)1−α(x) f (s)ds =
(ξ − xL)

2−α(x)

2− α(x)
f (xL) +

1
2− α(x)

∫ ξ

xL

(ξ − s)2−α(x) f ′(s)ds.

Then note that 1 < α(x) < 2,

d2

dξ2

[∫ ξ

xL

(ξ − s)1−α(x) f (s)ds
]

= (1− α(x))(ξ − xL)
−α(x) f (xL) +

d
dξ

∫ ξ

xL

(ξ − s)1−α(x) f ′(s)ds].

The equality (11) is obtained by dividing factor Γ(2− α(x)). Other results can be
derived by a similar argument.

There exist the following well-known properties:
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Lemma 4. Let m be an integer number, the following properties hold for x ∈ [xL, xR] and Riemann-
Liouville fractional calculus

xL Iα(x)
x (x− xL)

m =
m!

Γ(m + α(x) + 1)
(x− xL)

m+α(x),

x Iα(x)
xR (xR − x)m =

m!
Γ(m + α(x) + 1)

(xR − x)m+α(x),

RLDα(x)
xL ,x (x− xL)

m =
m!

Γ(m− α(x) + 1)
(x− xL)

m−α(x),

RLDα(x)
x,xR (xR − x)m =

m!
Γ(m− α(x) + 1)

(xR − x)m−α(x),

(15)

and for the Caputo fractional derivative,

CDα(x)
xL ,x (x− xL)

m =

{
m!

Γ(m−α(x)+1) (x− xL)
m−α(x), if m > α(x),

0, if m < α(x),

CDα(x)
x,xR (xR − x)m =

{
m!

Γ(m−α(x)+1) (xR − x)m−α(x), if m > α(x),
0, if m < α(x),

(16)

and for the Patie-Simon fractional derivative of 1 < α(x) < 2,

PSDα(x)
xL ,x (x− xL)

m =

{
m!

Γ(m−α(x)+1) (x− xL)
m−α(x), if m > 0,

0, if m = 0,

PSDα(x)
x,xR (xR − x)m =

{
m!

Γ(m−α(x)+1) (xR − x)m−α(x), if m > 0,
0, if m = 0.

(17)

The following operators with top-tilde are useful in HCSCM for x > xR,

xL∗ Ĩα(x)
xR f (x) :=

1
Γ(α(x))

∫ xR

xL

(x− s)α(x)−1 f (s)ds, (18)

and for x < xL,

xL Ĩα(x)
xR∗ f (x) :=

1
Γ(α(x))

∫ xR

xL

(s− x)α(x)−1 f (s)ds, (19)

and for x > xR,

RLD̃α(x)
xL∗,xR f (x) :=

1
Γ(n− α(x))

[
dn

dξn

∫ xR

xL

(ξ − s)n−α(x)−1 f (s)ds
]

ξ=x
, (20)

and for x < xL,

RLD̃α(x)
xL ,xR∗ f (x) :=

(−1)n

Γ(n− α(x))

[
dn

dξn

∫ xR

xL

(s− ξ)n−α(x)−1 f (s)ds
]

ξ=x
. (21)

Operators CD̃α(x)
xL∗,xR , CD̃α(x)

xL ,xR∗,PSD̃α(x)
xL∗,xR , PSD̃α(x)

xL ,xR∗ are defined similarly.

Lemma 5. Let xL < xc < xR and x ∈ (xc, xR], then

xL Iα(x)
x f (x) = xL∗ Ĩα(x)

xc
f (x) + xc Iα(x)

x f (x),

RLDα(x)
xL ,x f (x) = RLD̃α(x)

xL∗,xc f (x) + RLDα(x)
xc ,x f (x),

CDα(x)
xL ,x f (x) = CD̃α(x)

xL∗,xc f (x) + CDα(x)
xc ,x f (x),

PSDα(x)
xL ,x f (x) = PSD̃α(x)

xL∗,xc f (x) + PSDα(x)
xc ,x f (x),

(22)
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and when x ∈ [xL, xc), we have

x Iα(x)
xR f (x) = x Iα(x)

xc f (x) + xc Ĩα(x)
xR∗ f (x),

RLDα(x)
x,xR f (x) = RLDα(x)

x,xc f (x) + RLD̃α(x)
xc ,xR∗ f (x),

CDα(x)
x,xR f (x) = CDα(x)

x,xc f (x) + CD̃α(x)
xc ,xR∗ f (x),

PSDα(x)
x,xR f (x) = PSDα(x)

x,xc f (x) + PSD̃α(x)
xc ,xR∗ f (x).

(23)

Proof. Since∫ x

xL

(x− s)α(x)−1 f (s)ds =
∫ xc

xL

(x− s)α(x)−1 f (s)ds +
∫ x

xc
(x− s)α(x)−1ds,

Then the first equality in (22) is obtained by dividing factor Γ(α(x)) and the definitions
(1) and (18). Other results can be derived by a similar argument.

If D∗α(x) and Dα(x)∗ represent all left-sided and right-sided definitions of the above-
mentioned, respectively, then the two-sided fractional derivative can be written as

Dα(x)
r := rD∗α(x) + (1− r)Dα(x)∗, 0 ≤ r ≤ 1. (24)

3. Hermite Cubic Spline Collocation Method(HCSCM)

In the Section, the HCSCM is presented. The key role of HCSCM is the collocation
fractional differentiation matrix.

3.1. Fractional Differentiation Matrix (FDM) for HCSCM

Let Λ := (xL, xR), the first step is to divide the interval Λ into N elements, that is,

xL = x0 < x1 < · · · < xN = xR.

Denote Ii = [xi−1, xi], i = 1, 2, ..., N the i−th element and hi = xi − xi−1 the length
of Ii. Let PI

N be the collection of all algebraic polynomials defined on interval I with degree
at most N. The piecewise Hermite cubic polynomial space is

VN = {v ∈ C1(Λ) : v|Ii ∈ PIi
3 , i = 1, 2, ..., N}.

which is defined by the following set of nodal basis functions. It contains 2N + 2 functions
as follows. The first two functions as

ϕ0(x) =

{ (
1 + 2 x−x0

h1

)(
1− x−x0

h1

)2
, if x ∈ I1,

0, otherwise,

and

φ0(x) =

{ (
x−x0

h1

)(
1− x−x0

h1

)2
h1, if x ∈ I1,

0, otherwise.

For i = 1, 2, ..., N − 1,

ϕi(x) =


(

3− 2 x−xi−1
hi

)(
x−xi−1

hi

)2
, if x ∈ Ii,(

1 + 2 x−xi
hi+1

)(
1− x−xi

hi+1

)2
, if x ∈ Ii+1,

0, otherwise,
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and

φi(x) =


−
(

1− x−xi−1
hi

)(
x−xi−1

hi

)2
hi, if x ∈ Ii,(

x−xi
hi+1

)(
1− x−xi

hi+1

)2
hi+1, if x ∈ Ii+1,

0, otherwise.

and the last two functions as

ϕN(x) =

{ (
3− 2 x−xN−1

hN

)(
x−xN−1

hN

)2
, if x ∈ IN ,

0, otherwise,

and

φN(x) =

{
−
(

1− x−xN−1
hN

)(
x−xN−1

hN

)2
hN , if x ∈ IN ,

0, otherwise.

Therefore,
VN = span {ϕi, φi, i = 0, 1, ..., N}.

If uN ∈ VN , then can be expanded as

uN(x) =
N

∑
i=0

(
uN(xi)ϕi(x) + u′N(xi)φi(x)

)
.

In each element Ii, xc
i,1, xc

i,2 ∈ Ii are the collocation points, where

xc
i,1 = xi−1 + σi,1hi, xc

i,2 = xi−1 + σi,2hi, i = 1, 2, ..., N,

and 0 ≤ σi,1 < σi,2 ≤ 1. In fact, a choice of this points is the Gauss-type quadrature

nodes, σi,1 = (1− σi,2) =
√

3
3 , which is named by orthogonal spline collocation. However,

the stable collocation points may not be symmetric in the view of [60,61].
As a collocation approximation to the α(x)th-order differential operators defined

in Section 2, we denote by Dα the collocation fractional differentiation matrix, which satis-
fies

(DαuN)l = D
α(xc

ij)uN(xc
ij), j = 1, 2; i = 1, 2, ..., N. (25)

The structure of the collocation fractional differentiation matrix (FDM) may dif-
fer with the ordering of the collocation points and the unknowns. In natural ordering
l = 2(i− 1) + j, we have

u = [u′0, u1, u′1, · · · , uN−1, u′N−1, u′N ]
T ,

xc = [xc
11, xc

12, xc
21, xc

22, · · · , xc
N1, xc

N2]
T .

(26)

and Dα with Dirichlet boundary conditions is

Dα =


Dφ0(xc

11) Dϕ1(xc
11) Dφ1(xc

11) · · · DφN(xc
11)

Dφ0(xc
12) Dϕ1(xc

12) Dφ1(xc
12) · · · DφN(xc

12)
...

...
...

...
Dφ0(xc

N1) Dϕ1(xc
N1) Dφ1(xc

N1) · · · DφN(xc
N1)

Dφ0(xc
N2) Dϕ1(xc

N2) Dφ1(xc
N2) · · · DφN(xc

N2)

, (27)

hereD = Dα(xc
ij) is one of the fractional differential operators defined in Section 2. Typically,

the matrix D is block-triangular for left and right fractional operators.

Remark 1. According to the Lemma 2, Lemma 3 and the special nodal basis functions, the col-
location FDM Dα of the Riemann-Liouville operators is equal to the corresponding FDM of
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the Patie-Simon operators. For the Caputo operators, the corresponding FDM is different only from
the first or last column.

3.2. Computing the Entries of FDM

For ease of computing, operations are shifted from an arbitrary interval [a, b] to
the reference interval [−1, 1]. Let the linear transformation

x =
h
2
(y + 1) + a, or y =

2
h
(x− a)− 1, h := b− a (28)

shift functions f (x), α(x) defined on the interval [a, b] to f̂ (y), α̂(y) on the reference interval
[−1, 1]. Then we have the following relations:

a Iα(x)
x f (x) =

(
h
2

)α̂(y)

−1 Iy
α̂(y) f̂ (y),

x Iα(x)
b f (x) =

(
h
2

)α̂(y)

y I1
α̂(y) f̂ (y),

Dα(x) f (x) =
(

2
h

)α̂(y)
Dα̂(y) f̂ (y),

(29)

here Dα(x) be one of the seven: RLDα(x)
a,x , RLDα(x)

x,b , CDα(x)
a,x , CDα(x)

x,b ,PSDα(x)
a,x ,PSDα(x)

x,b , Dα(x)
r .

For the tilde operators, the following relations also hold:

a∗ Ĩα(x)
b f (x) =

(
h
2

)α̂(y)

−1∗ Ĩ α̂(y)
1 f̂ (y),

a Ĩα(x)
b∗ f (x) =

(
h
2

)α̂(y)

−1 Ĩ1∗
α̂(y) f̂ (y),

D̃α(x) f (x) =
(

2
h

)α̂(y)
D̃α̂(y) f̂ (y),

(30)

here D̃α(x) can be one of the six: RLD̃α(x)
a∗,b , RLD̃α(x)

a,b∗ , CD̃α(x)
a∗,b , CD̃α(x)

a,b∗ ,PSD̃α(x)
a∗,b , PSD̃α(x)

a,b∗ .
The nodal basis functions presented in Section 3, are the so-called shape functions

after being transferred by (28), that is,

ξ1(y) : = (2 + y)
(

1− y + 1
2

)2
,

ξ2(y) : =
(

y + 1
2

)(
1− y + 1

2

)2
, (except factor hi),

ξ3(y) : = (2− y)
(

y + 1
2

)2
,

ξ4(y) : = −
(

1− y + 1
2

)(
y + 1

2

)2
, (except factor hi),

(31)

and y ∈ [−1, 1]. The Hermite Spline collocation method will perform all the operators
mentioned above on the shape functions (31).

4. Order of Convergence of the Approximation with HCSCM

In this Section, the order of convergence of the approximation with HCSCM is anal-
ysed. Typically, the left Riemann-Liouville fractional derivative is considered. For conve-
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nience of analysis, denote Dα = RLDα(x)
xL ,x and let hi = xi − xi−1 = h, σi,1 = σ1, σi,2 = σ2, i =

1, 2, ..., N. Then xi = x0 + ih, i = 0, 1, ..., N and the collocation points

xc
i,1 = x0 + (i− 1 + σ1)h, xc

i,2 = x0 + (i− 1 + σ2)h, i = 1, 2, ..., N.

Let ΠN : C1(Λ)→ VN be the piecewise Hermite cubic interpolation operator, deter-
mined uniquely by

ΠN f (xi) = f (xi),
d

dx
(ΠN f )(xi) = f ′(xi), i = 0, 1, ..., N,

for every f ∈ C1(Λ).
For a function u(x) ∈ C(Λ), the maximum norm is defined by

‖u‖∞ = max
x∈Λ
|u(x)|.

The following results are related to the interpolation errors [62].

Lemma 6. Let u(x) ∈ C4(Λ). Then∥∥∥∥ dj

dxj (u−ΠNu)
∥∥∥∥

∞
≤ Ch4−j‖u(4)‖∞, 0 ≤ j ≤ 3, (32)

where C is a constant number which do not dependent on N.

If u(x) ∈ Cp(Λ)(p ≥ 1), the interpolation error holds (see [63]):∥∥∥∥ dj

dxj (u−ΠNu)
∥∥∥∥

∞
≤ Chs−j‖u(s)‖∞, 0 ≤ j ≤ p. (33)

where s = min{p, 4}.
In the following, the error bound is presented for ‖Dα(ΠNu− u)‖∞ with constant-

order α ∈ (1, 2). Let τ(x) = ΠNu− u, we have

Dατ(x) =
1

Γ(2− α)

d2

dx2

∫ x

xL

τ(s)
(x− s)α−1 ds.

Assume that x ∈ [xj−1, xj] for some j, then the above integration can be split as

∫ x

xL

τ(s)
(x− s)α−1 ds =

j−1

∑
i=1

∫ xi

xi−1

τ(s)
(x− s)α−1 ds +

∫ x

xj−1

τ(s)
(x− s)α−1 ds. (34)

Let xi = (xi−1 + xi)/2, i = 1, 2, ..., N. Under the assumption of u(x) ∈ C4(Λ), from
Taylor’s theorem we have

d2

dx2

∫ xi

xi−1

τ(s)
(x− s)α−1 ds =

3

∑
k=0

τ(k)(xi)

k!
d2

dx2

∫ xi

xi−1

(s− xi)
k

(x− s)α−1 ds

+
1

24
d2

dx2

∫ xi

xi−1

u(4)(ζi)(s− xi)
4

(x− s)α−1 ds =:
3

∑
k=0

Jk(x) + J4(x),

(35)

where ζi ∈ (xi−1, xi). Now from the Mean Value Theorem for integrals for k = 0, 1, 2, 3

Jk(x) =
τ(k)(xi)

k!
(ζ̂i,k − xi)

k(α− 1)[(x− xi)
−α − (x− xi−1)

−α], (36)
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and

J4(x) =
u(4)(ζ̃i)(ζ̂i,4 − xi)

4

24
(α− 1)

[
(x− xi)

−α − (x− xi−1)
−α
]
, (37)

where ζ̃i, ζ̂i,k ∈ (xi−1, xi). For the second integral in (34), we have

d2

dx2

∫ x

xj−1

τ(s)
(x− s)α−1 ds = τ(xj)(1− α)(x− xj−1)

−α

+ τ′(xj)

[
−h

2
(1− α)(x− xj−1)

−α + (x− xj−1)
1−α

]
+

τ′′(xj)

2

[h2

4
(1− α)(x− xj−1)

−α − h(x− xj−1)
1−α

+
2

2− α
(x− xj−1)

2−α
]

+
τ′′′(xj)

6

[
− h3

8
(1− α)(x− xj−1)

−α +
3h2

4
(x− xj−1)

1−α

+
3h

2− α
(x− xj−1)

2−α +
6

(2− α)(3− α)
(x− xj−1)

3−α
]

+
u(4)(ζ̃ j)(ζ̂ j − xj)

4

24
(1− α)(x− xj−1)

−α =: J(x).

(38)

Let σh = x− xj−1. Note that σ ∈ (0, 1), it is easy to know that

σ−α > σ−α − (σ + 1)−α > (σ + 1)−α − (σ + 2)−α > ... (39)

Hence, by Lemma 6, for k = 0, 1, 2, 3 and every i < j we have

|Jk(x)| ≤ |τ
(k)(xi)|

k!
hk−α(α− 1)

[
σ−α − (σ + 1)−α

]
≤ Ch4−α‖u(4)‖∞, (40)

and

|J4(x)| ≤ |u
(k)(ζ̃i)|

4!
h4−α(α− 1)

[
σ−α − (σ + 1)−α

]
≤ Ch4−α‖u(4)‖∞, (41)

and

|J(x)| ≤
∣∣τ(xj)h−α

[
(1− α)σ−α

]∣∣
+

∣∣∣∣τ′(xj)h1−α

[
− (1− α)

2
σ−α + σ1−α

]∣∣∣∣
+

∣∣∣∣τ′′(xj)h2−α

[
1− α

8
σ−α − 1

2
σ1−α +

1
2− α

σ2−α

]∣∣∣∣
+

∣∣∣∣τ′′′(xj)h3−α

[
α− 1

48
σ−α +

σ1−α

8
+

σ2−α

2(2− α)
+

σ3−α

(2− α)(3− α)

]∣∣∣∣
+

∣∣∣∣∣(ζ̂ j − xj)
4h−α

[
u(4)(ζ̃ j)

24
(1− α)σ−α

]∣∣∣∣∣
≤Ch4−α‖u(4)‖∞.

(42)

Now collecting the inequalities (40)–(42) gives the following result for the case of
p = 4.

Theorem 1. If u(x) ∈ Cp(Λ) and p ≥ 1 an integer number, then it holds the error estimate:

‖Dα(ΠNu− u)‖∞ ≤ Chmin{p,4−α}‖u(p)‖∞, (43)

where C independent on N.
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Proof of Theorem 1. When p = 1, the Taylor’s theorem gives

d2

dx2

∫ xi

xi−1

τ(s)
(x− s)α−1 dx = [τ(xi) + τ′(ζ̃i)(ζ̂i − xi)](α− 1)[(x− xi)

−α − (x− xi−1)
−α],

and
d2

dx2

∫ x

xj−1

τ(s)
(x− s)α−1 dx = [τ(xj) + τ′(ζ̃ j)(ζ̂ j − xj)](α− 1)[(x− xj−1)

−α].

So, by (33), the estimate (43) follows. For the cases p = 2 and p = 3, the estimate (43)
can be obtained by a similar argument.

Remark 2. For a real number p ∈ (0, 1), the numerical tests show that the estimate (43) also holds.

5. Applications to Fractional Differential Equations

In this Section, some numerical examples are presented to demonstrate the efficiency
of our approximation method. The following three types of meshes are used in numeri-
cal tests:

• Uniform mesh (Mesh 1):

xj = xL +
(xR − xL)j

N
, j = 0, 1, ..., N.

• Graded mesh (Mesh 2):

xj = xL + (xR − xL)

(
j

N

)q
, q > 1, j = 0, 1, ..., N.

Note: For the two-sided operator, two-sided graded mesh will be used with an even
number N:

xj = xL +
(xR − xL)

2

(
j

Nh

)q1

, j = 0, 1, ..., Nh

xj = xR −
(xR − xL)

2

(
N − j

Nh

)q2

, j = Nh + 1, Nh + 2, ...N,

where Nh = N
2 and when q = q1 = q2, the two-sided mesh is symmetric.

• Geometric mesh(Mesh 3):

x0 = xL, xj = xL + (xR − xL) ∗ qN−j, 0 < q < 1, j = 1, 2, ..., N.

5.1. Fractional Helmholtz Equations

To measure the accuracy of the HCSCM when the exact solution is known, we define
the errors by

E0 = max
x∈{x1,x2,...,xN−1}

{|uN(x)− u(x)|},

where uN(x) and u(x) are numerical and exact solution respectively. Let Λ := (xL, xR) and
1 < α(x) < 2. In this subsection we apply the HCSCM to the following variable-order
fractional Helmholtz equation with homogeneous boundary conditions

λ2u(x)−Dα(x)u(x) = f (x), x ∈ Λ, u(xL) = u(xR) = 0. (44)

The HCSCM for (44) is to find uN ∈ VN , such that

λ2uN(x)−Dα(x)uN(x) = f (x), x ∈ xc, uN(xL) = uN(xR) = 0. (45)
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The above equation leads to the following linear system:(
λ2M−Dα

)
u = f (46)

where M = [φ0(xc), ϕ1(xc), φ1(xc), · · · , ϕN−1(xc), φN−1(xc), φN(xc)] is the collocation ma-
trix, xc and u as in (26), f = f (xc) and Dα is the fractional differentiation matrix with
respect to the fractional operator Dα(x) as in (27).

Example 1. Our first test of HCSCM is to consider the problem (44) with exact solution
u(x) = sin(πx) at [xL, xR] = [−1, 1].

The right-hand side function f (x) = λ2u(x) − Dα(x)u(x) in which the fractional
derivative term is approximated by when Dα(x) = RLDα(x)

−1,x

RLDα(x)
−1,x sin(πx) =

L

∑
k=0

(−1)k+1 π2k+1(x + 1)2k+1−α(x)

Γ(2k + 2− α(x))
,

and when Dα(x) = RLDα(x)
x,1

RLDα(x)
x,1 sin(πx) =

L

∑
k=0

(−1)k π2k+1(1− x)2k+1−α(x)

Γ(2k + 2− α(x))
,

with L = 50, respectively.
For α(x), we consider the following two cases:

1. The constant-order α = 1.1, 1.2, 1.4, 1.5, 1.6, 1.8, 1.9.
2. The variable-order α(x) = 1.1 + x+1

2.5 .

The aim of this example is to test the accuracy of the proposed method for the smooth
solution. In this example, the uniform mesh is used. The error E0 and the orders of conver-
gence are listed in Table 1. It is shown that the order of convergence of the approximation
is 4− α.

Table 1. Error E0 and the order of convergence (OC), for Example 1 with Mesh 1:
α(x) = 1.2, 1.4, 1.6, 1.8, (σ1, σ2) = (0.2, 0.8), λ = 0.

N α(x) = 1.2 OC α(x) = 1.4 OC α(x) = 1.6 OC α(x) = 1.8 OC

20 1.1797 × 10−4 - 1.1326 × 10−4 - 1.8116 × 10−4 - 2.9010 × 10−4 -
40 1.6776 × 10−5 2.81 1.7641 × 10−5 2.68 3.3277 × 10−5 2.45 6.2240 × 10−5 2.22
80 2.4257 × 10−6 2.79 2.8890 × 10−6 2.61 6.2306 × 10−6 2.42 1.3406 × 10−5 2.22
120 7.8179 × 10−7 2.79 1.0058 × 10−6 2.60 2.3442 × 10−6 2.41 5.4714 × 10−6 2.21
160 3.5026 × 10−7 2.79 4.7588 × 10−7 2.60 1.1740 × 10−6 2.40 2.8984 × 10−6 2.21
200 1.8588 × 10−7 2.84 2.6617 × 10−7 2.60 6.8516 × 10−7 2.41 1.7712 × 10−6 2.21
240 1.1199 × 10−7 2.78 1.6566 × 10−7 2.60 4.4209 × 10−7 2.40 1.1876 × 10−6 2.19

The error E0 and CPU time for α = 1.4 are listed in Table 2. Similar results can be
obtained for other cases. All the computations are performed by Matlab R2020a on pc
with AMD PRO A10-8770 R7, 10 COMPUTE CORES 4C+6G 3.50GHz. The Matlab route
inv is used to solve the linear system (46) in our numerical tests. Other faster solver such
as LU decomposition, iteration-type methods and so forth might be used to improve
the efficiency.
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Table 2. Error E0 and the CPU time for Example 1 with Mesh 1: α = 1.4, (σ1, σ2) = (0.2, 0.8), λ = 0.

N E0 CPU Time (s)

10 3.6097 × 10−3 0.018
50 8.8401 × 10−5 0.165

100 1.5063 × 10−5 0.479
150 5.2966 × 10−6 1.046
200 2.5185 × 10−6 1.831
250 1.4119 × 10−6 2.721
300 8.8569 × 10−7 3.397
500 2.3094 × 10−7 7.363
1000 1.0710 × 10−7 23.029

The error E0 is given in Figures 1 and 2. In Figure 1, it is clearly shown that the orders
of convergence of approximation is about 4− α which confirms the estimate in Theorem 1.
In Figure 2, the orders of convergence of approximation is about

4− max
−1≤x≤1

α(x)

for the variable-order case.

101 102 103

N

10-7

10-6

10-5

10-4

10-3

10-2

E
0

Left Riemann-Liouville: =1,
1
=0.2, 

2
=0.7.

=1.1
=1.5
=1.9

N-2.9

N-2.5

N-2.1

Figure 1. Error for Example 1 with Mesh 1: α(x) = 1.1, 1.5, 1.9.
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101 102 103

N

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
0

Left Riemann-Liouville: =1, 
1
=0.2, 

2
=0.7.

(x)=1.1+(x+1)/2.5

N-2.1

Figure 2. Error for Example 1 with Mesh 1: α(x) = 1.1 + x+1
2.5 .

Example 2. Our second test of HCSCM is to consider the problem (44) with an exact solution that
has low regularity.

When we take u(x) = (1 − x)(1 + x)α(x) with xL = −1, xR = 1, the right-hand
functions are same for left Riemann-Liouville, left Caputo and left Patie-Simon cases,
that is,

f (x) = λ2u(x)− 2Γ(1 + α(x)) + Γ(2 + α(x))(1 + x).

In fact, here we have u(x) ∈ Cα(Λ).
The error E0 and the orders of convergence are listed in Table 3. It is shown that

the order of convergence of the approximation is α.

Table 3. Error E0 and the order of convergence (OC) for Example 2 with Mesh 1:
α(x) = 1.2, 1.4, 1.6, 1.8, (σ1, σ2) = (0.2, 0.8), λ = 0.

N α(x) = 1.2 OC α(x) = 1.4 OC α(x) = 1.6 OC α(x) = 1.8 OC

20 3.6965 × 10−3 - 3.5347 × 10−3 - 1.9174 × 10−3 - 5.9525 × 10−4 -
40 1.6497 × 10−3 1.16 1.3360 × 10−3 1.40 6.3033 × 10−4 1.60 1.6984 × 10−4 1.81
80 7.2079 × 10−4 1.19 5.0527 × 10−4 1.40 2.0733 × 10−4 1.60 4.8498 × 10−5 1.81
120 4.4317 × 10−4 1.20 2.8620 × 10−4 1.40 1.0824 × 10−4 1.60 2.3318 × 10−5 1.81
160 3.1379 × 10−4 1.20 1.9124 × 10−4 1.40 6.8268 × 10−5 1.60 1.3874 × 10−5 1.80
200 2.4007 × 10−4 1.20 1.3990 × 10−4 1.40 4.7751 × 10−5 1.60 9.2759 × 10−6 1.80
240 1.9289 × 10−4 1.20 1.0836 × 10−4 1.40 3.5659 × 10−5 1.60 6.6766 × 10−6 1.80

The error E0 for uniform mesh and for α = 1.1, 1.5, 1.9 are shown in Figure 3. It is clear
that the order of convergence of E0 is α.

The error E0 for α = 1.2 with three types of mesh are shown in Figure 4. It is shown
that the uniform mesh achieves an α order of convergence of E0 and the graded mesh
improves significantly the order of convergence. We can also observe that the geometric
mesh might achieve “higher accuracy” (see the dotted line with squares Figure 3), although
the precisions are damaged for large N. The errors E0 for the Caputo case and Patie-Simon
case are plotted in Figures 5 and 6.



Symmetry 2021, 13, 872 15 of 29

100 101 102 103

N

10-8

10-7

10-6

10-5

10-4

10-3

10-2

E
0

Left Riemann-Liouville( =0)

=1.1
=1.5
=1.9

N-1.1

N-1.5

N-1.9

Figure 3. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ). Mesh 1 for α = 1.1, 1.5, 1.9.

100 101 102 103

N

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
0

Left Riemann-Liouville( =0)

=1.2, Mesh 1
=1.2, Mesh 2: q=1.8
=1.2, Mesh 3: q=0.88

N-1.2

N-2.2

Figure 4. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ).
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101 102 103

N

10-6

10-5

10-4

10-3

10-2

E
0

Left Caputo( =0)

=1.1, Mesh 1
=1.1, Mesh 2: q=1.7
=1.1, Mesh 3: q=0.88

N-1.0

N-1.7

Figure 5. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Caputo case (α = 1.1).

100 101 102 103

N

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
0

Left Patie-Simon( =0)

=1.1, Mesh 1
=1.1, Mesh 2: q=1.7
=1.1, Mesh 3: q=0.88

N-1.1

N-1.8

Figure 6. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Patie-Simon(α = 1.1).

If we take u(x) = (1− x)(1 + x)α(x)−1, it means that u(x) ∈ Cα−1(Λ), which has very
low regularity with xL = −1, xR = 1 and then the right-hand function

f (x) = λ2u(x) + Γ(1 + α(x))

for left Riemann-Liouville and left Patie-Simon cases (but not for left Caputo case).
The error E0 and the orders of convergence are listed in Table 4. It is shown that

the order of convergence of the approximation is α− 1.
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Table 4. Error E0 and the order of convergence (OC) for Example 2 with Mesh 1:
α(x) = 1.2, 1.4, 1.6, 1.8, (σ1, σ2) = (0.2, 0.8), λ = 0.

N α(x) = 1.2 OC α(x) = 1.4 OC α(x) = 1.6 OC α(x) = 1.8 OC

20 1.1624 × 10+0 - 4.0781 × 10−1 - 1.0764 × 10−1 - 1.8809 × 10−2 -
40 1.0453 × 10+0 0.15 3.1153 × 10−1 0.39 7.1834 × 10−2 0.58 1.0960 × 10−2 0.78
80 9.1739 × 10−1 0.19 2.3697 × 10−1 0.39 4.7653 × 10−2 0.59 6.3385 × 10−3 0.79
120 8.4738 × 10−1 0.20 2.0173 × 10−1 0.40 3.7430 × 10−2 0.60 4.5930 × 10−3 0.79
160 8.0061 × 10−1 0.20 1.7991 × 10−1 0.40 3.1524 × 10−2 0.60 3.6528 × 10−3 0.80
200 7.6601 × 10−1 0.20 1.6460 × 10−1 0.40 2.7588 × 10−2 0.60 3.0577 × 10−3 0.80
240 7.3879 × 10−1 0.20 1.5306 × 10−1 0.40 2.4738 × 10−2 0.60 2.6439 × 10−3 0.80

The errors E0 are plotted in Figures 7–10. Compared the Figure 4 with the Figure 7,
we can find that the orders of convergence of E0 are dropped to α− 1 for the exact solution
that belongs to Cα−1(Λ), which agree with the results in Theorem 1. It is also observed
that the orders of convergence of E0 are improved by making use of the graded mesh and
the geometric mesh similarly.

100 101 102 103

N

10-5

10-4

10-3

10-2

10-1

100

E
0

left Riemann-Liouville ( =0)

=1.2

N-0.2

=1.4

N-0.4

=1.6

N-0.6

=1.8

N-0.8

Figure 7. Error for Example 2 with exact solution u(x) = (1 − x)(1 + x)α(x)−1 and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) by the uniform mesh.
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10-6

10-4
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E
0

left Riemann-Liouville ( =0)

=1.1,Mesh 1
=1.1,Mesh 2(q=1.7)
=1.1,Mesh 3(q=0.95)
=1.5,Mesh 1
=1.5,Mesh 2 (q=1.9)
=1.5,Mesh 3(q=0.98)
=1.9,Mesh 1
=1.9,Mesh 2(q=1.5)
=1.9,Mesh 3(q=0.9)

Figure 8. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x)−1 and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ).

The HCSCM is comparable to the MDSCM [49] since both of them are applied
piecewise polynomial to approximation problems. The numerical errors are compared
by using the HCSCM and the MDSCM. The maximum errors with the degree of free-
dom are plotted for the constant-order α = 1.1, 1.5 and 1.9 and for the variable-order
α(x) = 1.1+ (x + 1)/2.5 in Figures 9 and 10. The black lines are for the MDSCM with fixed
N = 3 and the penalty parameter τ = 100, 000. By the choice of N = 3 of the MDSCM,
the degree of piecewise polynomial in the HCSCM is the same as ones in the MDSCM.
Both the uniform meshes are applied for two methods. It is shown that the accuracy of
the HCSCM is better than those of the MDSCM [49] with h-refinement but the orders of
convergence are almost same.

Figure 9. Error for Example 2 with exact solution u(x) = (1 − x)(1 + x)α(x)−1 and

λ = 0, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Riemann-Liouville with constant-order case.
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Figure 10. Error for Example 2 with exact solution u(x) = (1 − x)(1 + x)α(x)−1 and

λ = 0, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Riemann-Liouville with variable-order case.

5.2. Fractional Burgers Equations

In this subsection, we try to solve the fractional Burgers equation as

∂tu(x, t) + u(x, t)∂xu(x, t) = εDα(x,t)
r u(x, t), (47)

subject to homogeneous Dirichlet boundary condition and initial condition u(x, 0) = u0(x),
where ε > 0, 1 < α(x, t) < 2 and (x, t) ∈ (−1, 1)× (0, 1].

The two-step Crank-Nicolson/leapfrog scheme is first employed for time stepping,
then the HCSCM is applied to the resulting equations. Thus, the full discretization scheme
reads as: for k = 1, 2, ...,

(
M− ∆tεDαk+1

)
uk+1 = g,

Mu1 =
(

M + ∆tεDα0
)

u0 − ∆t
(
Mu0). ∗ (Su0)

Mu0 = u0(x),

(48)

where
g =

(
M + ∆tεDαk−1

)
uk−1 − 2∆t

(
Muk

)
. ∗
(

Suk
)

,

and ∆t is the time stepsize, M the collocation matrix, Dαk
the fractional differentiation

matrix of order αk = α(x, k∆t) with respect to the fractional operator Dα(x,t) = Dα(x,t)
r as

in (25), S the collocation first-order differentiation matrix which defines as

S = [φ′0(x
c), ϕ′1(x

c), φ′1(x
c), · · · , ϕ′N−1(x

c), φ′N−1(x
c), φ′N(x

c)],

and notation .∗ the entry-to-entry multiplication.

Example 3. In this example, we consider the fractional Burgers Equation (47) with the initial
condition u0(x) = sin(πx).
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Our first test is the numerical solutions to the Equation (47) of the left Riemann-
Liouville fractional derivative. The following five cases of fractional order are considered
in [40,49]:

• Case 1:(constant-order) α(x, t) = 1.1, 1.2, 1.3, 1.5, 1.8;
• Case 2:(monotonic increasing-order) α(x, t) = 1 + 5+4x

10 ;
• Case 3:(monotonic decreasing-order) α(x, t) = 1 + 5−4x

10 ;
• Case 4:(nonsmooth order) α(x, t) = 1.1 + 4

5 | sin(10π(x− t))|;
• Case 5:(nonsmooth order) α(x, t) = 1.1 + 4|xt|

5 .

In Figure 11, the numerical solutions at t = 1 is plotted for constant-order cases
(Case 1). The obtained numerical result is the same as the one in Fig4.6 ([49]). We also
compare some results by the multi-domain spectral collocation method(MDSCM) with
those by the presented method(HCSCM) for α = 1.1, 1.5 in Figures 12 and 13. It is shown
that by the HCSCM one get smoother numerical solution near the left boundary x = −1
than that by the MDSCM.
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Figure 11. Numerical solutions at t = 1 for Example 3 (Case 1) with the graded mesh (Mesh 2).
ε = 1, N = 200, ∆t = 10−3 and (σ1, σ2) = (0.09, 0.88) for α = 1.1, 1.3, (σ1, σ2) = (0.09, 0.85) for
α = 1.2, (σ1, σ2) = (0.3, 0.7) for α = 1.5, 1.8.
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Figure 12. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case(α = 1.1, r = 1):
MDSCM vs HCSCM. (σ1, σ2) = (0.09, 0.88) for N = 200, 400 and the two-sided graded mesh (Mesh 2)
are used for all cases in HCSCM.
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Figure 13. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case(r = 1, α = 1.5):
MDSCM vs HCSCM. (σ1, σ2) = (0.2, 0.7) for N = 50, 100, 200 and the two-sided graded mesh
(Mesh 2) are used for all cases in HCSCM.

The numerical solutions at t = 1 for variable-order cases(Case 2–5) are plotted in Fig-
ures 14–17, which are agree with the results in [40,49].
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Figure 14. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case (r = 1) and
ε = 1: α(x) = 1 + 5+4x

10 .
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Figure 15. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case (r = 1) and
ε = 1: α(x) = 1 + 5−4x

10 .
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Figure 16. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case (α(x, t) = 1.1+
4
5 | sin(10π(x− t))|, r = 1) and ε = 1. where (σ1, σ2) = (0.35, 0.85) for N = 50, (σ1, σ2) = (0.28, 0.75)
for N = 100, (σ1, σ2) = (0.2, 0.75) for N = 200.
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Figure 17. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case
(α(x, t) = 1.1 + 4|xt|

5 , r = 1) and ε = 1. where(σ1, σ2) = (0.2, 0.75) for all three Ns.

The numerical solutions are also computed to the fractional Burgers equation with
two-sided operators. The numerical solutions at t = 1 for various α’s and r’s are plotted
in Figures 18–23.
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Figure 18. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(r = 0.3): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 19. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(r = 0.5): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 20. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.22): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 21. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.5): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 22. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.9): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 23. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.99): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.

6. Conclusions

In this paper, a Hermite cubic spline collocation method (HCSCM) are developed
for solving variable-order nonlinear fractional differential equations, which apply C1-
continuous nodal basis functions to approximate problem. It is verified that the order of
convergence of the HCSCM is O(hmin{4−α,p}), while the interpolating function belongs to
Cp(p ≥ 1), where h is the mesh-size and α the order of the fractional derivative. The ef-
fectiveness of the HCSCM is demonstrated by solving fractional Helmholtz equations
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of constant-order and variable-order, and solving the fractional Burgers equation. The
numerical fractional diffusions are compared with different senses.

The HCSCM can be applied to fractional-order differential equations on a two or
three dimensional Descartes product domain by nodal basis tensor. Through adjusting
the location of collocation points, the stability of the HCSCM can be observed numerically.
Our future work will focus on the stability and error analysis of the HCSCM for some FDEs.
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