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Abstract: The article deals with nonlinear second-order evolutionary partial differential equations
(PDEs) of the parabolic type with a reasonably general form. We consider the case of PDE degenera-
tion when the unknown function vanishes. Similar equations in various forms arise in continuum
mechanics to describe some diffusion and filtration processes as well as to model heat propagation in
the case when the properties of the process depend significantly on the unknown function (concen-
tration, temperature, etc.). One of the exciting and meaningful classes of solutions to these equations
is diffusion (heat) waves, which describe the propagation of perturbations over a stationary (zero)
background with a finite velocity. It is known that such effects are atypical for parabolic equations;
they arise as a consequence of the degeneration mentioned above. We prove the existence theorem of
piecewise analytical solutions of the considered type and construct exact solutions (ansatz). Their
search reduces to the integration of Cauchy problems for second-order ODEs with a singularity
in the term multiplying the highest derivative. In some special cases, the construction is brought
to explicit formulas that allow us to study the properties of solutions. The case of the generalized
porous medium equation turns out to be especially interesting as the constructed solution has the
form of a soliton moving at a constant velocity.

Keywords: nonlinear parabolic equation; porous medium equation; diffusion wave; existence
theorem; analytical solution; power series; majorant method; exact solution

MSC: 35K57

1. Introduction

Parabolic partial differential equations (PDEs) are meaningful mathematical objects
with non-trivial properties; they have been intensely studied in the scientific literature.
There are, without exaggeration, thousands of articles and monographs that touch on vari-
ous aspects of PDEs. We point out only three classical monographs that have significantly
influenced the development of the theory of nonlinear parabolic equations [1–3].

This article is devoted to constructing and studying one special class of solutions to
second-order nonlinear evolutionary parabolic equations. We consider the equation with
the form

ct = (Φ1(c))xx + (Φ2(c))x + Φ3(c). (1)

where t, x are independent variables—t is time, x is a spatial variable—c(t, x) is an unknown
function, and Φi, i = 1, 2, 3 are the specified functions.

Equation (1) cannot be directly applied as a mathematical model of any particular
process as it is written in a very general form. However, its special cases are widely known
and popular models of continuum mechanics and describe various thermal, convective,
and diffusion processes. Perhaps the most famous particular case is the porous medium
equation [4], which corresponds to the case where Φ1 is a power function and Φ2 = Φ3 ≡ 0.
It is rich in applications and describes the filtration of an ideal gas in porous formations [5],
as well as the radiant (nonlinear) thermal conductivity [6]. Therefore, in the Russian
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mathematical literature, it is often called the nonlinear heat equation. It is also successfully
used in population dynamics modeling [7].

The second most common case is when Φ1 and Φ3 are power functions and Φ2 ≡ 0.
Then, (1) becomes the generalized porous medium equation [4]; it is also called “the
nonlinear heat equation with a source” in the Russian literature [8]. This equation describes
the same processes as the porous medium equation, but the model becomes more complex
and allows us to take into account the inflow or outflow of matter or heat.

If Φ3 ≡ 0, and Φ1 and Φ2 are nonzero, Equation (1) is called “the convection–diffusion
equation” [9,10]. Several mathematical models of fluid mechanics that simultaneously
describe the diffusion and convective [11] mechanisms of energy and matter transfer are
reduced to this equation. Its particular case is the well-known Burgers equation [4]. Finally,
Equation (1), if Φ2(c) is a linear function, describes the non-stationary thermal conductivity
in a medium moving at a constant speed, when the thermal conductivity coefficient and
the reaction rate are arbitrary functions of the temperature [12]. The list could be continued,
so the study of Equation (1) is still relevant.

Obviously, if Φ3(0) = 0, then (1) has a trivial solution: c ≡ 0. A special feature of
equations of this type is as follows: they can have solutions that describe perturbations
that propagate at a finite velocity over a stationary (zero) background. Such solutions are
usually called heat or diffusion waves depending on which physical process describes
the equation. It is known that such effects, generally speaking, are atypical for parabolic
PDEs [13].

Apparently, the first solutions of the porous medium equation with the type of a
diffusion (heat) wave were obtained in the 1940s when studying the processes occurring
after a nuclear explosion. The so-called Zel’dovich–Kompaneets solution was presented
in 1950 in Russian. The English version of this paper appeared much later [6]. The same
solutions were used to describe diffusion processes in the ground [5]; the results were first
published in Russian in 1952.

A new stage in the study of solutions to nonlinear parabolic equations with the diffu-
sion wave type began in the 1980s and 1990s when the monographs by A. Friedman [14]
and A. A. Samarskii (with co-authors) [8] were published. The monographs were not
entirely devoted to constructing and investigating such solutions, but the corresponding
results were obtained as auxiliary results. We highlight the results of A. F. Sidorov in the
1980s, who constructed solutions to some initial boundary value problems generating dif-
fusion waves in the class of analytical functions [15]. In the Russian mathematical literature
in the 21st century, this problem is sometimes referred to as Andrei Sakharov’s problem.
Somewhat later, but independently, similar results were obtained by S. Angenent [16].
Then, the research of A.F. Sidorov was continued by his students [17], including the
author of this article. In 2013, we published an article in which the questions that had
previously remained open were closed; the main question was whether the constructed
series converge [18]. The existence and uniqueness theorem of the solution of the problem
of the initiation of a diffusion wave for the porous medium equation in the case of plane
symmetry was proved. The theorem is an analog of the classical Cauchy–Kovalevskaya
theorem [19] for the considered case.

Further, these results were extended to the cases of circular and spherical symme-
try [20] and to the two-dimensional case [21,22], as well as to the case of the simplest
nonlinear systems [23]. Since the proved theorems are local, as with all such statements,
starting with the Cauchy–Kovalevskaya theorem, the question of the domain of the so-
lution’s existence is relevant. In the general case, it seems to be possible to find the
answer only numerically. Therefore, we developed a numerical-analytical method based
on the well-known boundary element method (BEM) [24,25] using the dual reciprocity
method [26]. BEM algorithms were developed and implemented to solve various initial-
boundary value problems, the solutions of which have the form of a diffusion (heat) wave.
The cases of one [20,27] and two spatial variables [28] are considered, while the segments of
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special series [29] are used to eliminate the singularity, and the previously obtained explicit
analytical formulas [30] are applied to calculate the integrals.

All the proposed computational algorithms are heuristic, and their convergence could
not be proved; however, this is typical for nonlinear singular PDEs. In such a situation,
the issue of verifying the results of calculations becomes particularly relevant. One effective
method is to compare numerical results with exact solutions. In the literature, we managed
to find a relatively small number of solutions of the desired type, although, in general,
quite a large number of exact solutions for the porous medium equation and generalized
porous medium equation are known [12]. In such a situation, we made efforts to find
exact solutions to these equations using group analysis methods [31], and various types
of ansatzes [12]. In some cases, the construction was brought to an explicit formula,
but usually we reduce it to Cauchy problems for ODEs with singularities in terms that
multiply the highest derivative [32–34].

C. Foias and co-authors introduced the concept of an inertial manifold for nonlinear
evolutionary equations; in particular, for parabolic equations. These manifolds contain the
global attractor, they attract all solutions exponentially, and they are stable to perturbations.
In the infinite-dimensional case, they reduce the dynamics to a finite-dimensional ODE [35]
(see also [36]). These results were expanded to parabolic equations and systems in [37].

In the 21st century, a large number of publications have appeared that concern the
asymptotic properties of solutions to parabolic-type equations and systems. Let us mention,
for example, the work in [38], which considers, among other things, equations of the form
close to (1) and provides an extensive bibliography. Of the recent publications, we can
mention the work in [39], which is devoted to studying the asymptotic behavior of solutions
for a class of nonclassical diffusion equations in a smooth bounded domain with a dynamic
boundary condition.

Special mention in the context of this paper should be paid to the studies of S.N.
Antontsev and S.I. Shmarev, who consider problems with a free boundary for nonlinear
parabolic equations in general formulations in abstract functional spaces [40,41]. We also
allude to A.A. Kosov and E.I. Semenov, who construct exact solutions for equations of
the considered type that are not diffusion waves [42], and I.V. Stepanova, who deals with
modeling heat and mass transfer using nonlinear parabolic systems [43,44].

In this paper, our previous studies are developed and expanded for a new class.
The key results are as follows. First, we prove a new existence and uniqueness theorem for
the problem of a diffusion wave motion with a specified front for Equation (1). The theorem
is an analog of the Cauchy–Kovalevskaya theorem for the case considered. Second, we
construct an example that is analogous to the example of Kovalevskaya. Finally, in the most
interesting particular cases for applications, exact solutions to Equation (1) that have the
diffusion wave type are constructed. We investigate the asymptotic behavior of solutions
and show that one of them is a soliton. To the best of our knowledge, the results are new
for a problem with such a general formulation. At the same time, this was necessary to
obtain a flexible and versatile tool for studying the properties of the generalized model
under consideration (see Sections 6 and 7).

2. Formulation

If the functions Φ1(c), Φ2(c) are differentiable, then Equation (1) can be rewritten as

ct = (Φ′1(c)cx)x + Φ′2(c)cx + Φ3(c). (2)

In turn, if the function K(c) = Φ′1(c) is sufficiently smooth and monotonic, after the
substitution u = K(c), Equation (2) can be reduced (by trivial transformations) to the form

ut = uuxx + f (u)u2
x + g(u)ux + h(u). (3)

where f (u) = uφ′′(u)/φ′(u) + 1, g(u) = Φ′2(φ(u)), h(u) = Φ3(φ(u))/φ′(u), K(φ(u)) = u,
i.e., φ(u) is the inverse function to K(c).
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Consider the boundary condition:

u(t, x)|x=a(t) = 0. (4)

Problem (3), (4) is untypical for second-order equations. It includes only one bound-
ary condition for the unknown function, which causes the term multiplying the higher
derivative to vanish. Thus, the classical existence and uniqueness theorems do not work in
this case. Nevertheless, the existence and uniqueness theorem of a nontrivial solution is
valid. We formulate and prove this in the next section.

3. Existence Theorem

Let us formulate and prove the existence theorem of locally analytical solutions to
problem (3), (4). Here and in the following, an analytical function at the point means
a function that coincides in a neighborhood with its Taylor expansion. To simplify the
terminology, we will use the term “analytical at the point”.

Theorem 1. Let a(t), f (u), g(u) and h(u) be analytical functions of their arguments. Let the
following conditions also hold:

f (0) > 0, g(0) + a′(0) 6= 0, h(0) = 0.

Then, problem (3) and (4) has two analytical solutions at the point (t = 0, x = a(0)): they are
the trivial u ≡ 0 and nontrivial 1, where the latter can be written as a characteristic series. There
are no other solutions in the class of analytical functions.

Proof of Theorem 1. The proof of the theorem is divided into two stages. In the first stage,
we construct a solution in the form of the Taylor series. In the second stage, we prove the
convergence of the series by the majorant method.

1. We perform the substitution of the independent variables

z = x− a(t), t′ = t,

Then, problem (3) and (4) takes the form

ut = uuzz + f (u)u2
z + [g(u) + a′(t)]ux + h(u), u|z=0. (5)

In the following, the prime at the variable t′ is omitted for convenience.
We construct the solution to problem (5) as the series

u =
∞

∑
k=0

uk(t)zk

k!
, uk(t) =

∂ku
∂zk

∣∣∣∣∣
z=0

. (6)

Since the line x = a(t) is obviously a characteristic, the series (6) is characteristic [19].
Its coefficients can be found by the following recurrent procedure: from the initial condition
(5), we find that u0 ≡ 0. To find u1, we set z = u = 0 in both parts of Equation (5) and
obtain a square algebraic equation:

f (0)u2
1 + [g(0) + a′(t)]u1 = 0.

This has two roots: u1 = 0 and u1 = −[g(0) + a′(t)]/ f (0).
If u1 = 0, then one can easily ensure that the remaining coefficients of the series (6) are

determined uniquely and equal to zero; i.e., this root corresponds to the trivial analytical
solution u ≡ 0.

Let u1(t) = −[g(0) + a′(t)]/ f (0). By the assumptions of the theorem, in this case,
u1(0) 6= 0; i.e., the second root corresponds to a non-trivial solution. Let us continue its
construction. To find u2(t), we differentiate Equation (5) with respect to z and set z = u = 0.
After collecting terms, we obtain
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u2(t) =
1

1 + f (0)

[
− f ′(0)(g(0) + a′(t))2

f 2(0)
+

g′(0)(g(0) + a′(t))
f (0)

− h′(0) +
a′′(t)

a′(t) + g(0)

]
.

Thus, the induction base is justified.
For convenience, we introduce the notation

fk(t) =
dk f (u)

dzk

∣∣∣∣∣
u=z=0

, gk(t) =
dkg(u)

dzk

∣∣∣∣∣
u=z=0

, hk(t) =
dkh(u)

dzk

∣∣∣∣∣
u=z=0

, k = 0, 1, . . .

where f (u), g(u), h(u) are differentiated as complex functions, since u = u(t, z). Then,

f0 = f (0), g0 = g(0), h0 = 0,

f1 = − f ′(0)
a′(t) + g0

f0
, g1 = −g′(0)

a′(t) + g0

f0
, h1 = −h′(0)

a′(t) + g0

f0
,

and so on. Explicit expressions for fk, gk, hk are rather cumbersome and not presented here.
Let the coefficients of series (6) be found up to the n-th member. To find un+1, we

differentiate Equation (5) n times with respect to z and set z = 0. Thus, we arrive at the
following equation:

u′n =
n

∑
k=0

Ck
nukun−k+2 +

n

∑
k=0

Ck
n

(
k

∑
i=0

Ci
kui+1uk−i+1

)
fn−k +

n

∑
k=0

Ck
nuk+1gn−k + a′(t)un+1 + hn.

Let us now express in explicit form the coefficient:

un+1 =
f0

(a′ + g0)( f0 + n)

[
n

∑
k=2

Ck
nukun−k+2 +

n−1

∑
k=1

Ck
n

(
k

∑
i=0

Ci
kui+1uk−i+1

)
fn−k +

+
n−1

∑
k=0

Ck
nuk+1gn−k + hn − u′n

]
.

The right-hand side of the last expression contains uk for k ≤ n; the denominators are
nonzero by the assumptions of the theorem. Therefore, the solution in the form of a formal
power series is uniquely determined. Moreover, it is nontrivial, unlike the first case.

Thus, we have shown that the solution to problem (5) can be found as a series (6)
with recurrently calculated coefficients, which, starting from the second, are uniquely
determined. This completes the first stage of the proof.

2. The proof of the convergence of series (6) in the case of u1 = −[a′(t) + g0]/ f0 is
carried out by the classical majorant method based on the Cauchy–Kovalevskaya theo-
rem [19]. For the convenience of constructing the majorant, we introduce a new unknown
function V(t, z) using the above Taylor expansion for u:

u(t, z) = u0(t) + zu1(t) + z2V(t, z) = −(a′(t) + g0)z/ f0 + z2V(t, z). (7)

Since h(0) = 0 and the functions f , g, h are analytical at the point u = 0 by the theorem
conditions, the following representations are valid:

f (u) = f0 + u f∗(u), g(u) = g0 + ug∗(u), h(u) = uh∗(u), (8)
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where f∗(u), g∗(u), h∗(u) are also analytical functions at the point u = 0, and f0 > 0,
g0 6= a′(0). After substituting (7) and (8) into Equation (5), we obtain

zu′1(t) + z2Vt = [zu1(t) + z2V](2V + 4zVz + z2Vzz)+

+ [ f0 + (u1(t)z + z2V) f ∗(t, z, V)](u1(t) + 2zV + z2Vz)
2+ (9)

+[g0 + a′(t) + (u1(t)z + z2V)g∗(t, z, V)](u1(t) + 2zV + z2Vz) + (u1(t)z + z2V)h∗(t, z, V),

where f ∗(t, z, V), g∗(t, z, V), h∗(t, z, V) come from f∗(u), g∗(u), h∗(u) as a result of the sub-
stitution. After collecting terms and dividing by (a′(t) + g0)z/ f0, Equation (9) takes
the form

2( f0 + 1)V + ( f0 + 4)zVz + z2Vzz = F0 + zF1 + z2F2 + z3F3. (10)

Explicit expressions for the functions Fi, i = 0, . . . , 3 are not given because they are
not of fundamental importance for further reasoning. It is sufficient to highlight that these
are analytical functions of their variables, and

F0 = F0(t, z), F1 = F1(t, z, V, Vt), F2 = F2(t, z, V, Vt, Vz), F3 = F3(t, z, V, Vt, Vz, Vzz).

If Equation (10) has a nontrivial analytical solution in the neighborhood of z = 0,
then it obviously follows that the original problem is analytically solvable; i.e., series (6)
converges in the considered case. Let us now prove that the desired solution exists and,
moreover, is unique. This fact is nontrivial as, for Equation (10) at z = 0, Cauchy conditions
are not specified.

First, we construct the solution to (10) in the form of a Taylor series with respect to
powers of the variable z:

V(t, z) =
∞

∑
n=0

Vn(t)
zn

n!
, Vn(t) =

∂nV
∂zn

∣∣∣∣
z=0

. (11)

We denote Fi,n = (∂nFi/∂zn)|z=0, i = 0, . . . , 3. Sequentially differentiating (10) with
respect to z and setting z = 0, we obtain the following formulas for the coefficients Vn(t):

V0(t) =
F0,0

2( f0 + 1)
, V1(t) =

F0,1 + F1,0

3( f0 + 2)
, V2(t) =

F0,2 + 2F1,1 + 2F2,0

4( f0 + 3)
,

· · · (12)

Vn(t) =
F0,n + nF1,n−1 + n(n− 1)F2,n−2 + n(n− 1)(zF3,n−2)

2( f0 + 1) + ( f0 + 4)n + n(n− 1)
, . . .

In the formula for V0, the right-hand side is known and uniquely determined, and in
the remaining formulas, the right-hand sides depend on the values found in the previous
step. In other words, this is a recurrent procedure with positive denominators (due to the
condition f0 > 0), which allows us to construct series (11) uniquely. Since the right-hand
sides in (12) are finite sums of analytical functions, they are also analytical functions of the
variable t at the point t = 0.

Due to the analyticity of the functions Vk, k = 0, 1 . . . , and gi, i = 0, . . . , 3, we can
choose the majorants:

V0(t)�W0(t), V1(t)�W1(t), F1(t, z, V, Vt)� H1(t, z, W, Wt),

F2(t, z, V, Vt, Vz)� H2(t, z, W, Wt, Wz), F3(t, z, V, Vt, Vz, Vzz)� H3(t, z, W, Wt, Wz, Wzz).

Now, we show that if the above estimates are satisfied, the problem

Wzz =
∂2H0

∂z2 +
∂H1
∂z

+
∂H1
∂W

Wz +
∂H1
∂Wt

Wtz + H2 + zH3, W|z=0 = W0(t), Wz|z=0 = W1(t), (13)

is majorant for Equation (10).
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For this, we construct a solution in the form of a Taylor series with respect to powers
of z:

W(t, z) =
∞

∑
n=0

Wn(t)
zn

n!
, Wn(t) =

∂nW
∂zn

∣∣∣∣
z=0

, (14)

whose coefficients are determined by successively differentiating Equation (13) with respect
to z and setting z = 0. The procedure for constructing series (14) is the same as for (11),
and we omit it here.

For n ≥ 1, the obvious inequality holds:

n(n− 1) + n + 1
2( f0 + 1) + ( f0 + 4)n + n(n− 1)

< 1.

From this estimate, (12) and (13), it follows that Vn(t) � Wn(t) for n = 0, 1, 2, . . .;
i.e., the analytical solution to problem (13) majorizes the solution to Equation (10) if series
(14) converges.

We turn to the proof of the convergence of (14). Let us differentiate Equation (13) with
respect to z and resolve it with respect to Wzzz; as a result, we arrive at the problem

Wzzz =
1

1− z ∂H3
∂Wzz

H∗(t, z, W, Wt, Wz, Wtz, Wzz, Wtzz), (15)

W(t, 0) = W0(t), Wz(t, 0) = W1(t), Wzz(t, 0) = W2(t). (16)

The explicit form of the function H∗ is not given due to its cumbersomeness. It is
easy to verify that problems (15) and (16) are of the Cauchy–Kovalevskaya type; therefore,
these problems satify the conditions of the Cauchy–Kovalevskaya theorem [19] and have
a unique analytical solution. Moreover, they majorize to zero due to the choice of the
right-hand side of Equation (15).

Remark 1. Theorem 1 is a generalization of the similar theorem proved for problems (3) and (4)
in [33] if g(u) ≡ 0; i.e., for the generalized porous medium equation.

Remark 2. It follows from the proof of the theorem that, in this case, a nontrivial solution can be
constructed even for a(t) ≡ 0 if g(0) 6= 0. Previously, when considering problems of the forms
(3) and (4) for the porous medium equation and the generalized porous medium equation, either
the function a(t) obeyed the constraint a′(0) 6= 0, or the unknown function would have the same
property for x = a(t) [18,33].

Consider the initial condition

u|t=0 = b(x). (17)

One can easily verify that problem (3) and (17) with b(x) ≡ 0, h(0) = 0 has only the
trivial solution u ≡ 0. If the function b(x) is analytical at the point x = 0 and b(x) 6≡ 0,
then the solution to problem (3) and (17) can be constructed in the form of a formal power
series, but its convergence is not guaranteed. Indeed, let us construct a solution in the form

u =
∞

∑
k=0

u∗k (x)tk

k!
, u∗k (x) =

∂ku
∂tk

∣∣∣∣∣
t=0

. (18)

From condition (17), it follows that u∗0 = b(x). To find u∗1 , we set t = 0 in both parts of
(3). We obtain that

u∗1(x) = b(x)b′′(x) + f (b(x))[b′(x)]2 + g(b(x))b′(x) + h(b(x)).
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One can see that, in the right part of this equation, there are only known values. Let
u∗k (x) be known for k = 0, 1, . . . , n. To find u∗n+1(x), we need to differentiate both parts
of (3) with respect to t and set t = 0. The left part of the resulting equality contains
the desired coefficient u∗n+1(x), and the right part depends on u∗k (x) for k = 0, 1, . . . , n;
i.e., it is known by the induction assumption. We do not present u∗n+1(x) here owing to
its cumbersomeness.

We now check the convergence of series (18). Consider the special case where f (u) =
1/σ > 0, and g(u) = h(u) = 0; i.e., we have the porous medium equation. Assume also
b(x) = xn, n ∈ N. Then, problem (3), (17) has the form

ut = uuxx +
1
σ

u2
x, u|t=0 = xn. (19)

Proposition 1. Problem (19) for n = 1, 2 has a unique analytical solution in the form of series
(18). If n = 1, it is a traveling wave that exists on t ∈ (−∞,+∞); if n = 2, it is generalized
self-similar and exists on t ∈ (−2− 4/σ, 2 + 4/σ). For n ≥ 3, series (18) diverges everywhere,
except for t = 0.

Proof of Proposition 1. Let us consider separately the cases n = 1, n = 2 and n ≥ 3.
For the problem (19), we have the following recurrent formulas for calculating the

coefficients of series (18):

u∗k+1(x) =
k

∑
i=0

k!
i!(k− i)!

[
(u∗i )

′′u∗k−i +
1
σ
(u∗i )

′(u∗k−i)
′
]

. (20)

Moreover, according to Formula (20), the coefficients can be uniquely determined.
If n = 1, it is easy to see that the sequence (20) for the problem (19) breaks, and the

solution has the form u = x + t/σ and is indeed a traveling wave.
If n = 2, one can show using induction by k that (20) engenders the equality

u∗k (x) = k!
(

2 +
4
σ

)k
x2. (21)

In turn, from (21), it follows that

u(t, x) = x2
∞

∑
k=0

(
2 +

4
σ

)k
tk =

x2

1−
(

2 + 4
σ

)
t
. (22)

Thus, the validity of the proposition in the considered case follows from (22). Note
that this solution to Equation (19) can also be obtained by separating variables.

Finally, let n ≥ 3. One can ensure that, in this case, the equalities u∗k = ckx(k+1)n−2k,
where ck are constants, follow from (20). Let us show that they grow rapidly. Indeed,

c0 = 1 = (1!)2, c1 = n(n− 1) +
n2

σ
> 3 · 2 > (2!)2.

Assume ci ≥ [(i + 1)!]2, i = 0, 1, . . . , k. Since (u∗i )
′ = ci[(i + 1)n − 2i]x(i+1)n−2i−1,

(u∗i )
′′ = ci[(i + 1)n− 2i][(i + 1)n− 2i− 1]x(i+1)n−2i−2, then

u∗k+1(x) =
k

∑
i=0

k!
i!(k− i)!

[
((i + 1)n− 2i)((i + 1)n− 2i− 1) +

+
1
σ
((i + 1)n− 2i)((k− i + 1)n− 2(k− i))

]
cick−ix(k+2)n−2(k+1).
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From the sum on the right-hand side of the last equality, we take only the term for
i = k and use the induction hypothesis. We obtain that

ck+1 > [(k + 1)n− 2k][(k + 1)n− 2k− 1][(k + 1)!]2. (23)

Taking into account that n ≥ 3, we find that

(k + 1)n− 2k > (k + 1)n− 2k− 1 = (n− 2)k + n− 1 ≥ k + 2.

Thus, we obtain that (23) has a lower estimate

ck+1 > (k + 2)2[(k + 1)!]2 = [(k + 2)!]2 > [(k + 1)!]2. (24)

Note that estimate (24) is rather rough; in fact, the coefficients ck grow much more
quickly.

Now, we use d’Alembert’s ratio test to determine the radius of convergence of the
series.

|x|n
∞

∑
i=0

(k + 1)!(k + 1)|xn−2t|k. (25)

By construction, the divergence of (25) implies the divergence of (18).
Consider the ratio of neighboring coefficients (25) and let it tend to infinity:

lim
k→∞

(k + 2)!(k + 2)|xn−2t|k+1

(k + 1)!(k + 1)|xn−2t|k
= lim

k→∞

(k + 2)2|x|n−2|t|
k + 1

= ∞,

if tx 6= 0. Thus, the series diverges if tx 6= 0.
Finally, if we assume that series (18) converges at some t 6= 0, x = 0; this means that

it defines the analytical function b∗(t) at the point t = 0, which specifies the boundary
condition for Equation (19) at x = 0. Such a problem according to the theorem from [18]
has a unique analytical solution in some neighborhood of the point t = 0, x = 0; i.e., series
(18) must converge at x 6= 0, which is impossible. Thus, if n ≥ 3, then series (18) converges
only at t = 0.

4. Exact Solutions. General Case

The proof of Theorem 1 ensure the existence of solutions to Equation (1) of the diffusion
wave type. Proposition 1 shows that the obtained sufficient conditions for their existence
are close to the necessary ones. However, as with the vast majority of analogues of the
Cauchy–Kovalevskaya theorem, Theorem 1 provides local solvability of the problem in a
small time-frame, which does not allow us to effectively investigate the properties of the
model. In general, these problems are still far from being completely solved. Therefore, we
continue to study the properties of solutions of the desired type in special cases. A suitable
way to perform such analysis is to find exact solutions. Besides, exact solutions are an
effective tool for verifying the results of numerical experiments, which are carried out,
for example, using the boundary element method [20].

Let us construct exact solutions to Equation (3) using the Clarkson–Kruskal direct
method [12,45]; i.e., in the form

u = ϕ(t)v(z), z = x/a1(t) + a2(t), (26)

where ϕ(t), a1(t), a2(t) are sufficiently smooth functions.
This method assumes that the term ϕ∗(t, ρ) is present on the right side of the rep-

resentation for u. However, given that we deal with the boundary mode u = 0, we set
ϕ∗(t, ρ) ≡ 0. Note the important special cases of (26).

1. If a′1(t) 6= 0, a′2(t) = 0, we have a generalized self-similar solution;
2. If a′1(t) = 0, a′2(t) 6= 0, it is a generalized traveling wave;
3. If a′1(t) = a′2(t) = 0, it is the classical separation of variables.
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To satisfy condition (4), we require that the following equality holds:

v(0) = 0. (27)

Let a1(t) 6≡ 0. Then, the diffusion wave front (4) is specified as

a(t) = −a1(t)a2(t). (28)

Substituting (26) to Equation (3), collecting terms and multiplying both parts by
a2

1(t)/ϕ2(t) leads to the following equation:

vv′′ + f (ϕv)(v′)2 +
a1

ϕ
[a′1z + a′ + g(ϕv)]v′ +

a2
1

ϕ2 [h(ϕv)− ϕ′v] = 0. (29)

In general, for arbitrary values of f and g, Equation (29) becomes an ordinary differen-
tial equation if and only if a1 and ϕ are constants and a2 is a linear function; i.e., the desired
solution is either a traveling or a stationary wave. Note that, in particular cases, there are
much wider classes of exact solutions of the type under consideration, which were studied
by the author with his students (see, for example, [32]).

Let the constants ϕ and a1 be equal to one, and the linear function a2 = −µt. For
Equation (3) this assumption does not limit the generality of the consideration. Then,
u = v(x− µt), where the function v(z) satisfies the equation

vv′′ + f (v)(v′)2 + [g(v) + µ]v′ + h(v) = 0. (30)

For µ 6= 0, we have a traveling wave, and for µ = 0, it is a stationary wave. Note that
Equation (30) belongs to the family of generalized Lienard type equations [46], which are
well studied. However, usually, the case v(0) 6= 0 is considered [47].

If condition (27) holds, Equation (30) is unresolvable with respect to the higher deriva-
tive. Assuming v = 0, t = 0 in both sides, we can see that since h(0) = 0, then

f (0)(v′(0))2 + [g(0) + µ]v′(0) = 0.

In other words, v′(0) cannot take any value here, as for the Cauchy problem for second-
order ODEs in the general case. It can be either v′(0) = 0 or v′(0) = −[g(0) + µ]/ f (0),
where f (0) 6= 0. It follows from Theorem 1 that the first value leads to the trivial solution
v ≡ 0, and the second to a non-trivial solution.

So, let us consider for Equation (30) the Cauchy conditions

v(0) = 0, v′(0) = −[g(0) + µ]/ f (0). (31)

The classical existence theorems are inapplicable for problem (30), (31) due to the
presence of a singularity. Nevertheless, it follows from Theorem 1 that if the conditions
f (0) > 0, g(0) 6= µ, h(0) = 0 are satisfied and the functions f , g, h are analytical at the
point v = 0, problem (30), (31) has a unique analytical solution at the point z = 0. Moreover,
the coefficients of series (6) are constant.

We make the substitution v′(t) = p and move to the space of variables v, p. Then,
problem (30), (31) takes the form

vp
dp
dv

+ f (v)p2 + [g(v) + µ]p + h(v) = 0, p(0) = −µ + g(0)
f (0)

. (32)

The solution to problem (32) can be constructed in the form of a convergent series
with respect to the powers of v. Its radius of convergence depends on the properties of the
functions f , g, h. In general, it is a challenging task to study the properties of such solutions.
Therefore, we further consider some meaningful particular cases where this is possible.
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5. Exact Solutions. Particular Cases

In the literature and applications, the most common cases are when the functions
Φ1, Φ2, Φ3 are powers [4,8].

1. Consider the case when f (v) = 1/σ > 0, g(v) = h(v) ≡ 0, which corresponds to
the porous medium equation [4]. Then, problem (32) with p 6= 0 takes the form

v
dp
dv

+
p
σ
+ µ = 0, p(0) = −µσ. (33)

Equation (33) with separable variables is easily integrated, leading to the solution
p = −µσ + Cv−1/σ. From the initial conditions, it follows that C = 0 and therefore
v = −µσz; i.e., u = −µσ(x − µt). This solution can be easily obtained without any
transformations. Still, we have shown here in passing that this is the unique continuous
non-trivial solution to problem (3), (4) in the considered case. Figure 1 shows the diffusion
wave corresponding to this solution.

v

t

x

x t= m

Figure 1. Diffusion wave u = −µσ(x− µt).

2. Consider f (v) = 1/σ > 0, g(v) = αvβ, α > 0, β > 0, h(v) ≡ 0. This case
corresponds to the convection–diffusion equation [9,10]. Then the problem (32) with p 6= 0
takes the form

v
dp
dv

+
p
σ
+ µ + αvβ = 0, p(0) = −µσ. (34)

Let us replace the independent variable with the variable w = αvβ. Then, since
w|v=0 = 0, problem (34) takes the form

αβw
dp
dw

+
p
σ
+ µ + w = 0, p(0) = −µσ. (35)

Equation (35) is a first-order linear ODE and can also be explicitly integrated. The gen-
eral solution is

p = − σw
αβσ + 1

+ Cw−1/αβσ − µσ.

The initial condition leads to C = 0. Then, returning to the variables v, z, we have the
Cauchy problem:

dv
dz

= − σαvβ

αβσ + 1
− µσ, v(0) = 0. (36)

The solution to Equation (36) has the form

z = −
(

β +
1

σα

) v∫
0

dζ

ζβ + µ(σβ + 1/α)
≤ 0. (37)

Denote the right-hand side of (37) as Z(v). Since the integrand is increasing, Z(v)
decreases with respect to v. This means that it is invertible, and there is v = Z−1(z), which
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is the solution to Equation (32) in the considered case. Thus, two different variants of the
solution behavior are possible.

1. If 0 < β ≤ 1, then limv→∞ Z(v) = −∞, and the function Z−1(z) is defined for all
z ≤ 0, and limz→−∞ Z−1(z) = +∞.

2. If β > 1, then the integral on the right side of (37) converges, and limv→∞ Z(v) =
−Z∗—thus, the function Z−1(z) is defined on the half-interval (−Z∗, 0], and
limz→−Z∗ Z−1(z) = +∞. Note that for non-integer β, the considered case does not sat-
isfy the conditions of Theorem 1.

If β ∈ Q, then the function Z(v) can be obtained explicitly. For β = 1 and β = 2,
the solutions (we denote them by v∗1 and v∗2) have the rather simple and descriptive form

v∗1(z) = µ

(
σβ +

1
α

)[
exp

(
− zσα

βσα + 1

)
− 1
]

,

v∗2(z) =

√
µ

(
σβ +

1
α

)
tan
(
−z
√

µα

βσα + 1

)
.

Replacing z with x− µt, we obtain the solutions u = v∗1(x− µt) and u = v∗2(x− µt)
to problem (3), (4). Figures 2 and 3 show the solutions v∗1(z) and v∗2(z), respectively (a),
as well as corresponding diffusion waves (b).

v

z

1
z

v e
-

= -

(a)

v

t

x

x t= m

(b)

Figure 2. (a) Solution v∗1(z) and (b) the diffusion wave.

v

z

tan( )v z= -

(a)

v

t

x

x t= m

(b)

Figure 3. (a) Solution v∗2(z) and (b) the diffusion wave.
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3. Finally, we consider the case where f (v) = 1/σ > 0, g(v) ≡ 0, h(v) = αvβ, α >
0, β > 0, which corresponds to the generalized porous medium equation [4,8]. Then
problem (32) takes the form

vp
dp
dv

+
p2

σ
+ µp + αvβ = 0, p(0) = −µσ. (38)

Let us change the independent variable in Equation (38), as was performed in case 2,
w = αvβ. Then, problem (38) takes the form

βwp
dp
dw

+
p2

σ
+ µp + w = 0, p(0) = −µσ. (39)

Equation (39) is nonlinear and apparently cannot be explicitly integrated. Previ-
ously, we studied problem (39) using the qualitative theory of differential equations [34].
The study showed that the function p(w) is increasing, and there is a point w∗ > 0 such that
p(w∗) = 0, lim

w→w∗−0
p′(w) = +∞. The point can be determined numerically, since problem

(39) does not have singularities on the interval [0, w∗). Next, we consider the problem

dw
dp

= − βwp
p2/σ + µp + w

= 0, w(0) = w∗, (40)

where w is an unknown function and p is an independent variable. The solution to problem
(40) decreases on the ray [0,+∞), and lim

p→+∞
w(p) = +0.

Returning to the variables v, z, we obtain the solution v = v∗(x) of the following form
(see Figure 4a). For the original problem, we obtain the solution u = v∗(x− µt), which is a
solitary wave or a soliton (see Figure 4b).

v

z

*
v

*
z-

*
z-

(a) (b)

Figure 4. (a) Solution v∗(z) and (b) the soliton.

6. Discussion

The results obtained can be divided into two parts. The first part relates to the strictly
proven propositions regarding the existence and uniqueness of solutions to the initial-
boundary problem with a specified diffusion wave front. Theorem 1 generalizes previously
proven statements and is a natural development of them. Although Proposition 1 concerns
one particular case, it is quite non-trivial; it is based on ideas that go back to the classic
example of S. V. Kovalevskaya, which, according to the letters of Karl Weierstrass, was
unexpected for the mathematical community at that time [48]. Moreover, we managed to
clearly separate the cases when the solution exists on the entire numerical plane, when
a numerical explosion is observed and when the solution is constructed in the form of a
series, but the region of its convergence consists of the single point t = 0, x = 0.
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The second part of the results concerns the construction and study of exact solutions
in the form of a diffusion wave. In particular cases—but the most physically meaningful
cases—we have investigated the properties of solutions. Sometimes, it has been possible to
bring the construction to an explicit formula. The solutions obtained also behave differently:
they can exist on the entire numerical plane, tending to infinity as they move away from
the wave front; however, a numerical explosion is also possible at a finite time interval.
Finally, the most interesting case that takes place for the generalized porous medium
equation is related to the appearance of the soliton: it moves at a constant speed without
changing shape.

7. Conclusions

In summary, we note that a nonlinear second-order evolutionary parabolic equation
of a reasonably general form has been considered. The questions of the existence and
uniqueness and properties of solutions with the form of a diffusion wave propagating over
an absolutely cold (zero) background with a finite velocity have been studied. The propo-
sitions regarding the existence and uniqueness of solutions in the analytical functions
class have been proved, and an example that is analogous to the classic example of S. V.
Kovalevskaya in the considered case has been constructed. Since the theorems do not
allow us to investigate the properties of solutions, we have considered ansatzes that reduce
solution construction to Cauchy problems for ODEs. We managed to integrate them and
obtain information about the properties of solutions in particular cases that are particularly
interesting for applications.

It is supposed that this paper should give rise to a whole line of research on parabolic
evolution equations with singularities. In our opinion, the following studies are of the
greatest interest:

1. The creation of a method for the numerical solution of the considered problems,
based on the use of modern computing technologies. This can be, for example,
the boundary element method, which the author has been developing in recent years
in collaboration with colleagues. In this case, the segments of the constructed series
will be used to eliminate the singularity;

2. Increasing the dimension of problems; i.e., considering cases when the desired func-
tion depends on two x1, x2 or three spatial variables x1, x2, x3. Here, the most interest-
ing case is when the diffusion wave front cannot be resolved with respect to one of
the coordinates xi and is, for example, a cylindrical surface with a closed generatrix;

3. The complication of the models considered as systems of equations can help in more
accurately describing complex natural processes [23,49];

4. The final stage of the research cycle should be the use of the developed model–
algorithmic apparatus to solve applied problems related to the modeling of processes
that occur in Lake Baikal. The lake is the largest natural reservoir of fresh water and
is included in the UNESCO World Heritage List. The author lives and works close to
this unique natural object and participates in scientific projects aimed at studying and
saving it.
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