
symmetryS S

Article

KRRecover: An Auto-Recovery Tool for Hijacked Devices and
Encrypted Files by Ransomwares on Android

Senmiao Wang 1, Sujuan Qin 1,*, Nengqiang He 2,*, Tengfei Tu 1,*, Junjie Hou 1, Hua Zhang 1 and Yijie Shi 1

����������
�������

Citation: Wang, S.; Qin, S.; He, N.;

Tu, T.; Hou, J.; Zhang, H.; Shi, Y.

KRRecover: An Auto-Recovery Tool

for Hijacked Devices and Encrypted

Files by Ransomwares on Android.

Symmetry 2021, 13, 861. https://

doi.org/10.3390/sym13050861

Academic Editor: Giuseppe Bagliesi

Received: 10 April 2021

Accepted: 5 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China;
wangsenmiao@bupt.edu.cn (S.W.); FoxyWinner@bupt.edu.cn (J.H.); zhanghua_288@bupt.edu.cn (H.Z.);
yijieshi2000@bupt.edu.cn (Y.S.)

2 National Computer Network Emergency Response Technical Team/Coordination Center of China
(CNCERT/CC), Beijing 100029, China

* Correspondence: qsujuan@bupt.edu.cn (S.Q.); hnq@cert.org.cn (N.H.); tutengfei.kevin@bupt.edu.cn (T.T.)

Abstract: Ransomwares on Android have become a challenging threat, performing tasks such as
hijacking screen resources, locking devices, and encrypting files. Even worse, with the evolution of
ransomwares, many ransomwares can disable USB interfaces of mobile devices. It is difficult for
users to recover their devices or decrypt files with the help of other equipment and gives monetary
damages to victims. In this paper, we analyse the symmetry between the ransom behaviours and
the source code of screen resource hijacked ransomwares, devices locked ransomwares and files
encrypted ransomwares. We also propose strategies of recovering hijacked resources, recovering
hijacked devices and decrypting encrypted files. To protect mobile devices and private files from
ransomwares, we design and implement an automatic recovery application—KRRecover—which is
used to recover the hijacked devices and decrypt encrypted files on Android.

Keywords: Android ransomwares; files decryption; hijacked devices recovery

1. Introduction

Ransomware is a kind of malware which can lock devices, hijack screen resources,
and encrypt files. Ransomwares are low-cost in implementation but pose great threat to
users. In recent years, with the increasing market share of Android systems, the number of
ransomwares is constantly increasing. According to statistics, ransom events in 2020 are 20%
higher than that in 2019 [1–3]. To reduce the loss of ransomwares to users, researchers have
made positive response from the aspects of system modification, ransomwares detection,
and devices recovery.

The Android system has been launched many versions to prevent attackers from
implementing ransomwares by making the system window top set. Android L restricts
the use of getRunningAppProcesses and getAppTasks methods to resist the Activity
hijacking ransomwares [4]. Android N forces developers can only dynamically apply
for related permissions when they need to reset or delete the password of devices [5].
Android O has disabled five ransomwares commonly used window types, for example,
TYPE_PHONE [6]. According to the official statistics of the distribution of Android
operating systems of various versions, 61.3% of devices use Android system below Android
N [6]. It indicates that there are still many devices facing the high-risks brought by
ransomwares. In addition, different system versions have different ways to make windows
overhead the screen. So it is hard to find a unified way to protect devices from being
attacked by ransomwares. It is a challenge we are facing for.

Some researchers proposed some methods on how to recover files encrypted by
ransomwares on PC. These studies are mainly based on monitoring different objects to
obtain related information and recover encrypted files. Lee et al. [7] proposed the method

Symmetry 2021, 13, 861. https://doi.org/10.3390/sym13050861 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://www.mdpi.com/2073-8994/13/5/861?type=check_update&version=1
https://doi.org/10.3390/sym13050861
https://doi.org/10.3390/sym13050861
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050861
https://www.mdpi.com/journal/symmetry


Symmetry 2021, 13, 861 2 of 18

to obtain keys and decrypt files by monitoring crypto methods. PayBreak [8], a file recovery
tool based on Windows 7 system, obtains encryption information by monitoring dynamic
link libraries and static link libraries. In addition, it uses escrowed keys and offset iterations
to decrypt encrypted files. In terms of automatic recovery of locked devices, to the best of
our best knowledge, there is no relevant research that we can reference on PCs.

With the evolution of ransomwares, some ransomwares already have the function
of automatically disabling the USB interfaces of devices, i.e., ransomwares can turn off
USB debugging switches automatically after they are activated. It means that users cannot
recover their devices or decrypt files with the help of other devices.

Contributions To protect mobile devices and private files from ransomwares, we
proposed strategies of recovering hijacked screen resource, locked devices and encrypted
files. We designed and implemented KRRecover, an auto-recover tool for hijacked devices
and encrypted files on Android. To our best knowledge, this is the first time to implement
the automatically recovery application to recover hijacked devices and encrypted files. The
main contributions are as follows.

Analysis of three typical ransom behaviours on Android. We decompiled 4750
ransomwares and extracted their sensitive API callings and declared permission. For
the convenience of research, we used DBSCAN to cluster ransomwares with familiar
behaviours together. We found that ransomwares have three typical behaviours, including
hijacking screen resource, locking devices and encrypting files. We analysed the three
typical behaviours based on source code.

Strategies for recovering hijacked devices and encrypted files. After analyzing the
implementation of ransom behaviours, we proposed solutions for recovering hijacked
devices and recovering encrypted files.

An on-device tool for recovering hijacked devices and encrypted files. To reduce
the loss caused by ransomwares, we implemented KRRecover, an on-device tool of recov-
ering hijacked devices and encrypted files. After KRRecover obtain root authority, it can
automatically delete passwords ransomwares set and recover hijacked devices. KRRecover
also can recover files encrypted by cryptoAPIs.

2. Related Work

Recently, how to reduce the loss caused by ransomwares has received a lot of atten-
tion [8–13]. To our best knowledge, strategies of recovery against ransomwares can be
divided into hijacked devices recovery and encrypted files recovery.

2.1. Hijacked Devices Recovery

Hijacked devices recovery aims to release hijacked screen resource and unlock devices.
At present, we can achieve the goal with the help of third party tools or Android boot
loader mode.

Android Debug Bridge(ADB) [14] is a tool to interact with simulators or real devices
through the computer. The tool provides a variety of operation commands and access to
UNIX shell. When the devices are locked, if the USB debugging interface is open, users
can recover them with the help of ADB by means of connecting the external device via
USB interface.

If the USB debugging interface is closed, Android Debug Bridge cannot be used for
hijacked devices recovery.

FastBoot [15] is a boot loader mode. With the help of FastBoot, developers can rewrite
the system on devices without USB connection. If the device is locked, users can restore
the use of the device by rewriting the system with FastBoot [15].

However, rewriting the system may have the risk of losing data on the device. In ad-
dition, different device models have different ways to switch into FastBoot [16] by means
of pressing different buttons. It is not uniform. Different Android devices have different
system designs. The operations are also different after switching into the third-part re-
covery with the help of FastBoot [15]. If the device system has a mandatory foreground,



Symmetry 2021, 13, 861 3 of 18

users need to recover the device with the help of database operations. It requires that the
operators are professionals.

2.2. Encrypted Files Recovery

Encrypted files recovery aims to decrypt files encrypted by ransomwares. At present,
many files encrypted by ransomwares are still recovered by means of using reverse en-
gineering. Android security analysis people or users have some background knowledge
about Android can find the encryption key in the source code, so as to use the encryption
key to decrypt files.

Later, with the development of technology of dynamic test, followed much research
that involved obtaining target data when the application is running on Android, like
Mobile-sandbox [17]. It can obtain the target data by hooking the underlying function of
the application. Research recovered encrypted files on PC by means of using sandbox [17] to
hook the underlying function of ransomwares and obtain encryption keys. Then encrypted
files can be decrypted with encryption keys. To our best knowledge, there is still no tool
for recovering encrypted files on Android.

Chen J et al. [18] use lure technology to protect privacy files on Android. It makes the
file index as the lure files to induce ransomwares encrypting the lure file after ransomwares
are activated, so as to protect users’ private files. It requires lure files should be deployed
effectively or privacy files still can be encrypted by ransomwares.

In the light of these, there is an urgency for a light and users-friendly on-device tool of
recovering hijacked devices and encrypted files.

3. Analysis of Ransomwares

In this section, we will give the method of ransomwares analysis and analyse the three
typical behaviours based on source code.

3.1. Method of Ransomwares Analysis

The method of ransomwares analysis is shown in Algorithm 1. For the convenience
of analysis, we use DBSCAN, a kind of clustering algorithm, to cluster ransomwares with
familiar behaviours together. We use cluster[] to represent the result of clustering, n represent
the number of ransomwares we select to analyse in each cluster and sus to save the relation
between ransom behaviours and related source code.

To speed up the efficiency of analyzing, we randomly select n ransomwares in each
cluster. For each ransomware, we firstly decompile the ransomware to obtain readable
AndroidManifest.xml and classes.dex. We extract sensitive permissions in Android-
manifest.xml and save them in permissionList. For each permission, if there exists re-
lated sensitive API callings in classes.dex, save < permission, APIcallings > as a key/value
pair in sus. We extract sensitive API callings in classes.dex and save them in APIList.
If some API callings in APIList can be combined to represent ransom behaviour, save
< behaviour, APIcallings > as a key/value pair in sus. With the help of sus, permissionList and
APIList, we can more accurate analysis results.

After analyzing 4700 screen resource and devices hijacked ransomwares and 126 files
encrypted ransomwares from open dataset, we found that nearly 98.4% ransomwares have
the behaviour of hijacking screen resource. Nearly 97% ransomwares have the behaviour
of locking devices and 2.6% ransomwares have the behaviour of encrypting files, i.e.,
ransomwares usually extort users by these means.



Symmetry 2021, 13, 861 4 of 18

Algorithm 1 Ransomware Analysis
Input: ransomwares
1: function ANALYSIS
2: Cluster[]← DBSCAN(ransomwares)
3: for i← 0 to num do
4: Random (n ransomwares in cluster[i])
5: for j← 0 to n do
6: Decompile (cluster[i][j])
7: permissionList.append (sensitive permissions)
8: if (permissionList) then
9: if (related sensitive API callings) then

10: sus.append(< permission, APIcallings >)
11: end if
12: end if
13: APIList.append(sensitive API callings)
14: if (APIList) then
15: if (some API callings can be combined to represent ransom behaviors) then
16: sus.append(< behavior, APIcallings >)
17: end if
18: end if
19: end for
20: end for
21: Manual Analyze(sus, permissionList, APIList)
22: return (< behavior, implementation >))
23: end function

3.2. Hijack Screen Resource

Screen resource hijacking is a kind of ransom behaviour. It prevents users from using
their devices normally. As shown in Figure 1, it constantly set interfaces of ransomwares
as the top interfaces even users click Home buttons or Back buttons. The typical screen
resource hijacking can be represented as RHSR. As shown in Formula (1), RHSR can be
represented as a tuple with BHSR and MHSR. As shown in Formula (2), BHSR is the subset
of behaviours of screen resource hijacking, including Home button disabled, Back button
disabled and so on. As shown in Formula (3), MHSR is the subset of the code implementation
of BHSR. FULL_SCREEN and setFlags with parameter 1024 can set activities as the first
priority and make interfaces as the top activities. setCancelable, OnkeyDown and other
methods can disable buttons like Home buttons and Back buttons.

RHSR = {< BHSR, MHSR >} (1)

BHSR ⊆ {btn_disHome, btn_disBack, USB_dis, ...} (2)

MHSR ⊆ { setFags (1024), setCancelable , . . .} (3)

Figure 1. Screen Resource Hijacking.



Symmetry 2021, 13, 861 5 of 18

3.3. Lock Devices

Device locking is the most common ransom behaviour. As shown in Figure 2, it pre-
vents users from using their devices normally by means of resetting users’ passwords.
Typical device locking can be represented as RLD. As shown in Formula (4), RLD can be
represented as a triple with BLD,MLD and ALD. ALD contains the absolute paths of databases
and files with passwords. As shown in Formula (5), BLD represents typical behaviours,
including buttons disabled, USB disabled, devices locked and so on. MLD represents the
code implementation of BLD. The detailed implementation of devices locking is described
below in Algorithm 2.

Figure 2. Devices Locking.

Algorithm 2 Implementation of Devices Locking

Input: locksetting.db, save_path, password
1: Device_salt← get_salt(lockingsetting.db)
2: Pass_MD5←MD5(password + device_salt)
3: Pass_SHA1← SHA1(password + device_salt)
4: Key← hex(Pass_MD5) + hex(Pass_SHA1)
5: Delete(original_key)
6: if save_path then
7: Write(key, save_path)
8: else
9: Write(key,′ /data/system′)

10: end if
11: Lock device

The locksetting.db represents the database with information of salt value. The save_path
represents the absolute path to save key value with the new password. The password
represents the password proclaimed in writing. The implementation of devices locking
contains three steps.

(1) New key initialization. The attacker obtains the salt vale of the device by means
of analyzing related databases or using Android reflection. After getting the salt value,
the attacker splices the password and salt value together as a new result and respectively
calculate its MD5 and SHA1 value. Then the attacker splices the MD5 and SHA1 as a
new key.

(2) Key substitution. After the new key is initialized, it is written in password.key.
The attacker deletes the file with the original password and uses the new key to replace the
original one.

(3) Device lock. After the key has been replaced, the attacker makes the ransomware
lock the device by means of calling lockNow().

RLD = {< BLD, MLD, ALD >| ALD = { path }} (4)

BLD ⊆ { dis button , dis USB , lock devices ... } (5)



Symmetry 2021, 13, 861 6 of 18

3.4. Encrypt Files

Files encryption is a kind of typical ransom behaviour. As shown in Figure 3, it pre-
vents users from using or viewing files by means of encrypting files. Sometimes files
encryption is accompanied by devices lock or screen resource hijacking. The typical files
encryption can be represented as REF. As shown in Formula (6)–(8), REF can be repre-
sented as a triple with BEF,MEF and AEF. AEF represents the absolute path of private files.
BEF represents typical behaviours, including finding target files, encrypting files and so
on. MEF represents the code implementation of BEF. The typical files encryption can be
described below.

(1) Find target files. The attacker usually targets the most frequently used files or files
suffixed with .txt, .jpg, .doc and so on. The attacker finds eligible files and adds their paths
to the category.

(2) Encrypt files. To encrypt files, the attacker has to apply permissions related to
reading or writing files. The encryption methods like AES or DES are called to encrypt
target files.

(3) Substitute files. After encrypting target files, the attacker usually substitutes the
original files by means of overlaying original files directly or deleting original files and
copying encrypted files to original paths.

Figure 3. Encrypting files.

REF = {〈BEF, MEF, AEF >|AEF = { path }} (6)

BEF ⊆ {delete_ f iles, ecrypt_ f iles, f ind_target...} (7)

MEF ⊆ {AES(), DES(), EndecodeUtils.deCrypto() . . .} (8)

4. Method of Recovery

In this section, we propose the method to recover devices or files infected by ran-
somwares with hijacking screen resource, locking devices and encrypting files.

Assumptions. The research of auto-recovery method is based on the following two
assumptions in this paper. First, the auto-recover tool can get the root permission by pre-
loading. It will run in the background after users install it and restart their devices, i.e., there
is no ransomwares on devices before the auto-recover tool installed and activated. Second,
we can recover the encrypted files by using cryptoAPIs and non-dynamic encrypting. As
we aim at recovering encrypted files on Android, the way of decompiling ransomwares
and obtaining the key is not in our consideration.

Hijacked Screen Resource Recovered. The behaviour of hijacking screen resource is
implemented by set different parameters of the system windows, so that ransomwares
can make their interfaces the highest priority. Therefore, the key of recovering hijacked
screen resource is to judge whether the current top-level Activity or Service belongs
to ransomwares.

To recover hijacked screen resource, it is necessary to monitor the processes and top-
level activities or services on devices. If an application in the monitor list is running and
the current top-level activity or service belong to the application, the device has probably
been infected by ransomwares. So we need root permission to kill the running activities
and services to recover the screen resource.

Locked Devices Recovery. The system will search for the file that contains encryption
information in the /data/system/ directory when the device is woken up. If the file is



Symmetry 2021, 13, 861 7 of 18

found, the password information in the file will be read and set the password as the
device unlock password. If the file is not found, the device lock password will not be set.
Therefore, the key of recovering locked devices is to judge whether the configuration file in
/data/system/ directory is written by ransomwares.

To recover locked devices, it is necessary to monitor the I/O processes and the op-
eration logs on devices. If an application in the monitor list is running and the record of
reading or writing .key files in /data/system/ directory are found in the log, the device
has probably been infected by ransomwares. So we need root permission and read or write
storage permission to delete the .key file and recover the locked devices.

Encrypted Files Recovery. Through manual analysis of files encrypted ransomwares
that collected from AMD [19] and Derbin [20] dataset, we find that most of these ran-
somwares encrypt files by private key encryption. In addition, it is difficult for developers
to generate different private keys for different infected devices [11], i.e., a files encrypted
ransomware is based on one encryption key rather than the generation of different keys for
different devices. Therefore, the key of recovering encrypted files is to obtain the key of
encrypting files.

We obtain the encryption key when ransomwares encrypt files with the help of
Xposed [21] on Android. To avoid generating too many redundant logs and occupying
too much storage space of the devices, we rewrite the hook file of Xposed [21] so that we
can only get the information of the encryption APIs and save the related information as
a log file in /sdcard/ directory. At present, most of the ransomwares use AES or DES to
encrypt files. Therefore, in this paper, we only choose to recover encrypted files by AES or
DES encryption algorithms. We obtain the encryption key by retrieving the corresponding
dynamic logs of ransomwares. After that, we can use key to decrypt encrypted files and
recover them.

5. A Device and Files Recovery Application

In this section, KRRecover is proposed. KRRecover is designed to recover hijacked
devices and encrypted files by ransomwares. In addition, the workflow of KRRecover is
shown as Figure 4.

Figure 4. Workflow of KRRecover.



Symmetry 2021, 13, 861 8 of 18

KRRecover includes the initialization part, monitor-trigger part, and recovery part.
The initialization part includes white list initialization and monitor initialization. KR-
Recover initializes the white list by means of collecting the package name of system
applications and pre-installed applications. KRRecover initializes the monitor list with the
help of R-PackDroid [22–24]. R-PackDroid is an on-device malwares detector for Android
applications. If an application is judged as a malware, its packagename will be added in the
monitor list. The monitor-trigger part updates the monitor list and locates the encrypted
files by monitoring the status of applications and the information of encryption methods.
The recovery part recovers the hijacked devices and encrypted files by controlling the
processes and monitoring encryption methods.

5.1. Monitor—Trigger Algorithm

The monitor-trigger part decides whether activates the recovery part by means of
monitoring the real-time status changes of applications, processes changes and changes
of target methods. Algorithm 3 shows how the monitor-trigger part works of KRRecover.
pname in the algorithm represents the packagename of the application, process represents
the process of the application, sus_run represents the tag of whether the application is active,
m_list represents the monitor list, w_list represents the white list and hookin f o represents
logs of monitored methods.

Algorithm 3 Monitor of KRRecover

Input: pname, method
1: Function Monitor (pname, method)
2: sus_run← 0
3: process← process o f pname
4: log← ””
5: if uninstall app then
6: if pname in w_list or pname in m_list then
7: remove pname in w_list or m_list
8: end if
9: end if

10: if new install app or update app then
11: add pname in m_list
12: activate app
13: if app is ransom then
14: recover device
15: else
16: remove pname in m_list
17: add pname in w_list
18: end if
19: end if
20: if (pname in m_list and provess is active) then
21: sus_run← 1
22: hook method
23: log← hook in f o
24: end if
25: return sus_run, log

KRRecover initializes the running tag of applications, the processes ID of monitored
applications and the operation log of monitored methods. If KRRecover monitors the
uninstall information of the application and the package name of the application is in the
white list or monitor list, remove the package name. If KRRecover monitors the install or
update information of the application, it will add the package name of the application to the
monitor list and activate the application. If the application is a ransomware, KRRecover will
recover the device or encrypted files. If the application is not a ransomwares, KRRecover



Symmetry 2021, 13, 861 9 of 18

will move its package name from monitor list to the white list. KRRecover will traverse
the monitor list to find whether the target application is in the monitor list and is running
or not. If so, KRRecover will change the running status tag to 1 and hook the encryption
method and assign the operation log to the log variable.

5.2. Devices Recovery Algorithm

The devices recovery is an important part of the recovery part. Algorithm 4 shows the
devices recovery algorithm. m_list represents the monitor list, sus_run represents the tag of
whether the application is active, panme in the algorithm represents the packagename of the
application and Monitor represents aforementioned method which can monitor processes
and other methods. For convenience of explanation, the storage path of password will be
represented by ”/data/system/ .key”.

Algorithm 4 Devices Recovery of KRRecover

1: Function Devices Recover
2: for i← 0 to len(m_list) do
3: sus_run, log←Monitor(m_list[i], crypto APIs)
4: if sus_run = 1 then
5: pname← m_list[i]
6: kill the process o f pname
7: end if
8: switch password type
9: case input :

10: remove /data/system/password.key
11: case graph :
12: remove /data/system/gesture.key
13: end for
14: End function

The devices recovery will be activated after it received the result of Monitor methods.
KRRecover will be activated automatically after the device be operated. The monitor-trigger
part updates the monitor list at anytime. If the current monitor list is empty, KRRecover
will continue monitor the applications status on the device. If the monitor list is not empty,
KRRecover will monitor every application in the list with the help of Monitor method. In
addition, return the processes status information to the variable sus_run. If the monitored
application is running, KRRecover will kill the process and recover the device according
to different hijacked strategies. In addition, KRRecover will delete the password file and
recover the hijacked device.

5.3. Encrypted Files Recovery Algorithm

The encrypted files recovery part is another critical part of the recovery part. Algorithm 5
shows the encrypted files recovery algorithm. m_list represents the monitor list, sus_run

represents the tag of whether the application is active, panme in the algorithm represents
the packagename of the application and Monitor represents aforementioned method which
can monitor processes and other methods.



Symmetry 2021, 13, 861 10 of 18

Algorithm 5 Encrypted Files Recover of KRRecover

1: Function Files Recover
2: for i← 0 to len(m_list) do
3: sus_run, log←Monitor(m_list[i], crypto APIs)
4: if sus_run = 1 and crypto API in f o in log then
5: key← crypt key in log
6: locate encrypted f iles
7: decrypt f iles
8: end if
9: end for

10: End function

KRRecover will traverse the monitor list and monitor whether the encryption methods
are used in monitored applications. The variable sus_run means whether the processes of
the application are active. 1 means the application is running and 0 means the application
is not running. At the meantime, KRRecover will assign the operation logs to variable
log. After that, KRRecover will judge whether the monitored application is running and
whether it has encrypted files by coming the sus_run and log. If so, KRRecover will obtain
the encryption key and locate the encrypted files by analyzing the operation logs. Then it
will decrypt the encrypted files with the key.

6. Evaluation

This section evaluates the capabilities and effectiveness of KRRecover. We will first
introduce the composition of the dataset. Then we will design four experiments to test
KRRecover. For each experiment, we will first ask a question. Then we will describe the
experiment procedure and result.

6.1. Dataset

The ransomwares we use in the experiment come from the open-source dataset
VirusTotal [25] and AMD [19]. The composition of the dataset and the detailed behaviourss
of ransomwares are shown in Table 1. For the convenience of evaluation, we divided these
ransomwares into four groups.

Table 1. The Composition of Test Data.

Number Lock Devices Hijack Screen Resource Encrypt Files

Group1 475 X
Group2 25 X
Group3 108 X
Group4 18 X X

Group 1: It contains 475 ransomwares with locking devices behaviour. If these
ransomwares are activated, ransomwares will automatically reset passwords and lock
devices. Taking ransomwares in Group 1 as test data can evaluate whether KRRecover can
recover hijacked devices.

Group 2: It contains 25 ransomwares with hijacking screen resource. If these ran-
somwares are activated, ransomwares will automatically hijacking screen resource, for
example, their interfaces continued until users pay ransom. Taking ransomwares in Group 2
as test data can evaluate whether KRRecover can recover hijacked screen resource.

Group 3: It contains 108 ransomwares with encrypting files. If these ransomwares
are activated, ransomwares will automatically encrypt files. Users cannot open their files
normally until they pay ransom. Taking ransomwares in Group 3 as test data can evaluate
whether KRRecover can recover encrypted files.

Group 4: It contains 18 ransomwares with both locking devices and encrypting files.
If these ransomwares are activated, ransomwares will automatically reset passwords, lock



Symmetry 2021, 13, 861 11 of 18

devices and encrypt files. Taking ransomwares in Group 4 as test data can evaluate whether
KRRecover can recover devices and files when locking devices appeared simultaneously
with encrypting files.

6.2. Experiments

All the experiments run on a 12G memory, MSM8974 CPU model, 3931Amh bat-
tery capacity, Android 4.4 test device. The version of basic tools is SuperSU v2.79 and
XposedInstaller for Android 4.0-4.4.

Before KRRecover is installed, the environment configuration should be set with three
steps. Firstly, we got system root privileges with the help of SuperSU. Then we installed
XposedInstaller and assign root permissions. Lastly, we installed the sandbox, put the
configuration file in the specified location and activated the sandbox module.

To give a better evaluation of KRRecover, we will answer the following four questions.
For each question, we will first design an experiment and give the results of the experiment.
Then we will give a brief summarization of the experiment.

Q1: Can KRRecover automatically recover devices hijacked by ransomwares?
Q2: Can KRRecover automatically decrypt files encrypted by ransomwares?
Q3: Can KRRecover recover hijacked devices and encrypted files against hybrid ran-

somwares?
Q4: What is the efficiency of KRRecover?

6.2.1. RQ1: Can KRRecover Automatically Recover Devices Hijacked by Ransomwares?

In this experiment, we took ransomwares in Group 1 and Group 2 as the test dataset.
We installed and activated 475 devices locking ransomwares and 25 screen resource hijacking
ransomwares on an Android device. To avoid the interplay between different ransomwares,
we uninstalled the former ransomware before we installed a new ransomware.

We found that KRRecover can automatically recover the device against 475 devices
locking ransomwares and KRRecover can recover screen resource against 25 screen resource
hijacking ransomwares. The recovery time is within 1s after each ransom behaviour has
been activated. Take the devices locking ransomware 5669f7847448aa9214b465f94eb3e456
(MD5) as an example, Figure 5 shows what the device like after the ransomware was
activated. We can see the device is disabled for users unless they input the correct password.
Figure 6 shows the device after KRRecover has recovered the device. We can see the
password is cancelled and users can use the device normally.

Figure 5. Locked Device.



Symmetry 2021, 13, 861 12 of 18

Figure 6. Recovered Device.

Insight. 475 devices locking ransomwares in the dataset contain PIN locking ran-
somwares, password locking ransomwares and gesture locking ransomwares. 25 screen
resource hijacking ransomwares contain setting interfaces as top level and keeping inter-
faces popping up. To some extent, KRRecover can recover hijacked screen resource and
devices against ransomwares even they implement the function of locking devices and
hijacking screen resource in many ways.

6.2.2. RQ2: Can KRRecover Automatically Decrypt Files Encrypted by Ransomwares?

In this experiment, we took ransomwares in Group 3 as the test dataset. We installed
and activated 108 files encrypting ransomwares on an Android device. To avoid the
interplay between different ransomwares, we uninstalled the former ransomware before
we installed a new ransomware. For the convenience of the test, we wrote a test.txt file as
the target file in the test device in advance.

We found that KRRecover can automatically recover files against 108 files encrypting
ransomwares. Take the files encrypted ransomware f3a79953cc2e3babbc87ff44c2bc7031
(MD5) as an example. For the convenience of test, we used test.txt as a target file. Figure 7
shows the original file which could be opened with the test sentence The txt file is used
to test ransomwares. After the ransomware was activated, as shown in Figure 8, the file
became as test.txt.enc. We couldn’t open the file normally and the content had already
become disorder code. After KRRecover decrypted the file, as shown in Figure 9, the
encrypted file test.txt.enc has been restored to test.txt. The file could be opened normally
at this time and the content of the file was consistent compared with the original file.

Figure 7. Original Files.



Symmetry 2021, 13, 861 13 of 18

Figure 8. Files Encryption.

Figure 9. Files Recovery.

Insight. We decompiled them as a manual verification. We found that these ran-
somwares implement the encryption function with the help of cryptoAPIs. KRRecover can
decrypt files that are encrypted by cryptoAPIs.

6.2.3. RQ3:Can KRRecover Recover Hijacked Devices and Encrypted Files Against
Hybrid Ransomwares?

In this experiment, we took ransomwares in Group 4 as the test dataset. We installed
and activated 18 hybrid ransomwares on an Android device. These hybrid ransomwares can
lock devices and encrypt files at the same time. To avoid the interplay between different ran-
somwares, we uninstalled the former ransomware before we installed a new ransomware.

We found that KRRecover can both recover locked devices and encrypted files against
18 hybrid ransomwares. Take the ransomware 154eab95dbb2c8134461996b14158bca (MD5)
as an example, Figure 10 is the device interface after the ransomware was activated. The
ransomware has hijacked the screen resource to distribute the user using the device and
demand a ransom. Figure 11 is the device interface after KRRecover has released the
hijacked resource. Figure 12 shows that file test.txt was encrypted as file test.txt.enc and
couldn’t be opened after the ransomware was activated. Figure 13 is the status of files
after KRRecover has decrypted the encrypted files. We can see that the encrypted files had



Symmetry 2021, 13, 861 14 of 18

been restored to test.txt. The file could be opened normally and the content of the file was
consistent compared with the original file.

Figure 10. Encrypted Devices.

Figure 11. Recovered Device.

Figure 12. Files Encryption.



Symmetry 2021, 13, 861 15 of 18

Figure 13. Files Recovery.

Insight. These hybrid ransomwares all can lock devices and encrypt files at the same
time after they are activated. KRRecover can recover hijacked devices and encrypted files
against hybrid ransomwares.

6.2.4. RQ4: What Is the Efficiency of KRRecover?

In this experiment, we evaluated the efficiency of KRRecover, including the time
consumption of encrypted recovery and energy consumption. The size of KRRecover is 4.9
MB. It runs on a 12G memory, MSM8974 CPU model, 3931 Amh battery capacity, Android
4.4 test device.

To test the efficiency of files decryption, we randomly generated 200 files with different
sizes in the test device and activated the ransomware.

Then we used KRRecover to decrypt files and recorded the decryption time of different
files. Figure 14 shows the effect of different sizes of files decryption time. We can see
from Figure 15 that the larger the file, the longer it takes to decrypt. For each 1 MB size
increase, the decryption time needs to be increased by 20 s or so. For the size of a private
file in device is usually 5 MB on average, the longest time of recovering a file is no more
than 2 min.

Figure 14. Decryption Time of Files with Different Sizes.



Symmetry 2021, 13, 861 16 of 18

Figure 15. Energy Consumption of KRRecover.

To test the energy consumption of KRRecover, we recorded the CPU consumption,
memory consumption and electric quantity of KRRecover at runtime. The details of
energy consumption are shown in Figure 14. If KRRecover is in monitoring state, its CPU
consumption is 7%, its memory consumption is 4.08% and its electric quantity is 1.1%. If
KRRecover is decrypting files, its CPU consumption is 25.4%, its memory consumption is
4.78% and its electric quantity is 12.28%.

Insight. To our best knowledge, there is rare experiment about devices recovery tool
and files recovery tools on Android. It is difficult for us to find a benchmark to do some
comparison. However, compared with the economic losses caused by ransomwares, we
believe that users could think the decryption time and energy consumption of KRRecover
is acceptable. KRRecover can recover hijacked devices and encrypted files with little energy
consumption in a short time.

7. Conclusions and Limitations

In this paper, we propose the scheme to recover hijacked screen resource, locked
devices and encrypted files by ransomwares and implement an auto-recover tool on
Android devices. KRRecover can recover hijacked screen resources, locked devices and
encrypted files automatically even the USB debugging interfaces of their devices are
closed. To our best knowledge, we are the first one to implement the application which
can automatically recover locked devices and encrypted files. You can get KRRecover at
https://github.com/FoxyWinner/KRRecover_Release (accessed on 20 September 2020).

In this work, we looked into how to automatically recover encrypted files by Cryp-
toAPIs on Android. At present, we still can’t recover files encrypted by custom encrypting
methods or next generation encryption technologies [26]. In the future, we will devote
to the investigation of recovering files encrypted by other encrypting methods on mobile
devices. In the meantime, to our best knowledge, there is rare experiment about devices
recovery tool and files recovery tools on Android. It is difficult for us to find a benchmark
about the efficiency to do some comparison. We will consistently pay attention to different
recovery tools on Android and give more efforts on it in the future.

https://github.com/FoxyWinner/KRRecover_Release
https://github.com/FoxyWinner/KRRecover_Release


Symmetry 2021, 13, 861 17 of 18

Author Contributions: Conceptualization, S.W.; Data curation, Y.S.; Formal analysis, T.T.; Investiga-
tion, H.Z.; Methodology, S.W., S.Q. and H.Z.; Software, S.W. and J.H.; Supervision, N.H.; Writing—
original draft, S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grant
No. 2018YFB0804703..

Institutional Review Board Statement: Not applicable..

Informed Consent Statement: Not applicable.

Data Availability Statement: You can get KRRecover at https://github.com/FoxyWinner/KRRecover_
Release accessed on 5 May 2021.

Acknowledgments: This work was supported in part by the National Key R&D Program of China
under Grant No. 2018YFB0804703.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Datto’s Global State of the Channel Ransomware Report. [Online]. Available online: https://www.datto.com/resources/dattos-

global-state-of-the-channel-ransomware-report (accessed on 20 December 2020)
2. Available online: https://www.coveware.com/blog/q2-2020-ransomware-marketplace-report (accessed on 30 December 2020).
3. McAfee Labs Threats Report. 2019. [Online]. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-

mobile-threat-report-2019.pdf (accessed on 15 March 2019).
4. Shao, Y.; Luo, X.; Qian, C. Rootguard: Protecting rooted android phones. IEEE Comput. 2014, 47, 32–40. [CrossRef]
5. Costamagna, V.; Zheng, C. Artdroid: A Virtual-Method Hooking Framework on Android Art Runtime. Available online:

http://ceur-ws.org/Vol-1575/paper_10.pdf (accessed on 6 April 2016).
6. Available online: https://developer.android.com/about/dashboards/index.html (accessed on 13 Deccember 2019).
7. Lee, K.; Oh, I.; Yim, K. Ransomware-prevention technique using key backup. In Big Data Technologies and Applications; Jung, J.J.,

Kim, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 194, pp. 105–114.
8. Kolodenker, E.; Koch, W.; Stringhini, G.; Egele, M. PayBreak: Defense against cryptographic ransomware. In Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS 2017, Abu Dhabi, United Arab Emirates,
2–6 April 2017; ACM: New York, NY, USA, 2017; pp. 599–611.

9. Kharraz, A.; Robertson, W.; Balzarotti, D.; Bilge, L.; Kirda, E. Cutting the gordian knot: A look under the hood of ransomware
attacks. In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Milan, Italy, 9–10 July 2015; pp. 3–24..

10. Continella, A. Shieldfs: A self-healing, ransomware-aware filesystem. In Proceedings of the 32nd Annual Conference on
Computer Security Applications, Los Angeles, CA, USA, 5–9 December, 2016; pp. 336–347.

11. Kharaz, A.; Arshad, S.; Mulliner, C.; Robertson, W.; Kirda, E. UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware. In Proceedings of the USENIX Security Symposium 2016, Austin, TX, USA, 10–12 August 2016.

12. Andronio, N.; Zanero, S.; Maggi, F. HelDroid: Dissecting and detecting mobile ransomware. In Proceedings of the International
Symposium on Recent Advances in Intrusion Detection, Kyoto, Japan, 2–4 November 2015; pp. 382–404.

13. Scaife, N.; Carter, H.; Traynor, P.; Butler, K.R.B. Cryptolock (and drop it): Stopping ransomware attacks on user data. In Proceed-
ings of the ICDCS, Nara, Japan, 27–30 June 2016; pp. 303–312.

14. Available online: https://developer.android.google.cn/studio/command-line/adb (accessed on 13 December 2019).
15. Available online: https://source.android.com/source/running#unlocking-the-bootloader (accessed on 4 January 2020).
16. Spreitzenbarth, M.; Freiling, F.; Echtler, F.; Schreck, T.; Hoffmann, J. Mobile-sandbox: Having a deeper look into android

applications. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22 March 2013.
17. Jiang, X.; Liu, M.; Yang, K.; Liu, Y.; Wang, R. A Security Sandbox Approach of Android Based on Hook Mechanism. Secur.

Commun. Netw. 2018, 2018, 9856537. [CrossRef]
18. Chen, J.; Wang, C.; Zhao, Z.; Chen, K.; Du, R.; Ahn, G.J. Uncovering the Face of Android Ransomware: Characterization and Real

time Detection. IEEE Trans. Actions Inf. Forensics Secur. 2018, 13, 1286–1300. [CrossRef]
19. Available online: http://amd.arguslab.org (accessed on 3 March 2019).
20. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C.E. DREBIN: Effective and Explainable Detection of

Android Malware in Your Pocket. In Proceedings of the Network Distributed System Security Symposium 2014, San Diego, CA,
USA, 23–26 February 2014.

21. Available online: https://repo.xposed.info/module/de.robv.android.xposed.installer (accessed on 15 March 2020).
22. Maiorca, D.; Mercaldo; Giacinto, F.; Visaggio, C.A.; Martinelli, F. R-PackDroid: API Package-Based Characterization and Detection

of Mobile Ransomware. In Proceedings of the ACM Symposium on Applied Computing (SAC 2017–Acceptance Rate 15.7%),
Marrakech, Morocco, 3–7 April 2017; pp. 1718–1723.

23. Available online: http://prag.diee.unica.it/it/RPackDroid (accessed on 13 December 2019).

https://github.com/FoxyWinner/KRRecover_Release
https://github.com/FoxyWinner/KRRecover_Release
https://www.datto.com/resources/dattos-global-state-of-the-channel-ransomware-report
https://www.datto.com/resources/dattos-global-state-of-the-channel-ransomware-report
https://www.coveware.com/blog/q2-2020-ransomware-marketplace-report
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
http://doi.org/10.1109/MC.2014.163
http://ceur-ws.org/Vol-1575/paper_10.pdf
https://developer.android.com/about/dashboards/index.html
https://developer.android.google.cn/studio/command-line/adb
https://source.android.com/source/running#unlocking-the-bootloader
http://dx.doi.org/10.1155/2018/9856537
http://dx.doi.org/10.1109/TIFS.2017.2787905
http://amd.arguslab.org
https://repo.xposed.info/module/de.robv.android.xposed.installer
http://prag.diee.unica.it/it/RPackDroid


Symmetry 2021, 13, 861 18 of 18

24. Scalas, M.; Maiorca, D.; Mercaldo, F.; Visaggio, C.A.; Martinelli, F.; Giacinto, G. On the Effectiveness of System API-Related
Information for Android Ransomware Detection. Comput. Secur. 2019, 86, 162–182. [CrossRef]

25. Available online: https://www.virustotal.com/ (accessed on 20 August 2018).
26. Mathew, S.; Satpathy, S.; Suresh, V.; Anders, M.; Kaul, H.; Agarwal, A.; Hsu, S.; Chen, G.; Krishnamurthy, R. 340 mV–1.1 V, 289

Gbps/W, 2090-Gate NanoAES Hardware Accelerator With Area-Optimized Encrypt/Decrypt GF(2 4) 2 Polynomials in 22 nm
Tri-Gate CMOS. IEEE J. Solid-State Circ. 2015, 50, 1048–1058. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2019.06.004
https://www.virustotal.com/
http://dx.doi.org/10.1109/JSSC.2014.2384039

	Introduction
	Related Work
	Hijacked Devices Recovery
	Encrypted Files Recovery

	Analysis of Ransomwares
	Method of Ransomwares Analysis
	Hijack Screen Resource
	Lock Devices
	Encrypt Files

	Method of Recovery
	A Device and Files Recovery Application
	Monitor—Trigger Algorithm
	Devices Recovery Algorithm
	Encrypted Files Recovery Algorithm

	Evaluation
	Dataset
	Experiments
	RQ1: Can KRRecover Automatically Recover Devices Hijacked by Ransomwares?
	RQ2: Can KRRecover Automatically Decrypt Files Encrypted by Ransomwares?
	RQ3:Can KRRecover Recover Hijacked Devices and Encrypted Files Against Hybrid Ransomwares?
	RQ4: What Is the Efficiency of KRRecover?


	Conclusions and Limitations
	References

