
symmetryS S

Article

Some Properties of the Arithmetic–Geometric Index

Edil D. Molina 1,† , José M. Rodríguez 2,† , José L. Sánchez 1,† and José M. Sigarreta 1,*,†

����������
�������

Citation: Molina, E.D.; Rodríguez,

J.M.; Sánchez, J.L.; Sigarreta, J.M.

Some Properties of the

Arithmetic–Geometric Index.

Symmetry 2021, 13, 857. https://

doi.org/10.3390/sym13050857

Academic Editor: Louis H. Kauffman

Received: 26 April 2021

Accepted: 10 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita,
39650 Acalpulco Gro., Mexico; edil941023@gmail.com (E.D.M.); jlsanchezsantiesteban@gmail.com (J.L.S.)

2 Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30,
28911 Leganés, Madrid, Spain; jomaro@math.uc3m.es

* Correspondence: josemariasigarretaalmira@hotmail.com; Tel.: +52-744-159-2272
† These authors contributed equally to this work.

Abstract: Recently, the arithmetic–geometric index (AG) was introduced, inspired by the well-known
and studied geometric–arithmetic index (GA). In this work, we obtain new bounds on the arithmetic–
geometric index, improving upon some already known bounds. In particular, we show families of
graphs where such bounds are attained.

Keywords: arithmetic–geometric index; topological index; chemical graph theory

1. Introduction

In mathematical chemistry, a topological descriptor is a function that associates each
molecular graph with a real value, and if it correlates well with some chemical property, it is
called a topological index. Since Wiener’s work (see [1]), numerous topological indices have
been defined and discussed, since the growing interest in their study is due to their several
applications in chemistry, for example in QSPR/QSAR research (see [2–4]). For more
information on other important applications of topological indices to specific problems
in physics, computer science and environment science (see [5–7]). In particular, among
the topological descriptors, the most studied from the mathematical point of view due to
their practical scope are the so-called vertex-degree-based topological indices. Probably
the most studied, with more than 500 papers, is the Randić index defined as

R(H) = ∑
ij∈E(H)

1√
didj

,

where ij denotes the edge of the graph H and di is the degree of the vertex i.
In [8,9], the variable Zagreb indices are defined as

Mα
1 (H) = ∑

i∈V(H)

dα
i , Mα

2 (H) = ∑
ij∈E(H)

(didj)
α,

with α ∈ R.
Note that for α = 2, α = −1, α = 3, the index Mα

1 is the first Zagreb index M1, the
inverse index ID, the forgotten index F, respectively; also for α = 1, α = −1/2, α = −1, the
index Mα

2 is the second Zagreb index M2, the Randić index R, the modified Zagreb index.

The general sum-connectivity index was defined in [10] as

χα(H) = ∑
ij∈E(H)

(di + dj)
α.

Note that χ−1/2 is the sum-connectivity index, 2χ−1 is the harmonic index Har, etc.
The max–min rodeg index and min–max rodeg index were defined in [11] respectively as
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Mmsde(H) = ∑
ij∈E(H)

√
max{di, dj}
min{di, dj}

, mMsde(H) = ∑
ij∈E(H)

√
min{di, dj}
max{di, dj}

.

these indices have shown good predictive properties (see [11]).
The symmetric division deg index was defined in [11,12] as

SDD(H) = ∑
ij∈E(H)

d2
i + d2

j

didj
= ∑

ij∈E(H)

( di
dj

+
dj

di

)
.

It was claimed in [11] that SDD correlates well with the total surface area of polychloro-
biphenyls. In the paper [13], the applicability of SDD is tested on a wider empirical basis;
also, its prediction ability is compared with other (more often used) topological indices.

The GA(H) is defined in [14] as

GA(H) = ∑
ij∈E(H)

2
√

didj

di + dj
.

There are many papers studying the mathematical and computational properties of
the GA index (see, e.g., [14–21] and the references therein).

As an inverse variant of this topological index, in 2015, the arithmetic–geometric index
was introduced in [22] as

AG(H) = ∑
ij∈E(H)

di + dj

2
√

didj

.

The AG index of some kinds of trees was discussed in the papers [22,23]. Moreover,
the AG index of graphene, which is the most conductive and effective material for electro-
magnetic interference shielding, was computed in [24]. The paper [25] studied the spectrum
and energy of arithmetic–geometric matrix, in which the sum of all elements is equal to
2AG. Other bounds of the arithmetic–geometric energy of graphs appeared in [26,27]. The
paper [28] studies optimal AG-graphs for several classes graphs, and it includes inequali-
ties involving GA + AG and GA · AG. In [29–32], there are more bounds on the AG index
and a discussion on the effect of deleting an edge from a graph on the arithmetic–geometric
index. Motivated by these papers, we obtain new bounds of the AG index, improving
upon some already known bounds. Furthermore, we show families of graphs where such
bounds are attained. Some of these families are regular graphs, and we recall that some
regular graphs play an important role in mathematical chemistry; for instance, Isaac graphs
are well-known regular graphs that are isomorphic to hydrogen-suppressed molecular
graphs [33].

Given a topological index I(H) = ∑ij∈E(H) f (di, dj), we can consider the reciprocal
topological index defined as J(H) = ∑ij∈E(H) 1/ f (di, dj). It is essential to point out that
several important topological indices are associated with the above relationships. For
example, the first Zagreb index M1 and the first modified Zagreb index m M1, the second
Zagreb index M2 and the second modified Zagreb index m M2, the Randić index R and the
reciprocal Randić index M1/2

2 , the max–min rodeg index Mmsde and the min–max rodeg
index mMsde, etc.

Inspired by these ideas, the arithmetic–geometric index AG was defined, which is the
reciprocal of the well-studied geometric–arithmetic index GA. Although these topological
indices are mathematically represented by an inverse relationship, their scope and results
from both theoretical and practical points of view are different. In some cases, the reciprocal
topological indices have shown better correlation with some physico–chemical properties
than their related indices. In the case of the AG index, in order to investigate its predictive
power, we used a datum for entropy (S) of octane isomers, and the results are compared
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with those obtained for the GA index, (see Figure 1). The correlation coefficient obtained
for the AG index is rAG = −0.927, while for the GA index, it is rGA = 0.912, so the AG
index, in this case, shows better predictive power than the GA index. However, when
we used a datum for the boiling point of octane isomers, it turned out that the GA index
showed better predictive power than the AG index. After this paper was accepted, Ref. [34]
showed that both indices have the same predictive power for many kinds of graphs.

Figure 1. Graphs showing correlation between S and AG, S and GA respectively.

The arithmetic–geometric index was proposed recently and few important papers
have been published on the subject. In this paper, we find several new mathematical
properties (that cannot be obtained from the GA index), especially bounds that improve
those already known.

Throughout this work, H = (V(H), E(H)) denotes a finite simple graph with at
least an edge in each connected component of H. We denote by m, n, δ, ∆ the cardinality
of the set of edges E(H) and vertices V(H), and the minimum and maximum degree
of H, respectively.

2. Relationships between AG and Other Important Topological Indices

One can check that the following lemma holds:

Lemma 1. Let f be the function f (x, y) = x+y
2
√

xy defined on the rectangle [a, b] × [a, b] with
a > 0. Then:

1 ≤ f (x, y) ≤ a + b
2
√

ab
.

The following inequalities for graphs H, follow from Lemma 1:

m ≤ AG(G) ≤ ∆ + δ

2
√

∆δ
m. (1)

The lower bound in (1) also follows from the inequalities GA(H) · AG(H) ≥ m2 and
GA(H) ≤ m, see [15,16]. The upper bound in (1) appears in [31].

The following result shows the relationship between the AG index and the Randić
index that correlates well with several physico–chemical properties. For this reason, it is one
of the most studied indices, with innumerable applications in chemistry and pharmacology.

Theorem 1. If H is a graph with m edges, minimum degree δ and maximum degree ∆, then:

AG(H) ≤ m +

(√
∆−
√

δ
)2

2
R(H).

The equality in the bound is attained if and only if H is regular or biregular.
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Proof. Note that:

di + dj

2
√

didj

= 1 +

(√
di −

√
dj
)2

2
√

didj

,

AG(H) = m + ∑
ij∈E(H)

(√
di −

√
dj
)2

2
√

didj

.

Since:

∑
ij∈E(H)

(√
di −

√
dj
)2

2
√

didj

≤
(√

∆−
√

δ
)2

2 ∑
ij∈E(H)

1√
didj

,

we have:

AG(H) ≤ m +

(√
∆−
√

δ
)2

2
R(H) .

The bound is tight if and only if:(√
di −

√
dj

)2
=
(√

∆−
√

δ
)2

for every ij ∈ E(H), and this happens if and only if di = ∆ and dj = δ, or vice versa, for
every ij ∈ E(H), so H is regular if ∆ = δ or is otherwise biregular.

The following theorem shows a relationship between the index AG and the index
M−a

2 , the second variable Zagreb index.

Theorem 2. If H is a graph with minimum degree δ and maximum degree ∆, and a ∈ R, then:

AG(H) ≤ Ka M−a
2 (H),

with:

Ka :=



δ2a, if a ≤ −1/2,

max
{

δ2a, 1
2 (δ + ∆)(δ∆)a−1/2}, if − 1/2 < a ≤ 0,

max
{

∆2a, 1
2 (δ + ∆)(δ∆)a−1/2}, if 0 < a < 1/2,

∆2a, if a ≥ 1/2.

The equality in the bound is attained for some fixed a /∈ (−1/2, 1/2) if and only if H is a
regular graph.

Proof. Let us optimize the function g : [δ, ∆]× [δ, ∆]→ (0, ∞) defined as

g(x, y) =
x+y

2
√

xy

(xy)−a =
1
2
(xy)a−1/2(x + y) =

1
2

xa+1/2ya−1/2 +
1
2

xa−1/2ya+1/2 .

If a ≥ 1/2, then a + 1/2 > a− 1/2 ≥ 0 and g strictly increases in each variable. Thus:

g(x, y) ≤ g(∆, ∆) = ∆2a

and the bound is tight if and only if x = y = ∆. Therefore:

AG(H) ≤ ∆2a M−a
2 (H).



Symmetry 2021, 13, 857 5 of 17

Let us now consider the case −1/2 ≤ a < 1/2. Since g is a symmetric function, we
can also assume that x ≤ y. We have:

∂g
∂x

(x, y) =
1
2
(1/2 + a)xa−1/2ya−1/2 +

1
2
(a− 1/2)xa−3/2ya+1/2

=
1
2

xa−3/2ya−1/2((1/2 + a)x + (a− 1/2)y
)
,

∂g
∂y

(x, y) =
1
2

ya−3/2xa−1/2((1/2 + a)y + (a− 1/2)x
)
.

Assume first that 0 < a < 1/2. Thus, a + 1/2 > 0 and:

(1/2 + a)y + (a− 1/2)x ≥ (1/2 + a)x + (a− 1/2)x = 2ax > 0

and thus, ∂g/∂y > 0. Therefore, the maximum value of g is attained on {δ ≤ x ≤ ∆, y = ∆}.
Since:

∂g
∂x

(∆, ∆) =
1
2

∆2a−2((a + 1/2)∆ + (a− 1/2)∆
)
= a∆2a−1 > 0,

and ∂g/∂x(x, ∆) = 0 at most once when x ∈ [δ, ∆], we have:

max
x,y∈[δ,∆]

g(x, y) = max
x∈[δ,∆]

g(x, ∆) = max
{

g(δ, ∆), g(∆, ∆)
}

= max
{1

2
(∆δ)a−1/2(∆ + δ), ∆2a

}
.

Assume now that −1/2 < a ≤ 0. We have a + 1/2 > 0 and:

(1/2 + a)x + (a− 1/2)y ≤ (1/2 + a)y + (a− 1/2)y = 2ay ≤ 0

and thus, ∂g/∂x ≤ 0. Therefore, the maximum value of g is attained on {x = δ, δ ≤ y ≤ ∆}.
Since:

∂g
∂y

(∆, ∆) =
1
2

∆2a−2((a + 1/2)∆ + (a− 1/2)∆
)
= a∆2a−1 > 0,

and ∂g/∂y(δ, y) = 0 at most once when y ∈ [δ, ∆], we have:

max
x,y∈[δ,∆]

g(x, y) = max
y∈[δ,∆]

g(δ, y) = max
{

g(δ, δ), g(δ, ∆)
}

= max
{1

2
(∆δ)a−1/2(∆ + δ), δ2a

}
.

Finally, assume that a ≤ −1/2. Hence, a− 1/2 < a + 1/2 ≤ 0 and g strictly decreases
in each variable. Thus:

g(x, y) ≤ g(δ, δ) = δ2a

and the bound is tight if and only if x = y = δ. Therefore:

AG(H) ≤ δ2a M−a
2 (H).

The properties of the function g give that the bound is tight for some fixed a ≥ 1/2
(respectively, a ≤ −1/2) if and only if di = dj = ∆ (respectively, di = dj = δ) for every
ij ∈ E(H), and this happens if and only if H is a regular graph.

Remark 1. The proof of Theorem 2 allows us to obtain that:

Ca M−a
2 (H) ≤ AG(H),
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with:

Ca :=

{
∆2a, if a ≤ 0,

δ2a, if a > 0.

However, this inequality is direct, since:

AG(H) ≥ m = ∑
ij∈E(H)

(didj)
a

(didj)a ≥ Ca ∑
ij∈E(H)

1
(didj)a = Ca M−a

2 (H).

Theorem 2 has the following result for the Randić, reciprocal Randić and modified
Zagreb indices.

Corollary 1. If H is a graph with a maximum degree ∆ and minimum degree δ, then:

AG(H) ≤ δ−2M2(H),

AG(H) ≤ ∆ R(H),

AG(H) ≤ δ−1M1/2
2 (H),

AG(H) ≤ ∆2M−1
2 (H).

The following result shows a relationship between the AG(H) index and the χβ(H)
index, which for different values of b generalizes the indices M1, Har, χ ( b = 1, b = −1,
b = −1/2, respectively).

Theorem 3. If H is a graph with minimum degree δ and maximum degree ∆, and b ∈ R, then:

AG(H) ≤ Bb χb(H),

with:

Bb :=


max

{ 1
2 (∆δ)−1/2(∆ + δ)1−b, (2∆)−b}, if b < 0,

max
{ 1

2 (∆δ)−1/2(∆ + δ)1−b, (2δ)−b}, if 0 ≤ b < 1/2,

(2δ)−b, if b ≥ 1/2.

The equality in the bound is attained for some fixed b ≥ 1/2 if and only if H is a regular graph.

Proof. For each b < 1/2, let us define:

a =
b

2b− 2
∈
(−1

2
,

1
2

)
.

Let us consider the function: g : [δ, ∆]× [δ, ∆]→ (0, ∞) defined as

g(x, y) =
1
2
(xy)a−1/2(x + y) =

1
2

xa+1/2ya−1/2 +
1
2

xa−1/2ya+1/2 .

Since g is a symmetric function, we can assume x ≤ y. We have:

∂g
∂x

(x, y) =
1
2
(1/2 + a)xa−1/2ya−1/2 +

1
2
(a− 1/2)xa−3/2ya+1/2

=
1
2

xa−3/2ya−1/2((1/2 + a)x + (a− 1/2)y
)
,

∂g
∂y

(x, y) =
1
2

ya−3/2xa−1/2((1/2 + a)y + (a− 1/2)x
)
.

Assume first that 0 < a < 1/2. Thus, 1/2 + a > 0 and:

(1/2 + a)y + (a− 1/2)x ≥ (1/2 + a)x + (a− 1/2)x = 2ax > 0
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and thus, ∂g/∂y > 0. Therefore, the maximum value of g is attained on {δ ≤ x ≤ ∆, y = ∆}.
Since:

∂g
∂x

(∆, ∆) =
1
2

∆2a−2((a + 1/2)∆ + (a− 1/2)∆
)
= a∆2a−1 > 0,

and ∂g/∂x(x, ∆) = 0 at most once when x ∈ [δ, ∆], we have:

max
x,y∈[δ,∆]

g(x, y) = max
x∈[δ,∆]

g(x, ∆) = max
{

g(δ, ∆), g(∆, ∆)
}

= max
{1

2
(∆δ)a−1/2(∆ + δ), ∆2a

}
.

Assume now that −1/2 < a ≤ 0. We have a + 1/2 > 0 and:

(1/2 + a)x + (a− 1/2)y ≤ (1/2 + a)y + (a− 1/2)y = 2ay ≤ 0

and thus, ∂g/∂x ≤ 0. Therefore, the maximum value of g is attained on {x = δ, δ ≤ y ≤ ∆}.
Since:

∂g
∂y

(∆, ∆) =
1
2

∆2a−2((a + 1/2)∆ + (a− 1/2)∆
)
= a∆2a−1 > 0,

and ∂g/∂y(δ, y) = 0 at most once when y ∈ [δ, ∆], we have:

max
x,y∈[δ,∆]

g(x, y) = max
y∈[δ,∆]

g(δ, y) = max
{

g(δ, δ), g(δ, ∆)
}

= max
{1

2
(∆δ)a−1/2(∆ + δ), δ2a

}
.

Define:

Ca :=

 max
{

δ2a, 1
2 (δ + ∆)(δ∆)a−1/2}, if − 1/2 < a ≤ 0,

max
{

∆2a, 1
2 (δ + ∆)(δ∆)a−1/2}, if 0 < a < 1/2,

we have:

(xy)a−1/2(x + y) ≤ 2Ca,

(xy)1/(2b−2)(x + y) ≤ 2Ca.

Since b < 1/2, we have 1− b > 0 and:

1
2
(xy)−1/2(x + y)1−b ≤ 1

2
(2Ca)

1−b.

If 0 ≤ b < 1/2, then −1/2 < a ≤ 0 and:

1
2
(2Ca)

1−b =
1
2

(
2 max

{1
2
(∆δ)a−1/2(∆ + δ), δ2a

})1−b

=
1
2

(
2 max

{1
2
(∆δ)1/(2b−2)(∆ + δ), δb/(b−1)

})1−b

= max
{1

2
(∆δ)−1/2(∆ + δ)1−b, (2δ)−b

}
= Bb.

If b < 0, then 0 < a < 1/2 and:

1
2
(2Ca)

1−b =
1
2

(
2 max

{1
2
(∆δ)a−1/2(∆ + δ), ∆2a

})1−b

=
1
2

(
2 max

{1
2
(∆δ)1/(2b−2)(∆ + δ), ∆b/(b−1)

})1−b

= max
{1

2
(∆δ)−1/2(∆ + δ)1−b, (2∆)−b

}
= Bb.
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If b ≥ 1/2, then the function A : [δ, ∆]× [δ, ∆]→ R defined as

A(x, y) = 2
√

xy (x + y)b−1

satisfies:
∂A
∂x

(x, y) = x−1/2y1/2(x + y)b−1 + 2x1/2y1/2(b− 1)(x + y)b−2

= x−1/2y1/2(x + y)b−2(x + y + (2b− 2)x
)b−2

= x−1/2y1/2(x + y)b−2((2b− 1)x + y
)b−2

≥ x−1/2yb−3/2(x + y)b−2 > 0,
∂A
∂y

(x, y) = y−1/2x1/2(x + y)b−2((2b− 1)y + x
)b−2

≥ y−1/2xb−3/2(x + y)b−2 > 0.

Thus, A is a strictly increasing function in each variable and thus:

2
√

xy (x + y)b−1 = A(x, y) ≥ A(δ, δ) = (2δ)b,

with equality if and only if x = y = δ. Hence:

(2δ)b x + y
2
√

xy
≤ (x + y)b ∀ x, y ∈ [δ, ∆],

di + dj

2
√

didj

≤ (2δ)−b(di + dj)
b ∀ ij ∈ E(H),

AG(H) ≤ Bb χb(H),

and the equality in this last inequality is attained if and only if di = dj = δ for every
ij ∈ E(H), i.e., H is a regular graph.

Remark 2. The proof of Theorem 3 allows us to obtain that:

Ab χb(H) ≤ AG(H),

with:

Ab :=

{
(2δ)−b, if b < 0,

(2∆)−b, if b ≥ 0.

However, this inequality is direct, since:

AG(H) ≥ m = ∑
ij∈E(H)

(di + dj)
b

(di + dj)b ≥ Ab ∑
ij∈E(H)

(di + dj)
b = Ab χb(H).

Theorem 3 has the following consequence for the first Zagreb, harmonic and sum-
connectivity indices.

Corollary 2. Let H be a graph with minimum degree δ and maximum degree ∆. Then:

AG(H) ≤ 1
2δ

M1(H),

AG(H) ≤ 1
2

max
{1

2
(∆δ)−1/2(∆ + δ)2, 2∆

}
Har(H),

AG(H) ≤ max
{1

2
(∆δ)−1/2(∆ + δ)3/2, (2∆)1/2

}
χ(H).

The following result relates AG and SDD indices.
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Theorem 4. Let H be a graph with m edges, minimum degree δ and maximum degree ∆. Then:
√

∆δ

∆ + δ

( 1
2

SDD(H) + m
)
≤ AG(H) ≤ 1

4
SDD(H) +

1
2

m.

The equality in the lower bound is attained if H is a regular or biregular graph. The equality
in the upper bound is attained if and only if each connected component of H is a regular graph.

Proof. Lemma 1 gives:

∆ + δ√
∆δ

AG(H) = ∑
ij∈E(H)

∆ + δ√
∆δ

di + dj

2
√

didj

≥ 1
2 ∑

ij∈E(H)

di + dj√
didj

2

=
1
2 ∑

ij∈E(H)

√ di
dj

+

√
dj

di

2

=
1
2 ∑

ij∈E(H)

(
di
dj

+
dj

di

)
+

1
2 ∑

ij∈E(H)

2

=
1
2

SDD(H) + m.

If H is a regular or biregular graph, then:
√

∆δ

∆ + δ

( 1
2

SDD(H) + m
)
=

1
2

√
∆δ

∆ + δ

((∆
δ
+

δ

∆

)
m + 2m

)
=

1
2

√
∆δ

∆ + δ

(∆2 + δ2 + 2∆δ

∆δ

)
m =

∆ + δ

2
√

∆δ
m = AG(H).

Lemma 1 gives:

AG(H) = ∑
ij∈E(H)

di + dj

2
√

didj

≤ 1
4 ∑

ij∈E(H)

di + dj√
didj

2

=
1
4 ∑

ij∈E(H)

√ di
dj

+

√
dj

di

2

=
1
4 ∑

ij∈E(H)

(
di
dj

+
dj

di

)
+

1
4 ∑

ij∈E(H)

2

=
1
4

SDD(H) +
1
2

m.

If the equality in this bound is attained, then Lemma 1 gives di = dj for every ij ∈ E(H)
and so, each connected component of H is a regular graph.

If each connected component of H is a regular graph, then:

1
4

SDD(H) +
1
2

m =
1
4
(
2m + 2m

)
= m = AG(H).

It is easy to check that SDD(H) ≥ 2m and thus, Theorem 4 has the following
consequence.

Corollary 3. Let H be a graph. Then:

AG(H) ≤ 1
2

SDD(H).

The inequality in Corollary 3 appears in [30, Theorem 10] for connected graphs. (Note
that the definition of SDD in [30] is slightly different.) Our argument gives it for general
graphs, and Theorem 4 improves this inequality.
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We present here elementary relations between AG, Mmsde and Mmsde indices.

Proposition 1. If H is a graph, then:

AG(H) =
1
2

Mmsde(H) +
1
2

mMsde(H), AG(H) ≤ Mmsde(H).

The equality in the bound is attained if and only if each connected component of H is a
regular graph.

Proof. We have:

AG(H) = ∑
ij∈E(H)

di + dj

2
√

didj

=
1
2 ∑

ij∈E(H)

√ di
dj

+

√
dj

di


=

1
2 ∑

ij∈E(H)

(√
max{di, dj}
min{di, dj}

+

√
min{di, dj}
max{di, dj}

)

=
1
2

Mmsde(H) +
1
2

mMsde(H).

In addition:

AG(H) = ∑
ij∈E(H)

1
2

√ di
dj

+

√
dj

di

 ≤ ∑
ij∈E(H)

√
max{di, dj}
min{di, dj}

= Mmsde(H).

The bound is tight if and only if:√
di
dj

=

√
dj

di
=

√
max{di, dj}
min{di, dj}

for every ij ∈ E(H), i.e., di = dj for every ij ∈ E(H), and this happens if and only if each
connected component of H is a regular graph.

3. A General Bound of the AG Index

In this section. we find and show optimal inequalities, which do not involve other
topological indices, for the topological index AG as a function of graph invariants such as
the number of edges and the minimum and maximum degree.

We will need the following definitions. Given a graph H with maximum degree ∆ and
minimum degree δ < ∆− 1, we denote by α0, α1, α2, the cardinality of the subsets of edges

A0 = {ij ∈ E(H) : di = δ, dj = ∆},
A1 = {ij ∈ E(H) : di = δ, δ < di < ∆},
A2 = {ij ∈ E(H) : di = ∆, δ < dj < ∆},

respectively.

Theorem 5. Let H be a graph with maximum degree ∆, minimum degree δ < ∆− 1 and m edges.
Then:

AG(H) ≤ ∆ + δ

2
√

∆δ
m− α1

(
∆ + δ

2
√

∆δ
− ∆ + δ− 1

2
√
(∆− 1)δ

)
− α2

(
∆ + δ

2
√

∆δ
− ∆ + δ + 1

2
√

∆(δ + 1)

)
,

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)
.
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Proof. Let us consider the function g(t) = 1+t2

2t on the interval (0, ∞). We have g′(t) = t2−1
2t2 ,

therefore g′(t) < 0 for t ∈ (0, 1) and g′(t) > 0 for t ∈ (1, ∞). Then, g decreases on (0, 1]
and g increases on [1, ∞).

From the above argument, it follows that the function:

δ + dj

2
√

δdj

= g

((dj

δ

)1/2
)

is increasing in dj ∈ (δ, ∆) and thus:

δ + (δ + 1)
2
√

δ(δ + 1)
≤

δ + dj

2
√

δdj

≤ δ + ∆− 1
2
√

δ(∆− 1)
,

for every ij ∈ A1.
In a similar way, the function:

∆ + dj

2
√

∆dj

= g

((dj

∆

)1/2
)

is decreasing in dj ∈ (δ, ∆) and thus:

∆ + (∆− 1)
2
√

∆(∆− 1)
≤

∆ + dj

2
√

∆dj

≤ ∆ + δ + 1
2
√

∆(δ + 1)
,

for every ij ∈ A2.
Since:

1 ≤
di + dj

2
√

didj

≤ ∆ + δ

2
√

∆δ

for every ij ∈ E(H), we have:

AG(H) = ∑
ij∈E(H)\A0∪A1∪A2

di + dj

2
√

didj

+ ∑
ij∈A0

di + dj

2
√

didj

+ ∑
ij∈A1

di + dj

2
√

didj

+ ∑
ij∈A2

di + dj

2
√

didj

= ∑
ij∈E(H)\A0∪A1∪A2

di + dj

2
√

didj

+ ∑
ij∈A0

∆ + δ

2
√

∆δ
+ ∑

ij∈A1

δ + dj

2
√

δdj

+ ∑
ij∈A2

∆ + dj

2
√

∆dj

,

therefore:

AG(H) ≥ m− α0 − α1 − α2 + α0
∆ + δ

2
√

∆δ
+ α1

2δ + 1
2
√

δ(δ + 1)
+ α2

2∆− 1
2
√

∆(∆− 1)
,

and:

AG(H) ≤ (m− α0 − α1 − α2)
∆ + δ

2
√

∆δ
+ α0

∆ + δ

2
√

∆δ
+ α1

∆ + δ− 1
2
√
(∆− 1)δ

+ α2
∆ + δ + 1

2
√

∆(δ + 1)

=
∆ + δ

2
√

∆δ
m− α1

(
∆ + δ

2
√

∆δ
− ∆ + δ− 1

2
√

δ(∆− 1)

)
− α2

(
∆ + δ

2
√

∆δ
− δ + ∆ + 1

2
√

∆(δ + 1)

)
.

Lemma 2. If v(t) = 1+t
2
√

t
, then: (1) v(t) ≤ 1

8 (1− t)2 + 1 for every t ∈ [1, ∞),

(2) v(t) ≥ 1
16 (1− t)2 + 1 for every t ∈ (0, 1.945].



Symmetry 2021, 13, 857 12 of 17

Proof. We have for every s ∈ [1, ∞) and t = s2 ∈ [1, ∞):

(s− 1)3(s2 + 3s + 4) ≥ 0,

s5 − 2s3 − 4s2 + 9s− 4 ≥ 0,

4(s2 + 1) ≤ s
(
8 + (1− s2)2 ),

v(t) =
t + 1
2
√

t
≤ 1

8
(1− t)2 + 1.

Let s1 = 1.39485... be the unique real solution of s3 + 2s2 + s− 8 = 0 in the interval
(0, ∞). We have for every s ∈ [0, s1] and t = s2 ∈ (0, 1.945] ⊂ (0, s2

1]:

(s− 1)2(s3 + 2s2 + s− 8) ≤ 0,

s5 − 2s3 − 8s2 + 17s− 8 ≤ 0,

8(s2 + 1) ≥ s
(
16 + (1− s2)2 ),

v(t) =
1 + t
2
√

t
≥ 1

16
(1− t)2 + 1.

Proposition 2. Let H be a graph with maximum degree ∆, minimum degree δ < ∆ − 1 and
m edges.

1. If δ is an even integer, then:

AG(H) ≥ m + min

{
∆ + δ

2
√

∆δ
+

2δ + 1
2
√

δ(δ + 1)
− 2,

2δ + 1√
δ(δ + 1)

+
2∆− 1

2
√

∆(∆− 1)
− 3

}
.

2. If ∆ is an even integer, then:

AG(H) ≥ m + min

{
∆ + δ

2
√

∆δ
+

2∆− 1
2
√

∆(∆− 1)
− 2,

2δ + 1
2
√

δ(δ + 1)
+

2∆− 1√
∆(∆− 1)

− 3

}
.

3. If δ and ∆ are even integers, then:

AG(H) ≥ m +
2δ + 1√
δ(δ + 1)

+
2∆− 1√
∆(∆− 1)

− 4.

Proof. Assume first that δ is an even integer.
Let H1 be the subgraph of H induced by the n1 vertices with degree δ in V(H),

and denote by m1 the cardinality of the set of edges of H1. Handshaking Lemma gives
n1δ− α0 − α1 = 2m1. Since δ is an even integer, α0 + α1 is also an even integer; since each
component of H is a connected graph, we have α0 + α1 ≥ 1 and so, α0 + α1 ≥ 2.

If α0 ≥ 2, then Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
δ + ∆√

δ∆
− 2.
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If α0 = 1, then α1 ≥ 1 and Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
∆ + δ

2
√

∆δ
+

2δ + 1
2
√

δ(δ + 1)
− 2.

If α0 = 0, then α1 ≥ 2 and α2 ≥ 1, and Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
2δ + 1√
δ(δ + 1)

+
2∆− 1

2
√

∆(∆− 1)
− 3.

Since Lemma 1 gives:
∆ + δ

2
√

∆δ
≥ 2δ + 1

2
√

δ(δ + 1)
,

we have:

AG(H) ≥ m + min

{
δ + ∆
2
√

δ∆
+

2δ + 1
2
√
(δ + 1)δ

− 2,
2δ + 1√
(δ + 1)δ

+
2∆− 1

2
√

∆(∆− 1)
− 3

}
.

Assume now that ∆ is an even integer. Let H2 be the subgraph of H induced by the n2
vertices with a degree ∆ in V(H), and denote by m2 the cardinality of the set of edges of
H2. Handshaking Lemma gives n2∆− α0 − α2 = 2m2. Since ∆ is an even integer, α0 + α2 is
also an even integer; since each component of H is a connected graph, we have α0 + α2 ≥ 1
and thus, α0 + α2 ≥ 2.

If α0 ≥ 2, then Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
∆ + δ√

∆δ
− 2.

If α0 = 1, then α2 ≥ 1 and Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
∆ + δ

2
√

∆δ
+

2∆− 1
2
√

∆(∆− 1)
− 2.

If α0 = 0, then α2 ≥ 2 and α1 ≥ 1, and Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
1 + 2δ

2
√
(δ + 1)δ

+
2∆− 1√
∆(∆− 1)

− 3.

Since:
∆ + δ

2
√

∆δ
≥ 2∆− 1

2
√

∆(∆− 1)
,
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we have:

AG(H) ≥ m + min

{
∆ + δ

2
√

∆δ
+

2∆− 1
2
√

∆(∆− 1)
− 2,

2δ + 1
2
√

δ(δ + 1)
+

2∆− 1√
∆(∆− 1)

− 3

}
.

Finally, assume that δ and ∆ are even integers. The previous arguments give α0 + α1 ≥ 2
and α0 + α2 ≥ 2.

If α0 ≥ 2, then Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
∆ + δ√

∆δ
− 2.

If α0 = 1, then α1, α2 ≥ 1 and Theorem 5 gives:

AG(H) ≥ m + α0

(
δ + ∆
2
√

δ∆
− 1
)
+ α1

(
1 + 2δ

2
√
(δ + 1)δ

− 1

)
+ α2

(
2∆− 1

2
√
(∆− 1)∆

− 1

)

≥ m +
∆ + δ

2
√

∆δ
+

2δ + 1
2
√

δ(δ + 1)
+

2∆− 1
2
√

∆(∆− 1)
− 3.

If α0 = 0, then α1, α2 ≥ 2, and Theorem 5 gives:

AG(H) ≥ m + α0

(
∆ + δ

2
√

∆δ
− 1
)
+ α1

(
2δ + 1

2
√

δ(δ + 1)
− 1

)
+ α2

(
2∆− 1

2
√

∆(∆− 1)
− 1

)

≥ m +
2δ + 1√
δ(δ + 1)

+
2∆− 1√
∆(∆− 1)

− 4.

We claim now:

1 +
δ + ∆
2
√

δ∆
≥ 1 + 2δ

2
√
(δ + 1)δ

+
2∆− 1

2
√
(∆− 1)∆

.

Assuming that this inequality holds, we have:

m +
δ + ∆√

δ∆
− 2 ≥ m +

δ + ∆
2
√

δ∆
+

1 + 2δ

2
√
(δ + 1)δ

+
2∆− 1

2
√
(∆− 1)∆

− 3 ,

m +
∆ + δ

2
√

∆δ
+

2δ + 1
2
√
(δ + 1)δ

+
2∆− 1

2
√
(∆− 1)∆

− 3 ≥ m +
1 + 2δ√
(δ + 1)δ

+
2∆− 1√
(∆− 1)∆

− 4,

and we conclude:

AG(H) ≥ m +
1 + 2δ√
(δ + 1)δ

+
2∆− 1√
∆(∆− 1)

− 4.

Thus, it suffices to prove the claim.

1 +
δ + ∆
2
√

δ∆
≥ 2δ + 1

2
√

δ(δ + 1)
+

2∆− 1
2
√

∆(∆− 1)
,

1 + v
(∆

δ

)
≥ v

(1 + δ

δ

)
+ v
( ∆

∆− 1

)
,
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where v(t) = 1+t
2
√

t
is the function in Lemma 2. Since v is an increasing function in [1, ∞)

and ∆ ≥ δ + 2, we have:

v
(2 + δ

δ

)
≤ v

(∆
δ

)
, v

( ∆
∆− 1

)
≤ v

(2 + δ

1 + δ

)
.

Hence, it suffices to show:

1 + v
(2 + δ

δ

)
≥ v

(1 + δ

δ

)
+ v
(2 + δ

1 + δ

)
, (2)

for every δ ≥ 1.
Note that (2) holds for δ = 1, 2. Let us prove that it holds for δ ≥ 3. Note that:

1/8
(δ + 1)2 ≤

1/8
δ2 , 2 +

1/8
δ2 +

1/8
(δ + 1)2 ≤ 2 +

1/4
δ2 .

Since δ ≥ 3, we have:

2 + δ

δ
≤ 5

3
< 1.945,

1 + δ

δ
> 1,

2 + δ

1 + δ
> 1.

Thus, Lemma 2 gives:

v
(1 + δ

δ

)
+ v
(2 + δ

1 + δ

)
≤ 1 +

1
8

(1 + δ

δ
− 1
)2

+ 1 +
1
8

(2 + δ

1 + δ
− 1
)2

= 2 +
1/8
δ2 +

1/8
(δ + 1)2 ≤ 2 +

1/4
δ2

= 1 + 1 +
1

16

(
1− 2 + δ

δ

)2
≤ 1 + v

(2 + δ

δ

)
.

These inequalities give (2) for δ ≥ 3, and the proof is finished.

Finally, we show that the bound in Proposition 2 (3) is tight: let us consider the
complete graphs K5 and K3, and fix u1, u2 ∈ V(K5) and v1, v2 ∈ V(K3). Denote by K∗5 the
graph obtained from K5 by deleting the edge u1u2. Let Γ be the graph with V(Γ) = V(K∗5)∪
V(K3) and E(Γ) = E(K∗5) ∪ E(K3) ∪ {u1v1} ∪ {u2v2}. Thus, Γ has a maximum degree
∆ = 4, minimum degree δ = 2, α0 = 0, α1 = 2, α2 = 2; in addition, if ij /∈ A0 ∪ A1 ∪ A2,
then di = dj, if ij ∈ A1, then {di, dj} = {δ, δ + 1}, and if ij ∈ A2, then {di, dj} = {∆, ∆− 1}.
Then, we have:

AG(Γ) = m +
2δ + 1√
δ(δ + 1)

+
2∆− 1√
∆(∆− 1)

− 4 .

4. Conclusions

Topological indices have become a useful tool for the study of theoretical and practical
problems in different areas of science. An important line of research associated with
topological indices is that of determining optimal bounds and relations between known
topological indices—particularly to obtain bounds for the topological indices associated
with the invariant parameters of a graph.

Ref. [35] proves that many upper bounds of GA are not useful, and shows the impor-
tance of obtaining upper bounds of GA that are less than m. In a similar way, it is important
to find lower bounds of AG greater than m.

With this aim, we obtain in this paper several new lower bounds of AG, which are
greater than m for graphs with a maximum degree ∆ and minimum degree δ < ∆− 1:
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1. If δ is an even integer, then:

AG(H) ≥ m + min

{
∆ + δ

2
√

∆δ
+

2δ + 1
2
√

δ(δ + 1)
− 2,

2δ + 1√
δ(δ + 1)

+
2∆− 1

2
√

∆(∆− 1)
− 3

}
.

2. If ∆ is an even integer, then:

AG(H) ≥ m + min

{
∆ + δ

2
√

∆δ
+

2∆− 1
2
√

∆(∆− 1)
− 2,

2δ + 1
2
√

δ(δ + 1)
+

2∆− 1√
∆(∆− 1)

− 3

}
.

3. If δ and ∆ are even integers, then:

AG(H) ≥ m +
2δ + 1√
δ(δ + 1)

+
2∆− 1√
∆(∆− 1)

− 4.

We obtain several inequalities relating AG with other topological indices, as
√

∆δ

∆ + δ

( 1
2

SDD(H) + m
)
≤ AG(H) ≤ 1

4
SDD(H) +

1
2

m.

This result improves the following bound already known in the literature:

AG(H) ≤ 1
2

SDD(H).

Moreover, we find families of graphs where the bounds are attained.
Furthermore, we show that at least for entropy, the AG index has better predictive

power than GA, while for other physicochemical properties, the GA index has better
predictive power than AG.

We think that it would be interesting to obtain for the geometric–arithmetic index
some results similar to those included in this work for the AG index.
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