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Abstract: Zero-point fluctuations are a universal consequence of quantum theory. Vacuum fluctua-
tions of electromagnetic field have provided crucial evidence and guidance for QED as a successful
quantum field theory with a defining gauge symmetry through the Lamb shift, Casimir effect, and
spontaneous emission. In an accelerated frame, the thermalisation of the zero-point electromagnetic
field gives rise to the Unruh effect linked to the Hawking effect of a black hole via the equivalence
principle. This principle is the basis of general covariance, the symmetry of general relativity as the
classical theory of gravity. If quantum gravity exists, the quantum vacuum fluctuations of the gravita-
tional field should also lead to the quantum decoherence and dissertation of general forms of energy
and matter. Here we present a novel theoretical effect involving the spontaneous emission of soft
gravitons by photons as they bend around a heavy mass and discuss its observational prospects. Our
analytic and numerical investigations suggest that the gravitational bending of starlight predicted by
classical general relativity should also be accompanied by the emission of gravitational waves. This
in turn redshifts the light causing a loss of its energy somewhat analogous to the bremsstrahlung of
electrons by a heavier charged particle. It is suggested that this new effect may be important for a
combined astronomical source of intense gravity and high-frequency radiation such as X-ray binaries
and that the proposed LISA mission may be potentially sensitive to the resulting sub-Hz stochastic
gravitational waves.

Keywords: quantum gravity; quantum gravity phenomenology; gauge symmetry; quantum vacuum;
spacetime fluctuations; gravitational decoherence; gravitational bremsstrahlung; gravitational waves;
gravitational astronomy; X-ray binary

1. Introduction

The quantum vacuum is a remarkable consequence of the quantum field theory (QFT).
To be sure, the quantum electrodynamics (QED) as the first successful QFT has received
crucial guidance and support through its quantum vacuum effects including the Lamb
shift, Casimir effect, and spontaneous emission.

Although the physical reality of the quantum vacuum seems to contradict the void
classical vacuum, it in fact forges essential links between classical and quantum dynamics.
The general agreement between the classical emission rate and quantum spontaneous
emission rate of electromagnetic (EM) dipole radiations have been well-known at atomic
scales (see e.g., [1]). Such an agreement is also clear in the classical cyclotron radiation and
the quantum spontaneous emission of the Landau levels [2], in the context of detecting
Unruh radiation as a quantum vacuum effect in non-inertial frames [3].

At present, a fully quantised theory of gravity is still to be reached (for some recent
developments, see e.g., [4–6] and references therein). Nevertheless, the effective QFT
for linearised general relativity is expected to yield satisfactory physical descriptions at
energies sufficiently lower than the Planck scale [7–9]. Indeed, the spontaneous emission
rate of gravitons for a nonrelativistic bound system due to the zero-point fluctuations
of spacetime in linearised quantum gravity has been recently shown [10,11] to agree
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with the quadrupole formula of gravitational wave radiation in general relativity [12].
The preservation of the local translational symmetry of linearised gravity is crucial in
the theoretical steps of establishing this agreement through the gauge invariant Dirac
quantisation technique [8].

Based on this development, the next challenge would be the spontaneous emission of
gravitons from a relativistic and unbound system, which we will address in this paper. The
possible gravitational radiation by photons has long been a subject of interest and has been
considered by a many researchers with various approaches [13–21]. The obtained size of
the effect has generally been quite small.

We therefore seek an amplified effect in the astronomical context involving the deflec-
tion of starlight by a celestial body or distribution of mass. We show that soft gravitons
are spontaneously emitted resulting in scattering modes of incident photons to decay
into lower energy scattering modes in the fashion of the bremsstrahlung of electrons by
ions [22–25]. Our preliminary estimates of such effects suggest they may be important for
high frequency photons deflected by a compact heavy mass.

Under weak gravity, the polarisations of light subject to gravitational bending are
expected to be negligible. Therefore, as a first approximation, the effect of spin of photon
is neglected similar to neglecting spins in standard descriptions of the bremsstrahlung
of electrons.

Throughout this paper, we adopt units in which the speed of light c equals unity, unless
otherwise stated. We also write log10 = log and use Greek indices µ, ν . . . = 0, 1, 2, 3 and Latin
indices i, j . . . = 1, 2, 3 for spacetime (t, x, y, z) and spatial (x, y, z) coordinates, respectively.

2. Light Modelled as Massless Scalar Field in a Weak Central Gravitational Field

As alluded to in the introduction section, in what follows, we shall model photons as
massless scalar particles with a linearised metric

gµν = ηµν + hµν (1)

where ηµν = diag(−1,+1,+1,+1) is the Minkowski metric and hµν is the metric perturba-
tion arising from a spherical gravitational source with mass M? so that

h00 = h11 = h22 = h33 = −2Φ (2)

in terms of the Newtonian potential [12]

Φ = −GM?

r
(3)

with r =
√

x2 + y2 + z2 and the gravitational constant G. Figure 1 illustrates the schematic
physical and geometrical configurations under consideration.

Treating the above source as a gravitational lens, its effective refractive index is given
approximately by n = 1− 2Φ [26]. This gives rise to the approximate dispersion relation

ω = (1 + 2Φ)p (4)

for a real massless scalar field φ having a frequency ω and wave vector p with wave
number p = |p|. We will continue to denote wave vectors associated with the scalar field
by p and q and wave vectors associated with the gravitons by k, unless otherwise stated.
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To capture the salient physical effects carried by the light frequency and to simplify
our technical derivations, we consider the wave number of the scalar to peak around some
fixed value p◦. Then, it follows from Equation (4) to leading contributions, that

ω2 = p2 + v(r) (5)

where

v(r) = −4p2
◦

GM?

r
. (6)

Figure 1. An illustration of the key physical and geometrical features of an astronomical configuration
for the gravitational bremsstrahlung of light involving an X-ray binary and a possible detection
concept with LISA. Here the mass of the compact object is assumed to be dominant for simplicity.

Using Equation (6), the Lagrangian density of the scalar field

L = −1
2
√
−g gµν∇µφ∇νφ

reduces to

L = −1
2

ηµνφ,µφ,ν −
1
2

v(r)φ2 (7)

with v(r) as the effective external scalar potential [27,28].
The stress–energy tensor of the scalar field is given by

Tµν =
1
2
(ηµαηνβ + ηµβηνα − ηµνηαβ)φ,αφ,β −

1
2

ηµνvφ2. (8)

The field equation follows as

ηµν∂µ∂νφ− vφ = 0. (9)

To solve this field equation, one naturally invokes the separable ansatz

φ(r, t) = ψ(r)e−iωt (10)
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so that the general solutions are the real parts of the linear combinations of Equation (10).
Substituting the above ansatz into Equation (9), we see that this field equation is equiva-
lent to

−∇2ψ + vψ = ω2ψ (11)

taking the form of a time-independent Schrödinger equation.
It follows that the solutions to the field Equation (9) representing the deflection of light

with an incident wave vector p and frequency ω = p can be obtained from the solutions of
the Schrödinger Equation (11) describing a scattering problem involving a Coulomb-type,
i.e., 1/r, central potential as the “scattering wave functions” of the form

ψp(r) =
1
ρ

∞

∑
l=0

l

∑
m=−l

4π ilwl(η, ρ)Ym
l (r̂)Ym∗

l (p̂) (12)

where p̂ = p/p, r = (x, y, z), Ym
l (r) are spherical harmonics, and wl(η, ρ) are the Coulomb

wave functions satisfy the wave equation (see e.g., [29])

{ d2

dρ2 +
[
1− 2η

ρ
− l(l + 1)

ρ2

]}
wl(η, ρ) = 0 (13)

using the dimensionless variable ρ = p r and dimensionless parameter η = −ν/p with

ν = 2 GM?p2
◦. (14)

By virtue of the orthogonality of wl(η, ρ), we can choose the normalisation of wl(η, ρ)
so that ψp(r) satisfy the following orthonormality∫

d3r ψ∗p′(r)ψp(r) = δ(p− p′), (15)∫
d3 p ψ∗p(r

′)ψp(r) = δ(r− r′). (16)

It is useful to introduce the “momentum representation” scattering wave functions [30]
ψq(p) of the above “position representation” scattering wave functions ψq(r) given by

ψq(p) =
1

(2π)3/2

∫
d3r e−ip·rψq(r), (17)

ψq(r) =
1

(2π)3/2

∫
d3 p eip·rψq(p). (18)

The orthogonality of ψq(p) follows immediately from Equations (15)–(18) to be∫
d3q ψ∗q(p′)ψq(p) = δ(p− p′), (19)∫
d3q ψ∗p′(q)ψp(q) = δ(p− p′). (20)

For a weak interaction with the central potential where |η| � 1, the first order Born
approximation yields

ψp(q) = δ(p− q) +
ν

π2(p2 − q2)|p− q|2 (21)
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Note that the first term of Equation (21) corresponds to the first term of Equation (22),
which represents the incident (asymptotically) free particle. This term does not contribute
to Equation (31) under Markov approximation of the gravitational master equation as
discussed in Reference [9].

The corresponding asymptotic scattering wave function of the position r is given by

ψp(r) =
1

(2π)3/2

[
eip·r + f (θ)

eipr

r

]
(22)

with the scattering amplitude

f (θ) =
ν

2p2 sin2(θ/2)
(23)

where θ = ](r, p) is the scattering angle.
Just as with the Coulomb potential, so does the infinitely long range of the Newtonian

potential imply a divergent total scattering cross section. However, to account for the
realistic limited dominance of this potential due to other influences beyond a range distance
Rrng = 1/ε, which can be conveniently incorporated by modifying the Newtonian potential
with an additional exponential-decay factor of e−εr as a long-range regularisation. On the
other hand, the finite extension with a radius R? = 1/δ of the gravity source means the
need for a compensating short-range potential within this radius.

These considerations lead to the following phenomenological Yukawa regularisation

1
r
→ e−εr

r
− e−δr

r
(24)

with ε and δ as long and short range regularisation parameters, respectively.
Accordingly, we find the regularised scattering wave function to be

ψq(p) = δ(p− q) +
ν

π2[p2 − (q + iε)2][|p− q|2 + ε2]

− ν

π2[p2 − (q + iδ)2][|p− q|2 + δ2]
(25)

with p◦ � δ > ε.

3. Quantisation of the Scalar Field in the Regularised Potential

Using scattering wave function ψp(r) derived in the preceding section, we can now
perform the so-called second quantisation of the scalar field φ into a quantum field operator
in the Heisenberg picture as follows

φ(r, t) =
∫

d3 p

√
h̄

2ωp

[
apψp(r)e−iωpt + a†

pψ∗p(r)e
iωpt
]

(26)

where h̄ is the reduced Planck constant and the creation and annihilation operators ap and
a†

p satisfy the standard nontrivial canonical commutation relation[
ap, a†

p′
]

= δ(p− p′). (27)

The associated field momentum is given by π = ∂φ/∂t = φ̇, which satisfies the equal
time field commutation relation

[φ(r, t), π(r′, t)] = ih̄ δ(r− r′)

following from Equations (16) and (27).
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Substituting Equation (18) into Equation (26), we can write φ in terms of the momen-
tum representations of the scattering wave functions as follows

φ(r, t) =
∫

d3q d3 p

√
h̄

2(2π)3q

[
aqψq(p)eip·re−iqt + a†

qψ∗q(p)e−ip·reiqt
]
. (28)

The coupling of φ to the metric fluctuations due to low energy quantum gravity in
addition to the metric perturbation Equation (2) due to the lensing mass M? is through the
transverse-traceless (TT) part of its stress–energy tensor Equation (8) to be τij := TTT

ij [8]
given by

τij(r, t) = Pijklφ,k(r, t)φ,l(r, t), (29)

with the Fourier transform

τij(k, t) =
∫

d3r τij(r, t) e−ik·r

=
∫

d3r e−ik·rPijkl(k)φ,k(r, t)φ,l(r, t) (30)

where Pijkl is the TT projection operator [8,31].
Using Equation (28) and applying normal orders and neglecting apaq and a†

pa†
q terms

through the rotating wave approximation [32], we see that Equation (30) becomes

τij(k, t) =
h̄
2

Pijkl(k)
∫

d3 p d3 p′ d3 p′′
pk pl√
p′p′′[

a†
p′′ ap′ψp′(p)ψ∗p′′(p− k)e−i(p′−p′′)t + a†

p′ ap′′ψ
∗
p′(p)ψp′′(p + k)ei(p′−p′′)t

]
. (31)

From Equation (31) we see that

τij(−k, t) = τ†
ij(k, t) (32)

as a useful property for later derivations.

4. Coupling to the Gravitational Quantum Vacuum

To induce the spontaneous emission of the photon lensed by the regularised Newto-
nian potential, we now include an additional TT gravitational wave-like metric perturbation
hTT

µν into Equation (1), which carries spacetime fluctuations at zero temperature [8]. The
photon is assumed to travel a sufficiently long distance and time past the gravitational
lens (see justifications below) so that we can neglect any memory effects in its statistical
interactions with spacetime fluctuations. Additionally, we consider the energy scale to be
low enough for the self interaction of the photon to be negligible. This leads to the Markov
quantum master equation

ρ̇(t) = −κ

h̄

∫ d3k
2(2π)3k

∫ ∞

0
ds e−iks[τ†

ij(k, t), τij(k, t− s)ρ(t)] + H.c. (33)

in the interaction picture, where κ = 8πG, τij(k, t) is given by Equation (31), and H.c.
denotes the Hermitian conjugate of a previous term, for the reduced density operator, i.e.,
density matrix, ρ(t) of the photon by averaging, i.e., tracing, out the degrees of freedom in
the noisy gravitational environment [8,10].
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It is convenient to express Equation (31) in the form

τij(k, t) =
∫

d3 p′d3 p′′
[
τij(k, p′, p′′)e−i(p′−p′′)t + τ†

ij(−k, p′, p′′)ei(p′−p′′)t
]

(34)

in terms of

τij(k, p′, p′′) =
h̄
2

Pijkl(k)
∫

d3 p
pk pl√
p′p′′

a†
p′′ ap′ψp′(p)ψ∗p′′(p− k) (35)

From Equations (34) and (32) we also have

τ†
ij(k, t) =

∫
d3q′d3q′′

[
τij(−k, q′, q′′)e−i(q′−q′′)t + τ†

ij(k, q′, q′′)ei(q′−q′′)t
]

(36)

Substituting Equation (34) into Equation (33) we have

ρ̇(t) = −κ

h̄

∫ d3k d3 p′ d3 p′′

2(2π)3k

∫ ∞

0
ds e−i(k−p′+p′′)se−i(p′−p′′)t{[τ†

ij(k, t), τij(k, p′, p′′)ρ(t)] + H.c.
}

−κ

h̄

∫ d3k d3 p′ d3 p′′

2(2π)3k

∫ ∞

0
ds e−i(k+p′−p′′)sei(p′−p′′)t{[τ†

ij(k, t), τ†
ij(−k, p′, p′′)ρ(t)] + H.c.

}
. (37)

We then apply the Sokhotski–Plemelj theorem∫ ∞

0
ds e−iεs = πδ(ε)− iP

1
ε

(38)

where P is the Cauchy principal value. Since this Cauchy principal value contributes to a
renormalised energy that can be absorbed in physical energies [32], we can neglect it.

The remaining part of Equation (37) on account of Equation (36) is

ρ̇(t) = −πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k− (p′ − p′′))e−i[k+(q′−q′′)]t

×
{
[τij(−k, q′, q′′), τij(k, p′, p′′)ρ(t)] + H.c.

}
−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k− (p′ − p′′))e−i[k−(q′−q′′)]t

×
{
[τ†

ij(k, q′, q′′), τij(k, p′, p′′)ρ(t)] + H.c.
}

−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k + (p′ − p′′))e−i[k+(q′−q′′)]t

×
{
[τij(−k, q′, q′′), τ†

ij(−k, p′, p′′)ρ(t)] + H.c.
}

−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k + (p′ − p′′))e−i[k−(q′−q′′)]t

×
{
[τ†

ij(k, q′, q′′), τ†
ij(−k, p′, p′′)ρ(t)] + H.c.

}
. (39)

Due to the weakness of interactions, the density matrix will evolve only slightly over
time so that

ρ(t) = ρ0 + ∆ρ(t) (40)

where ρ0 = ρ(t = 0) is the initial density matrix and the components of ∆ρ(t) are small
compared to the components of ρ0.
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Then Equation (39) yields

∆ρ(t) = −πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k− (p′ − p′′))

∫ t

0
ds e−i[k+(q′−q′′)]s

×
{
[τij(−k, q′, q′′), τij(k, p′, p′′)ρ0] + H.c.

}
−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k− (p′ − p′′))

∫ t

0
ds e−i[k−(q′−q′′)]s

×
{
[τ†

ij(k, q′, q′′), τij(k, p′, p′′)ρ0] + H.c.
}

−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k + (p′ − p′′))

∫ t

0
ds e−i[k+(q′−q′′)]s

×
{
[τij(−k, q′, q′′), τ†

ij(−k, p′, p′′)ρ0] + H.c.
}

−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k + (p′ − p′′))

∫ t

0
ds e−i[k−(q′−q′′)]s

×
{
[τ†

ij(k, q′, q′′), τ†
ij(−k, p′, p′′)ρ0] + H.c.

}
. (41)

For t → ∞, physically corresponding to t greater than the effective interaction time
of the system, we can again apply the Sokhotski–Plemelj theorem Equation (38) to Equa-
tion (41) and neglect the Cauchy principal value terms to obtain

∆ρ := ∆ρ(t→ ∞)

= −πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k + (q′ − q′′)) δ(k− (p′ − p′′))

×
{
[τij(−k, q′, q′′), τij(k, p′, p′′)ρ0] + H.c.

}
−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k− (q′ − q′′)) δ(k− (p′ − p′′))

×
{
[τ†

ij(k, q′, q′′), τij(k, p′, p′′)ρ0] + H.c.
}

−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k + (q′ − q′′)) δ(k + (p′ − p′′))

×
{
[τij(−k, q′, q′′), τ†

ij(−k, p′, p′′)ρ0] + H.c.
}

−πκ

h̄

∫ d3k d3 p′ d3 p′′ d3q′ d3q′′

2(2π)3k
δ(k− (q′ − q′′)) δ(k + (p′ − p′′))

×
{
[τ†

ij(k, q′, q′′), τ†
ij(−k, p′, p′′)ρ0] + H.c.

}
. (42)

More precisely, the limit t → ∞, means t exceeds the effective interaction duration
between the photon and the lensing mass with an effective force range ∼ 1/ε, and this is
satisfied if the photon is measured at a large distance with t� 1/ε. Considering the time
integrals in Equation (41), the validity of the foregoing limit is further justified through
the numerical simulations described towards the end of this paper where k and |p− q| are
found to peak around ε.
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Adopting the Born approximation (25) and keeping up to the first orders in ν, we see
that Equation (35) becomes

τij(k, p, p′) = τ
(0)
ij (k, p, p′) + ν τ

(1)
ij (k, p, p′) (43)

in terms of

τ
(0)
ij (k, p, p′) =

h̄
2

Pijkl(k)pk pl√
pp′

δ(p− p′ − k) a†
p′ ap (44)

τ
(1)
ij (k, p, p′) =

h̄
2π2

Pijkl(k)√
pp′[|p− p′ − k|2 + ε2]

[ pk pl
|p− k|2 − (p′ − iε)2 +

p′k p′l
|p′ + k|2 − (p + iε)2

]
a†

p′ ap

−(ε→ δ) (45)

satisfying

τ
(0)†
ij (k, p, p′) = τ

(0)
ij (−k, p′, p) (46)

τ
(1)†
ij (k, p, p′) = τ

(1)
ij (−k, p′, p) (47)

which are consistent with Equation (32).
Substituting Equations (43) into Equation (42) and repetitively using the same argu-

ment leading to free particles suffering no Markovian gravitational decoherence, we obtain
the 2nd order (in ν) asymptotic change of the density matrix

∆ρ = −2 Gν2

πh̄

∫
d3k d3 p d3 p′ d3q d3q′

1
k

δ(k + (q− q′)) δ(k− (p− p′))

× [τ
(1)
ij (−k, q, q′), τ

(1)
ij (k, p, p′)ρ0] + H.c. (48)

On account of Equations (14) and (47), Equation (48) takes a more explicit form
as follows

∆ρ = −ζ
∫

d3k d3 p d3 p′ d3q d3q′ δ(k− p + p′) δ(k + q− q′)
Pijkl(k)

k
√

pp′qq′

×
{ 1
[|p− p′ − k|2 + ε2]

[ pi pj

|p− k|2 − (p′ − iε)2 +
p′i p
′
j

|p′ + k|2 − (p + iε)2

]
− (ε→ δ)

}

×
{ 1
[|q− q′ + k|2 + ε2]

[ qkql
|q + k|2 − (q′ − iε)2 +

q′kq′l
|q′ − k|2 − (q + iε)2

]
− (ε→ δ)

}
×
[
a†

q′ aq , a†
p′ ap ρ0

]
+ H.c. (49)

where

ζ =
2h̄ G3M2

?p4
◦

π5 (50)

is a dimensionless parameter.
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The action of Equation (49) can be obtained from its action on an initial basis matrix
element of the form

ρ0 = |p0〉〈q0| = a†
p0
|0〉〈0|aq0

. (51)

Substituting this form (51) into Equation (49) and using the relation[
a†

q′ aq , a†
p′ ap ρ0

]
= δ(p− p0)δ(q− p′)|q′〉〈q0| − δ(p− p0)δ(q

′ − q0)|p
′〉〈q|

obtained from Equation (27), we can usefully write the resulting ∆ρ as

∆ρ = ∆$\ + ∆$[ + H.c. (52)

where

∆$\ = −ζ
∫

d3k d3 p d3q δ(k + q− p0) δ(k + q− p)
Pijkl(k) |p〉〈q0|

kq
√

pp0

×
{ 1
|p0 − q− k|2 + ε2

[ p0i p0j

|p0 − k|2 − (q− iε)2 +
qiqj

|q + k|2 − (p0 + iε)2

]
− (ε→ δ)

}
×
{ 1
|q− p + k|2 + ε2

[ qkql
|q + k|2 − (p− iε)2 +

pk pl
|p− k|2 − (q + iε)2

]
− (ε→ δ)

}
(53)

does not lose energy and

∆$[ = ζ
∫

k<min
(p0,q0)

d3k

× Pmnij(k)
∫

d3 p
{ δ(k + p− p0)√

p0kp [|p0 − p− k|2 + ε2]

[ p0i p0j

|p0 − k|2 − (p− iε)2 +
pi pj

|p + k|2 − (p0 + iε)2

]
− (ε→ δ)

}
|p〉

× Pmnkl(k)
∫

d3q
{ δ(k + q− q0)√

q0kq [|q0 − q− k|2 + ε2]

[ p0k p0l
|q0 − k|2 + (q + iε)2 +

qkql
|q + k|2 − (q0 − iε)2

]
− (ε→ δ)

}
〈q| (54)

is responsible for dissipating photon energy by emitting bremsstrahlung gravitons.
The setup above allows us to consider a wave packet profile

|ψ〉 =
∫

d3 p ψ(p)|p〉 (55)

as an initial normalised state with∫
d3 p |ψ(p)|2 = 1 (56)

and a mean wave number vector p◦ so that∫
d3 p p |ψ(p)|2 = p◦. (57)

This can be used to construct an initial density matrix

ρ0 = |ψ〉〈ψ| =
∫

d3 p
∫

d3q ψ(p)ψ∗(q) |p〉〈q|. (58)

Then from Equations (58) and (54), we have

∆$[ = ζ
∫

d3k |pij〉〈pij| = ζ
∫

d3k
(
|p+〉〈p+|+ |p×〉〈p×|

)
(59)
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where

|pij〉 = |pij〉(k)

= Pijkl(k)
∫

d3 p′
∫

d3 p ψ(p′) δ(k + p− p′)
1√
p′kp

×
{ 1
|p′ − p− k|2 + ε2

[ p′k p′l
|p′ − k|2 − (p− iε)2 +

pk pl
|p + k|2 − (p′ + iε)2

]
− (ε→ δ)

}
|p〉

=
1
p3◦

∫
p′>k

d3 p′
∫

p=p′−k

dΩp Aij|p〉 (60)

with the dimensionless TT amplitude

Aij = Aij(k, p′, Ωp)

:= Pijkl(k)ψ(p′)
p3
◦p3/2√

p′k

×
{ 1
|p′ − p− k|2 + ε2

[ p′k p′l
|p′ − k|2 − (p− iε)2 +

pk pl
|p + k|2 − (p′ + iε)2

]
− (ε→ δ)

}∣∣∣
p=p′−k

.

5. Gravitational Bremsstrahlung with a Single Momentum Initial State

For simplicity, we now restrict to single momentum initial state, deferring the more
general wave-packet initial states to a future investigation.

Such a state is obtained by setting q0 = p0 = p◦ in Equation (51) so that Equation (54)
takes the form

∆$[ = ζ
∫

k<p◦
d3k |pij〉〈pij| = ζ

∫
k<p◦

d3k
(
|p+〉〈p+|+ |p×〉〈p×|

)
(61)

where

|pij〉 = |pij〉(k) = p−3/2
◦

∫
p=p◦−k

dΩp Aij|p〉 (62)

with the dimensionless TT amplitude

Aij = Aij(k, Ωp)

:=
p◦p3/2Pijkl(k)√

k

{ 1
|p◦ − p− k|2 + ε2

[ p0k p0l
|p◦ − k|2 − (p− iε)2 +

pk pl
|p + k|2 − (p◦ + iε)2

]
− (ε→ δ)

}∣∣∣
p=p◦−k

.

There are two orthogonal parts of Aij:

Aij = A+
ij + A×ij

corresponding to the two (+ and ×) polarisations of the gravitational waves [31], so that
the gravitational wave square amplitude decomposes accordingly as

|A|2 := Aij A∗ij = A+
ij A+∗

ij + A×ij A×∗ij . (63)

For numerical evaluations, we can conveniently choose p◦ = p◦ẑ, then we have

Aij =
p◦p3/2
√

k

{ 1
|p◦ − p− k|2 + ε2

[ p2
◦δ3kδ3l

|p◦ − k|2 − (p− iε)2 +
pk pl

|p + k|2 − (p◦ + iε)2

]
− (ε→ δ)

}∣∣∣
p=p◦−k

.
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For example, in the limit of a point source of gravity with effective radius 1/δ → 0,
Equation (63) yields

|A|2ε =
p2
◦p3

k [|p◦ − p− k|2 + ε2]2

{
p4
◦P3333(k)∣∣|p◦ − k|2 − (p− iε)2

∣∣2
+

2 p2
◦p2P33ij(k) p̂i p̂j

<
[
(|p◦ − k|2 − (p + iε)2)(|p + k|2 − (p◦ + iε)2)

] + p4Pijkl(k) p̂i p̂j p̂k p̂l∣∣|p + k|2 − (p◦ + iε)2
∣∣2
}∣∣∣∣

p=p◦−k
(64)

where∣∣|p◦ − k|2 − (p− iε)2∣∣2 = (|p◦ − k|2 − p2 + ε2)2 + 4ε2 p2,

<
[
(|p◦ − k|2 − (p + iε)2)(|p + k|2 − (p◦ + iε)2)

]
= (|p◦ − k|2 − p2 + ε2)(|p + k|2 − p2

◦ + ε2)− 4ε2 p◦p,∣∣|p + k|2 − (p◦ + iε)2∣∣2 = (|p + k|2 − p2
◦ + ε2)2 + 4ε2 p2

◦,

and

P3333(k) =
1
2
(1− k̂2

3)
2,

P33ij(k) p̂i p̂j = p̂2
3 − 2(k̂i p̂i)k̂3 p̂3 +

1
2
[
(k̂i p̂i)

2(k̂2
3 + 1) + k̂2

3 − 1
]
,

Pijkl(k) p̂i p̂j p̂k p̂l =
[
1− (k̂i p̂i)

2]2.

It is also useful to introduce |A|2δ := |A|2ε→δ. For simplicity, let us adopt as a reasonable
first order-of-magnitude estimate of the gravitational wave square amplitude for a source
of gravity with an effective range 1/ε and radius 1/δ to be

|A|2ε,δ := |A|2ε − |A|2δ. (65)

The total dissipated outgoing energy corresponding to Equations (52) and (61) then
follows as

∆E =
2ζ

p3◦

∫
d3k

∫
dΩp h̄k |A|2ε,δ(k, Ωp)

=
2ζ h̄
p3◦

∫ p◦

0
dk k3

∫
dΩk

∫
dΩp |A|2ε,δ(k, Ωp). (66)

To obtain an expression in term of dimensionless quantities, we express p◦, p, k, ε as
dimensionless quantities in units of p◦.

Then, by replacing p◦ → p◦p◦, p → p◦p, k → p◦k, ε → p◦ε, δ → p◦δ and using
Equation (50) with the mass–energy of the gravity source E? = M?, we arrive at the
fractional energy loss µ := ∆E/E◦ = ∆E/(h̄p◦) given by

µ =
4

π5 h̄ G3E2
?p4
◦

(Sε

ε
− Sδ

δ

)
=

4
π5

E2
?E4
◦

E 6
P

(Sε

ε
− Sδ

δ

)
(67)

where EP is the Planck energy and

Sε = ε
∫ 1

0
dk k3

∫
dΩk

∫
dΩp |A|2ε(k, Ωk, Ωp)

=
∫ 1

0
dk

∫
dθk

∫
dφk

∫
dθp

∫
dφp Fε(k, θk, φk, θp, φp) (68)
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with |A|2ε obtained from Equation (64) for p◦ → 1 and

Fε(k, θk, φk, θp, φp)

=
εk2 p3 sin θk sin θp

[|p◦ − p− k|2 + ε2]2

{ 1
2 (1− k̂2

3)
2

(|p◦ − k|2 − p2)2 + 2ε2(|p◦ − k|2 + p2) + ε4

+
2 p2

[
p̂2

3 − 2(k̂i p̂i)k̂3 p̂3 +
1
2
[
(k̂i p̂i)

2(k̂2
3 + 1) + k̂2

3 − 1
]]

(|p◦ − k|2 − p2 + ε2)(|p + k|2 − 1 + ε2)− 4ε2 p
+

p4[1− (k̂i p̂i)
2]2

(|p + k|2 − 1)2 + 2ε2(|p + k|2 + 1) + ε4

}∣∣∣∣
p=1−k

. (69)

We also have analogous constructions for Sδ and Fδ. Numerical evaluations of Fε and
Fδ as functions of (k, θk, φk, θp, φp) show sharp but finite peaks around small k, θk and θp
for small ε, δ. This leads to finite numerical integrations with Sε ≈ Sδ ≈ 100 for ε, δ � 1.
Therefore, for a gravity source with a characteristic radius 1/δ and effective range 1/ε in
units of 1/p◦, from Equation (67) we have

µ =
E2
?E4
◦

E 6
P

(1
ε
− 1

δ

)
. (70)

approximately, corresponding to the rough spread of the photon impact parameter to be
from the surface of the gravitational lens to one radius from the surface.

The energy loss rate above can be interpreted µ ≈ Γ τ where Γ = E2
?E4
◦/E 6

P is the
effective graviton emission transition rate by the photon, and τ = 1/ε− 1/δ is the effective
interaction time between the photon and the lensing mass M? with the corresponding
effective interaction range Rrng = 1/ε. See Figure 1. This is consistent with the long travel
time or distance assumption stated in Section 4.

In full physical units, Equation (70) becomes

µ =
h̄ G3

c12

(
Rrng − R?

)
M2

?ω5
◦ (71)

where the speed of light c has now been reinstated.

6. Conclusions and Discussion

Based on the gravitational quantum vacuum, which has recently been shown to lead
to gravitational decoherence [8] and gravitational spontaneous radiation that recovers
the well-established quadrupole radiation [10], in this paper we have presented, to our
knowledge, the first approach to the spontaneous bremsstrahlung of light due to the
combined effects of gravitational lensing and spacetime fluctuations. Our present work
yields a new quantum gravitational mechanism whereby starlight emits soft gravitons
and becomes partially redshifted. This effect may contribute to the stochastic gravitational
wave background [11,33,34]. We also note that while the term (53) for the outgoing light
does not undergo photon to graviton energy conversion, it exhibits a type of recoherence
of photons [35].

Our work naturally raises the prospect of potential detection of the released stochastic
gravitational waves. Addressing this question in detail requires a further investigation,
which is currently underway by the authors. It is however of interest at the present stage to
envisage a plausible observation scenario. To this end, let us take the well studied strong
X-ray binary Cygnus X-1 [36] because this system has both a large gravitational field and
a strong X-ray source similar to that illustrated in Figure 1. However, both the compact
object/black hole and the companion supergiant star in the Cygnus X-1 binary system
are massive, with a total mass M? ≈ 40M� and an orbiting radius ≈ 20R�, which we
will take as the effective R?. This would make Rrng to be in the region of 100R� and so
from the discussions in Section 5, the spontaneously emitted stochastic gravitational waves
would have a mean wavelength in the same region having a mean frequency f ∼ 0.01 Hz.
Using these parameters, the fractional energy loss µ in Equation (71) is plotted in Figure 2
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with the effective gravity range parameter d := (Rrng − R?)/R? chosen to be 0 ≤ d ≤ 4,
corresponding to the rough spread of the photon impact parameter to be from the surface
of the gravitational lens to Rrng ≈ 100R� discussed above. The detection of sub-Hz
gravitational waves is a unique strength of the proposed LISA mission, which is expected
to reach a corresponding characteristic strain sensitivity close to h ∼ 10−22 [37], as shown
in Figure 3.

From the X-ray luminosity of Cygnus X-1 LX ≈ 4 × 1037 erg s−1 [38,39] and its
distance D ≈ 6100 light years to the Earth, one gets the arriving X-ray energy flux to be
SX = LX/(4πD2) ≈ 10−7 erg cm−2s−1. Let us suppose that the total gravitational wave
luminosity of Cygnus X-1 arises from LGW = µeffLX, in terms of an effective photon-to-
graviton energy transfer rate 0 < µeff < 1. We can then estimate the characteristic strain h
of the gravitational waves with energy density expression UGW = c2ω2h2/(32πG) where
h2 = h2

+ + h2
× with ω = 2π f and the energy flux SGW = c UGW so that SGW = µeffSX.

For example, if µeff = 0.1% and f = 0.01 Hz, then SGW ≈ 10−10 erg cm−2s−1 yielding
h ≈ 10−22.

Figure 2. The fractional energy loss µ given by Equation (71) as a function of the photon frequency
f◦ (Hz) in logarithmic scale along the horizontal axis evaluated with a chosen range of the effective
gravity range parameter d = (Rrng−R?)/R? for the X-ray binary Cygnus X-1. Above, log µ is plotted
in (a) as a projected height onto the (log f◦, d) plane and in (b) as a line for three representative
values of d. It is obvious that as the photon frequency f◦ increases from the optical spectrum, the
photon-to-graviton energy conversion “chips in” at around f◦ = 3× 1017 Hz at the start of the soft
X-ray spectrum, so that µ ∼ 0.01 for d = 4 corresponding to Rrng ∼ 100R�. Although here µ appears
to carry on increasing with f◦, the validity of Equation (71) is strictly limited to small µ due to the
Born approximation with weak interactions we have assumed in Equation (21) used to derive µ in
Equation (71). Nonetheless, the ascending trend of µ with the photon frequency f◦ suggests that
starting from the soft X-ray frequencies, the gravitational bremsstrahlung of light in the vicinity of
Cygnus X-1 may be important.

As shown in Figure 3, we choose moderate effective transfer rate values 0.01% ≤ µeff ≤ 1%
across the gravitational wave frequencies 10−5 Hz ≤ f ≤ 10 Hz. Indeed, for µeff & 10−3 at
around f ∼ 0.01 Hz, the characteristic strain of the bremsstrahlung gravitational waves
from Cygnus X-1 could be above the sensitivity level of LISA and hence potentially de-
tectable. Furthermore, the buildup of similar sources could also contribute to an overall
stochastic gravitational wave background. Based on the initial results and estimates re-



Symmetry 2021, 13, 852 15 of 16

ported in this work, we plan to analyse and quantify the properties of the bremsstrahlung
gravitational waves from intense astronomical sources of light and gravity in a more
realistic setting for future publication.

Figure 3. Estimated characteristic strain h of the gravitational waves with effective photon-to-graviton
energy transfer rate µeff for Cygnus X-1 with 0.01% ≤ µeff ≤ 1% against the gravitational wave
frequency f in Hz compared with the LISA characteristic strain sensitivity curve [37].
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