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Abstract: This paper analyses the model of Black–Scholes option pricing from the point of view
of the group theoretic approach. The study identified new independent variables that lead to the
transformation of the Black–Scholes equation. Furthermore, corresponding determining equations
were constructed and new symmetries were found. As a result, the findings of the study demon-
strate of the integrability of the model to present an invariant solution for the Ornstein–Uhlenbeck
stochastic process.

Keywords: group theoretic approach; lie symmetry; invariant solution; Black–Scholes equation;
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1. Introduction

In 1973, Fischer Black and Myron Scholes formulated a mathematical model that
describes option pricing. Their model forms the cornerstone for modern financial theory; it
is not often that one can talk about modern finance without ever mentioning the revolu-
tionary Black–Scholes (BS) model. The central goal of the BS model is to find fair prices of
options by combining the price variation of the stock, the time value of money, the option’s
stock price, and the time to the option’s expiry [1]. In 1976, Robert Merton provided several
extensions to the BS model, the most prominent of these extensions being the ability to
account for dividend yields [2]. The importance of the BS model was recognised in 1997 by
Royal Swedish Academy of Sciences, where Scholes and Merton were awarded the Nobel
Prize in Economics. Unfortunately, having died two years earlier, Fischer Black was not
present for the award.

In this paper, we demonstrate how the theory of Lie symmetry analysis can be used
to find invariant solutions of the Black–Scholes option pricing model under stochas-
tic volatility. The stochastic volatility case was handled using the method introduced
by Palianthanasis et al. [3], where the volatility was assumed to follow the Ornstein–
Uhlenbeck process. The model is governed by the given partial differential equation [3]:

Vt +
1
2

f 2(y)S2VSS + ρβS f (y)VSy +
1
2

β2Vyy

+rSVS + [α(m− y)− βρ
µ− r
f (y)

]Vy − rV = 0, (1)

where S is the price of an underlying asset (the stock); ρ is the correlation coefficient; β
is the drift; r is the riskless rate; α is the rate of mean reversion; m is the long-run mean
of Y; σ is the volatility of the stock. To derive the model for stochastic volatility with the
Ornstein–Uhlenbeck process, it is convenient to regard the volatility of the stock price as
being a function of Yt, i.e., σ = f (Yt), where Yt is the stochastic process that contains the
Ornstein–Uhlenbeck term [3].
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This paper is organised as follows. In Section 3, a heuristic background of the concepts
underlying Lie symmetry analysis are introduced. In Section 4, Lie symmetry analysis is
presented for the case where the volatility follows a stochastic process. The obtained sym-
metries were used to reduce Equation (1) into a one dimensional linear ordinary differential
equation of order two. In Section 5, the modified local one-parameter transformations
are presented and used to calculate invariant solutions of Equation (1). Furthermore, Lie
symmetry analysis was used to examine a stochastic Heston model. The numerical solution
that represents the evolution of the solutions is presented graphically in Section 6. The
conclusion is provided in Section 7.

2. Fundamental Definitions and Theorems

In this section, a comprehensive review of a group theoretic approach to the solution
of differential equations is given. The theory entails the tools necessary for subsequent
employment throughout the paper. To start with, the mathematical idea of a symmetry is
explained, and then the general properties of groups are explained; the properties are then
extended to the Lie groups. Numerous textbooks are accessible [4–8], as well as research
papers extensively published on the symmetry analysis of ordinary differential equations
(ODEs) and partial differential equations (PDEs). In [5], Bluman and Kumei described
the significance of the theory of Lie symmetry for a PDE. The authors pointed out that
invariant functions can be constructed to reduce the order of a differential equation or the
number of dependent variables [9].

According to Lie theory, the kth-order partial differential equation [10,11]:

ut − F(t, x, u, u(1), u(2), ..., u(k)) = 0, (2)

admits the given Lie group of transformations of one-parameter:

t̂ ≈ t + aξ0(t, x, u, u(1), u(2), ..., u(k)),

x̂i ≈ xi + aξ i(t, x, u, u(1), u(2), ..., u(k)),

ûα
i ≈ uα

i + aηα
i (t, x, u, u(1), u(2), ..., u(k)),

with infinitesimal Lie generators [12,13]:

X = ξ0 ∂

∂t
+ ξ i ∂

∂xi + ηα ∂

∂uα
, (3)

if:

ût − F(t̂, x̂, û, û(1), û(2), ..., û(k)) = 0. (4)

the group transformations t̂, x̂, and û are obtained by solving the following Lie equations [14]:

dt̂
da

= ξ0(t̂, x̂, û, û(1), û(2), ..., û(k)),

dx̂i

da
= ξ i(t̂, x̂, û, û(1), û(2), ..., û(k)), (5)

dûα
i

da
= ηα

i (t̂, x̂, û, û(1), û(2), ..., û(k)),

with the initial conditions:

t̂ |a=0= t, x̂i |a=0= xi, ûα
i |a=0= uα

i .
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the infinitesimal form of ût̄, û(1), û(2), ..., û(k) are found by the given formulas [15,16]:

ûα
i ≈ uα

i + aηα
i (x, u, u1),

ûα
ij ≈ uα

ij + aηα
ij(x, u, u1, u2), (6)

...

ûα
i1...ik ≈ uα

i1...ik + aηα
i1...ik (x, u, u1, ..., uk).

the functions ηα
i (x, u, u1), ηα

ij(x, u, u1, u2), and ηα
i1...ik

(x, u, u1, ..., uk) are obtained from the
following prolongation formulas [6]:

ηα
i = Di(η

α)− uα
j Di(ξ

j),

ηα
ij = Dj(η

α
i )− uα

il Dj(ξ
l), (7)

...

ηα
i1...ik = Dik (η

α
i1...ik−1

)− uα
i1...ik−1l Dik (ξ

l),

where Di denotes the operator of total differentiation with respect to (x1, x2...xn), then:

Di =
∂

∂xi
+ uα

i
∂

∂uα
+ uα

ij
∂

∂uα
j

. (8)

the transformed derivatives û(1), û(2), ..., û(k) can be computed from the formulas:

Di = Di( f i)D̂j. (9)

the generators are therefore given by:

X[1] = X + ηα
i (x, u, u1)

∂

∂uα
i

,

... (10)

X[k] = X[1] + ... + ηα
i1...ik (x, u, ..., uk)

∂

∂uα
i1...ik

.

Theorem 1. A function F(x, u, · · · , uk) is invariant under the prolonged group G, if and only
if [17]

X[k]F = 0, (11)

where X[k] is the generator of G.

Theorem 2. Every one-parameter group of transformations (x̂ = f (x, y, ε), ŷ = g(x, y, ε)) is
reduced to a group of translations t̂ = t + ε, û = u with the generator [17]:

X =
∂

∂t
,

by suitable change of variables

t = t(x, y), u = u(x, y).

Considering the Lie groups of point transformations related to a given differential
equation E involve n independent variables x = (x1, x2, ..., xn) ∈ Rn and m dependent
variables u = (u1, u2, ..., um) ∈ Rm [4,18], let:

x∗ = X(x, u; a), u∗ = U(x, u; a) (12)
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be a group of transformations in the space ∈ Rn+m of the variables (x, u) [4,18]. Further-
more, for:

u = Θ(x) ≡ (Θ1(x), Θ2(x), ..., Θm(x)), (13)

be a solution of the equation E . A Lie group of transformations of the form (12) admitted
by E has the following two corresponding properties [4,18]:

1. A transformation of the group maps any solution of E into another solution of E ;
2. A transformation of the group leaves E invariant, say, E reads the same in terms of

the variables (x, u) and in terms of the transformed variables (x∗, u∗).

Definition 1. [18]-The function u = Θ(x) with components uA = ΘA(x) (A = 1, 2, . . . , m)
is said to be an invariant solution of (2) if uA = ΘA(x) is an invariant surface of (12) and is a
solution of (2).

3. Symmetry Analysis for Black–Scholes with the Ornstein–Uhlenbeck Process

We assume that Equation (1) admits a Lie symmetry satisfying the generator:

X[1] = ξ1∂t + ξ2∂S + ξ3∂y + η∂V . (14)

the prolonged symbol is then:

X[2] = X[1] + ηt∂Vt + ηS∂VS + ηy∂Vy

+ηSy∂VSy + ηSS∂VSS + ηyy∂Vyy . (15)

using Equation (7), we can obtain the following exact expressions for the prolonged
coefficients:

ηt = ηt + VtηV − ξ1
t Vt −VtVtξ

1
V − ξ2

t VS −VtVSξ2
V

− ξ3
t Vy −VtVyξ3

V

ηS = ηS + VSηV − ξ1
SVt −VtVSξ1

V − ξ2
SVS

− VSVSξ2
V − ξ3

SVy −VSVyξ3
V

ηy = ηy + VyηV − ξ1
yVt − ξ2

VVyVS −VtVyξ1
V − ξ2

yVS

− ξ3
yVyy −VyVyξ3

V

ηSS = ηSS + 2ηSVVS + ηVVSS + ηVVVSVS − ξ2
SSVS − ξ3

SSVy

− ξ1
SSVt − 2ξ2

SVSS − 2ξ3
SVSy − ξ1

SVSt − 2ξ2
SVVSVS

− 2ξ3
SVVSVy − 2ξ1

SVVSVt − ξ2
VVSVSS − 2ξ2

VVSVSS

− ξ3
VVyVSS − 2ξ3

VVSy − ξ1
VVtVSS − 2ξ1

VVSVSt

− ξ2
VVVSVSVS − ξ3

VVVSVSVy − ξ1
VVVSVSVt

ηyy = ηyy + 2ηyVVy + ηVVyy + ηVVVyVy − ξ2
yyVS − ξ3

yyVy

− ξ1
yyVt − 2ξ2

yVyS − 2ξ3
yVyy − ξ1

yVyt − 2ξ2
yVVyVS

− 2ξ3
yVVyVy − 2ξyVVyVt − ξ2

VVSVyy − 2ξ2
VVyVyS − ξ3

VVyVyy

− ξ2
VVVyVyVS − ξ3

VVVyVyVy − ξ1
VVvyVyVt

ηSy = ηSy + ηyVVS − ξ2
SyVS + ηSVVy − ξ3

SyVy − ξ1
SyVt

+ ηVVVSVy − ξ3
yVVSVy − ξ2

SVVSVy − ξ1
yVVSVt

− ξ1
yVVyVt − ξ1

yVVSVS − ξ3
SVVyVy − ξ2

yVSS − ξ3
SVyy

+ ηVVSy − ξ3
yVSy − ξ2

SVSy − ξ1
yVSt − ξ1

SVyt − ξ2
VVSVSy

− ξ1
VVSSVy − ξ3

VVSVyy − ξ3
VVVSVyVy.
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the symbols ηt, ηS, ηy, ηSy, ηSS, and ηyy are substituted into the determining equation.
Using the SYM Mathematica package conceived by Dimas and Tsoubelis in [19], we
obtained the following two Lie operators, which are inline in [20]:

X1 = ∂t, (16)

X2 = S∂S. (17)

in as much as Equation (1) is a linear equation, it therefore constantly admits the respective
linear and infinite symmetries given by:

XV = V∂V , (18)

Xb = b(t, S, y)∂V , (19)

in constructing invariant solutions, the following three facts must be taken into consid-
eration: First, the infinite symmetry cannot be used for the reduction of the differential
equation; therefore, they are not considered here. Second, all those solutions in which V
does not depend on one of the independent variables are discarded. Third, linear com-
binations of symmetries are also symmetries. These three facts mean that a reduction of
Equation (1) can be performed using the following symmetry generators, which are linear
combinations of the two symmetries obtained:

Y1 = X1 + k1Xu, (20)

Y2 = X2 + k2Xu, (21)

Y12 = X1 + cX2 + k3Xu. (22)

4. Invariant Solution through Lie Operators
4.1. Invariant Solution through Symmetry Y1

The symmetry Y1 is given by:

Y1 = ∂t + k1V∂V . (23)

the characteristic system is therefore given by:

k1dt
1

=
dV
V

(24)

integrating both sides, we can obtain:

k1t = ln V + ln ν(S, y), (25)

which results in:

V(t, S, y) = ν(S, y)ek1t. (26)

the computation of the partial derivatives of V gives:

Vt = k1ν(S, y)ek1t,

Vy = νyek1t,

VS = νSek1t, (27)

VSS = νSSek1t,

VSy = νSyek1t,

Vyy = νyyek1t.
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the substitution of Equation (27) into Equation (1) gives the following one-dimensional
second-order partial differential equation of function ν(S, y):

0 = 1
2 f 2(y)S2νSS + ρβS f (y)νSy +

1
2 β2νyy + (28)

rSνS +
[
α(m− y)− βρ

µ−r
f (y)

]
νy − (r− k1)ν. (29)

using the SYM [19], it can be found that Equation (28) admits one symmetry X2 = S∂S.
Applying the symmetry S∂S + k2VdV, which is equivalent to the symmetry vector Y2,
to Equation (28), a second-order differential equation can be obtained. This is shown below
in detail.

4.2. Invariant Solution through Symmetry X2

The symmetry Y2 is given by:

Y2 = S∂S + k2ν∂ν, (30)

which gives the following characteristic system:

k2
dS
S

=
dν

ν
. (31)

the integration of Equation (31) gives:

k2 ln S + ln w(y) = ln ν, (32)

i.e.:

ln Sk2 + ln w(y) = ln ν. (33)

hence

ν(S, y) = Sk2 w(y). (34)

substituting Equation (34) into Equation (26), we can obtain:

V(t, S, y) = ek1tSk2 w(y). (35)

one can use Equation (34) to reduce Equation (28) by computing partial derivatives of ν
with respect to S and y as follows:

νy = Sk2 wy,

νS = k2Sk2−1w,

νSy = k2Sk2−1wy, (36)

νSS = k2(k2 − 1)Sk2−2w,

νyy = Sk2 wyy.

substituting these partial derivatives into Equation (28) gives:

0 = β2wyy +

[
2α(m− y) +

2ρβ

f (y)
(k2 f 2(y)− µ + r)

]
wy

+ [(k2
2 − k2) f 2(y) + 2(rk2 − r + k1)]w. (37)

4.3. Invariant Solution through Symmetry Y12

The symmetry Y12 is given by:

Y12 = ∂t + cS∂S + k3V∂V . (38)
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the characteristic is given by:

dt
1

=
dS
cS

=
dV
k3V

. (39)

the first characteristic is solved by integrating:

dt
1

=
dS
cS

, (40)

to get:

tc = ln S + ln z. (41)

hence:

S = zect, (42)

and so:

z = Se−ct. (43)

the second characteristic is solved by integrating:

dt
1

=
dV
k3V

, (44)

to get:

k3t = ln V + ln v(z, y), (45)

which then gives:

V(t, S, y) = ek3tv(z, y). (46)

now, derivatives are obtained as follows:

Vt = k3ek3tv− cSek3te−ct,

VS = ek3te−ctvz,

Vy = ek3tvy, (47)

Vyy = ek3tvyy,

VSS = ek3te(−2ct)vzz,

VSy = ek3te−ctvzy.

substituting these derivatives into Equation (1), we can find:

0 =
1
2

f 2(y)S2ek3te−2ctvzz + ρβS f (y)ek3te−ctvzy +

+
1
2

β2ek3tvyy + rSek3te−ctvz +

[
α(m− y)− ρβ

µ− r
f (y)

]
ek3tvy

rek3tv + ek3tv− cSe−ctvz. (48)
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multiplying throughout by 2, cancelling out the term ek3t, and imposing the equation
z = Se−ct leads to:

0 = f 2z2(y)vzz + 2ρβz f (y)vzy + β2vyy + 2(r− c)zvz +

2
[

α(m− y)− ρβ
µ− r
f (y)

]
vy − 2(r− k3)v. (49)

using the SYM, it can be found that Equation (49) admits the symmetry z∂z, which is a
reduced symmetry [3]. Hence, one can apply the zeroth-order invariant of the symmetry
vector z∂z +w∂w to Equation (49) to get a reduced form, as follows: Taking the characteristic
of z∂z + k4v∂v, we get:

dz
z

=
dv
k4v

. (50)

integrating gives:

k4 ln z + ln u(y) = ln v, (51)

and hence:

v(z, y) = zk4 u(y). (52)

the substitution of Equation (52) into (46) gives

V(t, S, y) = ek3tzk4 u(y). (53)

now, from Equation (52), we can compute the derivatives of v with respect to z and y
as follows:

vz = k4zk4−1u,

vzz = k4(k4 − 1)z(k4−2)u,

vzy = k4zk4−1uy, (54)

vy = zk4 uy,

vyy = zk4 uyy.

substituting these into Equation (49) gives the following second-order differential equation:

0 = β2uyy +

[
2α(m− y) +

2ρβ

f (y)
(k2 f 2(y)− µ + r)

]
uy

+ [(k2
2 − k2) f 2(y) + 2(rk2 − r + k1)]u. (55)

the solution of differential Equation (55) can be obtained using Maple software. This results
in a very complicated solution that contains hypergeometric functions. However, this
solution can then be substituted into Equation (53) to get the complete solution V(t, S, y)
for the original partial differential equation.

5. Symmetry Analysis of the Heston Model

This section is dedicated to performing Lie symmetry analysis for the Heston model.
The Black–Scholes equation for the Heston model is given by [3]:

0 =
1
2

YS2VSS + ρδYSVSY +
1
2

δ2YVYY + rSVS

+ (α(m−Y)− λY)VY − rV + Vt. (56)
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in order to ease the process of calculating symmetries for Equation (56), the following
change of variables was employed:

Y = y2

β =
δ

2
(57)

c1 = (α− λ)

c2 = αm− β2

which provided the new differential equation below:

0 =
1
2

y2S2VSS + βρySVSy +
1
2

β2Vyy + rSVS

+
1
2

[
c1y +

(
c2

y

)]
Vy − rV + Vt. (58)

using the SYM [19], we obtained the given Lie operators:

X1 = ∂t,

X2 = S∂S,

XV = V∂V , (59)

Xb = b(t, S, y)∂V ,

where XV and Xb are linear symmetry and infinite symmetry, respectively. Next, the linear
combinations of these symmetries were considered to obtain:

Y1 = X1 + k1Xv, (60)

Y2 = X2 + k2XV , (61)

Y12 = X1 + cX2 + k3XV . (62)

5.1. Invariant Solution through Symmetry Y1

The symmetry Y1 is given by:

Y1 = ∂t + k1V∂V . (63)

the characteristic system is therefore given by:

k1dt
1

=
dV
V

. (64)

integrating both sides, we can obtain:

k1t = ln V + ln Φ(S, y), (65)

which results in:

V(t, S, y) = Φ(S, y)ek1t. (66)
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the computation of partial derivatives of V with respect to its parameters gives:

Vt = k1Φ(S, y)ek1t,

Vy = Φyek1t,

VS = ΦSek1t,

VSS = ΦSSek1t,

VSy = ΦSyek1t,

Vyy = Φyyek1t.

substituting these in Equation (58), the function Φ(S, y) satisfies the following equation:

0 =
1
2

y2S2ΦSS + βρySΦSy +
1
2

β2Φyy

+
1
2

[
c1y +

(
c2

y

)]
Φy − rΦ + k1Φ. (67)

using the SYM, it can be found that Equation (67) admits one symmetry X2 = S∂S. This
means that if the symmetry S∂S + k2VdV, which is equivalent to the symmetry vector Y2
applied to Equation (46) being able to reduce the equation into a second-order ordinary
differential equation. This is shown below in detail.

5.2. Invariant Solution through Symmetry X2

The symmetry Y2 is given by:

Y2 = S∂S + k2Φ∂Φ,

which gives the following characteristic system:

k2
dS
S

=
dΦ
Φ

.

integrating both sides gives:

k2 ln S + ln W(y) = ln Φ

i.e.:

ln Sk2 + ln W(y) = ln Φ

and therefore:

Φ(S, y) = Sk2W(y). (68)

substituting Equation (68) where there is Φ into Equation (66), we can find:

V(t, S, y) = ek1tSk2W(y). (69)

one can use Equation (68) to reduce Equation (46) by computing partial derivatives of Φ
with respect to S and y as follows:

Φy = Sk2Wy,

ΦS = k2Sk2−1W,

ΦSy = k2Sk2−1Wy,

ΦSS = k2(k2 − 1)Sk2−2W,

Φyy = Sk2Wyy.
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substituting these partial derivatives into Equation (46) gives:

0 = β2Wyy +

(
2βρyk2 + c1y +

c2

y

)
Wy

+
(

2k1 − 2r(1− k2) + y2(k2
2 − k2)

)
. (70)

as explained in Section 4, Maple software can be used to obtain asolution of differen-
tial Equation (70). The complete solution V(t, S, y) of the original partial differential equa-
tion can then be found by substituting the obtained solution into Equation (69).

6. Numerical Solutions

The numerical solutions were computed using Maple software, and they are depicted
in Figures 1 and 2 below. The parameters in Figure 1 are chosen as ρ = 0.5, β = 0.7,
k1 = 1, k2 = 0.5, r = 0.5, c1 = −0.01, c2 = −0.05, for the dashed line; ρ = 0.5, β = 0.7,
k1 = 1, k2 = 0.5, r = 0.5, c1 = −0.01, c2 = −0.003, for solid blue line and ρ = 0.5, β = 0.7,
k1 = 1, k2 = 0.5, r = 0.5, c1 = −0.01 c2 = −0.01, for red dotted line. However, parameters
in Figure 2 were chosen as: ρ = 0.5, β = −0.7, k1 = 1, k2 = 0.5, r = 0.5, c1 = −0.01,
c2 = −0.05, for the dashed line; ρ = 0.5, β = −0.7, k1 = 1, k2 = 0.5, r = 0.5, c1 = −0.01,
c2 = 0.003, for solid blue line; ρ = 0.5, β = 0.7, k1 = 1, k2 = 0.5, r = 0.5, c1 = −0.01, and
c2 = −0.01, for the red dotted line.

Figure 1. numerical solution of the invariant solution for the Heston model Equation (52); the
parameters were chosen as follows:
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Figure 2. numerical solution of the invariant solution for the Heston model Equation (52); the
parameters were chosen as follows:

7. Conclusions

This study looked at the evolution of the solution of the Black–Scholes model for
stochastic volatility using the technique known as the modified local one-parameter trans-
formation, and symmetries were obtained and then used to obtain an invariant solution.
The model was assumed to follow the Ornstein–Uhlenbeck process, and the Lie symmetry
analysis reduced the model to a second-order ordinary differential equation. This process
was then applied to the Heston model. The future work in this regard will be to incorporate
the dividend yield and observe how the solutions evolve. Another possible extension of
the model is to consider an interest rate that is not constant, as an instance interest rate can
be considered to be a function of time or a stochastic process.
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