
symmetryS S

Article

Recursively Divided Pancake Graphs with a Small
Network Cost

Jung-Hyun Seo 1 and Hyeong-Ok Lee 2,*

����������
�������

Citation: Seo, J.-H.; Lee, H.-O.

Recursively Divided Pancake Graphs

with a Small Network Cost. Symmetry

2021, 13, 844. https://doi.org/

10.3390/sym13050844

Academic Editor: Serge Lawrencenko

Received: 16 April 2021

Accepted: 7 May 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Multimedia Engineering, National University of Chonnam, Yeosu 59626, Korea;
jhseo@scnu.ac.kr

2 Department of Computer Education, National University of Sunchon, Sunchon 315, Korea
* Correspondence: oklee@scnu.ac.kr; Tel.: +82-61-750-3345

Abstract: Graphs are often used as models to solve problems in computer science, mathematics,
and biology. A pancake sorting problem is modeled using a pancake graph whose classes include
burnt pancake graphs, signed permutation graphs, and restricted pancake graphs. The network
cost is degree × diameter. Finding a graph with a small network cost is like finding a good sorting
algorithm. We propose a novel recursively divided pancake (RDP) graph that has a smaller network
cost than other pancake-like graphs. In the pancake graph Pn, the number of nodes is n!, the degree is
n − 1, and the network cost is O(n2). In an RDPn, the number of nodes is n!, the degree is 2log2n − 1,
and the network cost is O(n(log2n)3). Because O(n(log2n)3) < O(n2), the RDP is superior to other
pancake-like graphs. In this paper, we propose an RDPn and analyze its basic topological properties.
Second, we show that the RDPn is recursive and symmetric. Third, a sorting algorithm is proposed,
and the degree and diameter are derived. Finally, the network cost is compared between the RDP
graph and other classes of pancake graphs.

Keywords: pancake graphs; network cost; d × k; sorting; symmetric graph

1. Introduction

The pancake graphs originated with pancake sorting problems. An n-pancake sorting
problem refers to the task of sorting n pancakes of varied sizes piled on a stack. The stacked
states are represented as permutations of the set {1, . . . , n}. The operation of reversing
the positions of the pancakes from the top to the k-th pancake is called prefix reversal
(flip hereinafter). A flip, therefore, changes the positions of the first k (1 < k ≤ n) pancakes.
When sorting is finished, symbol 1 is positioned at the top, and symbol n at the bottom [1].
The solution to this problem is as follows. First, put the largest pancake on the top, and
then take it down to the bottom, then repeat this iteration with the rest of the pancakes
n − 2 times. Simply put, the number of flips in order to complete the sort in the worst
time complexity is 2n − 3. W. Gates suggests a method in which the number of required
flips is ;1.6666n and the lower bound is proved to be ;1.0625n (n≡0(mod 16)) [2], while B.
Chitturi suggests a method in which the number of flips is ;1.6363n and the lower bound
is proved to be ;1.071n (n ≡ 0(mod 16)) [3].

The n-pancake sorting problem can be represented by the pancake graph Pn. The
permutations are mapped to the nodes and flips to the edges. The number of nodes in Pn is
n, and the degree is n − 1. The operation that flips the kth pancake is flipk. In graph theory,
the degree of a node is the number of edges incident with the node. The degree of a graph
represents the maximum degree of all nodes. The distance between two nodes, u and v, is
the number of edges of the shortest path between u and v. The diameter is the maximum
distance between all pairs of nodes [4].

Time complexity is a measure used to evaluate sorting algorithms. It refers to the
number of times the main operations are performed so that the algorithm can terminate.
There are three main operations for sorting the permutations, as is the case for the classes

Symmetry 2021, 13, 844. https://doi.org/10.3390/sym13050844 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2117-5750
https://doi.org/10.3390/sym13050844
https://doi.org/10.3390/sym13050844
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050844
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13050844?type=check_update&version=2

Symmetry 2021, 13, 844 2 of 9

of star or pancake graphs: reversals (flips) that flip the order of symbols, transpositions that
move the symbols to other positions, and translocations that exchange two symbols with
each other.

Direct comparison of sorting algorithms using these three operations is difficult, be-
cause the given main operations all differ. Suppose we are given an arbitrary node,
S = s1s2s3 . . . sn−2sn−1sn. Then, the main operation of a star graph exchanges s1 and
sk (1 < k ≤ n). However, the main operation of a pancake graph is the flip. The sorting time
complexity of a star graph Sn is ;1.5n, and that of a pancake graph Pn is ;1.67n [5]. Thus,
it is not reasonable to simply compare the time complexities of these algorithms. In an
extreme case, if there is a graph wherein all symbols can move to all positions, the time
complexity is n − 1. However, it cannot be said that this sorting algorithm is effective.
When evaluating time complexity, the number of main operations must also be evaluated.

When a sorting problem is expressed as a graph, the number of main operations is
mapped to the degree and the worst time complexity to the diameter. The network cost
is degree × diameter. The network cost is the sorting cost of the sorting algorithm. If an
edge is added to the graph, the degree increases, and the diameter decreases. Conversely,
if an edge is removed, the degree decreases and the diameter increases. These two factors
provide a trade-off. Therefore, it is difficult to reduce network costs [6]. The degree of a
pancake graph is n − 1, and the network cost is O(n2). We propose an RDP that reduces the
degree to O(log2n) and the network cost to O(log2n3) by using recursively divided edges.

Pancake-like graphs have been studied for sorting problems [2,3,7–10], interconnection
networks in computer science [11–16], and DNA computing models in biology [17–21].
Finding a graph with a small network cost is like a high-performance interconnection
network and a good sorting algorithm [22]. The burnt pancake problem involves the
sorting of pancakes that are burnt on one side in order of their size. W. Gates proved
that the lower bound for the number of flips is 1.5n and the upper bound is 2n + 3 in the
sorting of n burnt pancakes [2]. D. Cohen proved that the lower bound for the number
of flips (n ≥ 10) is 1.5n and the upper bound is 2n − 2 [23]. V. Bafna introduced research
on the sorting permutations to the genes of animals and plants in order to translate
between two permutations [24]. P. Berman proposed an algorithm that completes a sort
; 1.375n number of flips [17]. A signed permutation by reversal (SBR) is a problem that
involves the sorting of permutations that consist of an integer between−n and n, excluding
0. S. Hannenhalli proposed an algorithm in which the upper bound of the number of flips
is O(n2) [18]. The result of the research in this paragraph is introduced in [6].

In this paper, we propose an RDP graph that has a lower network cost than pancake-
like graphs. In Section 2, the notations used throughout the paper are described, and the
RDP is defined. In Section 3, we analyze the properties of the RDP. In Section 4, a sorting
algorithm is introduced, and diameters and network costs are analyzed and compared.
Finally, Section 5 presents the conclusions.

2. Preliminaries and Definition of Recursively Divided Pancake

This section provides the definitions used in this paper, and a recursively divided
pancake RDPn is described.

An RDP divides the symbols in half and performs a flip operation using edges. These
edges are generated recursively. In flipk, the pancake graph is 1 < k ≤ n. With an RDP, k = n,
n/2 + 1, n/2, n/4 + 1, n/4, n/8 + 1, n/8, . . . , 3, 2. Thus, k divides n recursively.

For a node address of RDPn, a permutation of natural numbers from 1 to n is used.
Let an arbitrary node, S = s1s2s3 . . . sk−1sksk+1 . . . sn−2sn−1sn, exist. Definition 2 defines the
flip operation and, in Definition 3, symbol sk at the kth position is moved to the top. The
symbols that should be carefully considered throughout this paper are written in blue.

Definition 1. sk is the kth symbol or position k symbol. |S| denotes the number of symbols.

Definition 2. The flip operation for S is FOk(S) = sksk−1sk−2 . . . s3s2s1sk+1 . . . sn−2sn−1sn,
k = n, n/2 + 1, n/2, n/4 + 1, n/4, n/8 + 1, n/8, . . . , 3, 2.

Symmetry 2021, 13, 844 3 of 9

Definition 3. The moving operation for sk to the top is MTFk(S) =
MTFk(S) {

if (|S| == 1) then return
if (|S|/2 < k) then {

FOn
k = (n − k) + 1

}
MTFk(s1s2s3 . . . sn./2)

}

The definition of a recursively divided pancake RDPn is as follows:
RDPn = (V, E) | n = 2m, where m is the natural number.

node V = {s1s2s3 . . . sk−1sksk + 1 . . . sn−2sn−1sn | 1 ≤ sk ≤ n, 1 ≤ k ≤n}.

The edges of the RDPn are defined as follows:
flip edge FEk = (S, FOk(S)).
Figure 1 shows RDP4. The solid lines forming a hexagon are FE2 and FE3, and the

blue line connecting a hexagon and another hexagon is FE4.

Figure 1. Four-dimensional recursively divided pancake RDP4.

For example, in RDP8, the (connecting edge, neighboring node) pairs for node
12345678 are as follows:

(FE2, 21345678), (FE3, 32145678), (FE4, 43215678), (FE5, 54321678), (FE8, 87654321).
A path can be expressed as a node sequence from the start node to the destination

node. Here, a neighboring node is connected by an edge. The paths are represented
as follows:

Notation 1. → is used to indicate a path. For example, the paths between 1234, 2134, 3124, and
4213 in Figure 1 can be represented as follows:

1234→ 2134→ 3124→ 4213 or
1234→ FE2 → 2134→ FE3 → 3124→ FE4 → 4213.

Symmetry 2021, 13, 844 4 of 9

3. Topological Properties

In this section, the basic topological properties and the recursive expandability of the
RDP are examined. Then, we prove that it is a connected graph.

Theorem 1. RDPn is a regular graph with a degree of 2log2n − 1, and the number of nodes is n!.
The number of edges is n!log2n − 0.5n.

Proof. Because the node addresses of RDPn are permutations of natural numbers from 1
to n, the total number of nodes is n!. The number of edges FE connected to an arbitrary
node is 2log2n − 1. Because every node has the same number of edges, RDPn is regular,
and the degree is 2log2n − 1. Because it is an undirected graph, the total number of edges
is (n! × (2log2n − 1))/2 = n!log2n − 0.5n!. �

For a graph to be expanded recursively, two conditions must be satisfied. First, the
expansion rules must be consistent. Second, the graph of level n must contain a graph of
level n− 1. Recursive graphs are favorable for sorting algorithms, broadcasting algorithms,
and algorithms for path problems, because the algorithm at the n − 1 level is used the same
way as in an algorithm at level n.

Theorem 2. RDPn expands recursively.

Proof. First, nodes are examined, after which the edges are explained. Here, |RDPn| is the
number of nodes in RDPn. In RDPn, the number of nodes increases as the level increases
based on the following method: |RDP2| = 2. |RDP4| = |RDP2|× 3× 4. |RDP8| = |RDP4|
× 5 × 6 × 7 × 8. |RDPn| = |RDPn/2| × (n/2) + 1 × (n/2) + 2 × (n/2) + 3 × · · · × n.

Therefore, |RDPn| is defined recursively as follows:

|RDPn| = |RDPn/2| × (n/2) + 1 × (n/2) + 2 × (n/2) + 3 × · · · × n.

Let us now examine the edges. Figure 2 provides arrows to indicate the positions
that can be flipped in the node addresses for RDP2, RDP4, RDP8, and RDP16 from left to
right. See the red arrows. Even if the level increases, the flip position of the previous level
remains intact. In other words, RDPn maintains the edges of RDPn−1 as they are. See the
green arrows. As the level increases, edges are added at positions n/2 + 1 and n recursively.
Therefore, RDPn expands recursively. �

Figure 2. flip position.

If all nodes are connected in a graph, it is a connected graph that has a path from
an arbitrary node to every other node. A node address is comprised of permutations. If
a symbol that forms a permutation can be moved to any position, then all permutations
are connected to each other. If a symbol, s1, can be moved to any other position, those of
all positions can also be moved to s1. This ensures that all symbols can be moved to any
position.

Theorem 3. RDPn is a connected graph.

Proof. RDP4 and RDP8 are examined sequentially, and the graph is generalized for RDPn.
Suppose S = s1s2s3s4 in RDP4. s1 can be moved to any position.

Symmetry 2021, 13, 844 5 of 9

FO2(S) = s2s1s3s4, FO3(S) = s3s2s1s4, FO4(S) = s4s3s2s1.

Therefore, RDP4 is a connected graph. Suppose S = s1s2s3s4s5s6s7s8 in RDP8. It was
shown in RDP4 that s1 can move to positions 2, 3, and 4. Here, if FO8 is added, s1 moves to
positions 5, 6, 7, and 8.

s8s7s6s5s1s2s3s4 = FO8(FO4(S)).

s8s7s6s5s4s1s2s3 = FO8(FO3(S)).

s8s7s6s5s4s3s1s2 = FO8(FO2(S)).

s8s7s6s5s4s3s2s1 = FO8(S).

Therefore, RDP8 is a connected graph. According to these results, s1 can move to
positions 2, 3, 4, · · · , n/2 in RDPn. Here, if FOn is added, s1 moves to positions n/2 + 1,
n/2 + 2, · · · , n. Therefore, RDPn is a connected graph. �

It is well known that a permutation (e.g., a star graph) is a symmetry group [11].
Symmetry groups are automorphic. Because the nodes of RDPn are permutations, the
proof of node transitivity is omitted in the proof of Theorem 4.

Theorem 4. RDPn is a symmetric graph.

Proof. Only the edge transitivity is proved. Let an arbitrary node be s = s1s2s3 . . . sk . . .
sn−1sn. The mapping function is f = s1s2s3 . . . sk . . . sn−1sn → s1s2s3 . . . sk . . . snsn−1. The
mapping function, f, is a bijection, which can be any function that exchanges symbols. The
edge, FEk, is denoted by (s, t). It is shown that f(s) and f(t) are connected to each other.

If s = s1s2s3 . . . sk-1sksk + 1 . . . sn−2sn−1sn, then t = sksk-1 . . . s3s2s1sk + 1 . . . sn−2sn−1sn.
f (s) = s1s2s3 . . . sk-1sksk + 1 . . . sn−2snsn−1, and f (t) = sksk-1 . . . s3s2s1sk + 1 . . . sn−2snsn−1.
Thus, f (s) and f (t) are connected to FEk. Therefore, RDPn is a node- and edge-transitive
graph and is symmetric. �

4. Sorting Algorithm and Network Cost Comparison

In this section, we first present a sorting algorithm. Subsequently, the diameter is
derived to calculate the network cost. Then, the network cost is compared to that of other
pancake-like graphs.

Let us assume that a start node is u, and a destination node is v. A sorting algorithm
is a rule that generates a sequence of nodes from u to v. In other words, it changes the
address of the start node to that of the destination node by using the flip operator, FOk. If
the destination node v = 1234 . . . n, then it is a sorting algorithm.

A rough overview of sorting is as follows. First, the symbols of u are divided into two
bundles, uf and ur, as shown in Figure 3. Then, symbols 5 and 6 in uf are exchanged with
symbols 1 and 2 in ur. When this step is completed, uf and vf comprise the same symbols.
This is also true for ur and vr. If the above process is repeated in uf and ur until the number
of symbols becomes 1, u will be the same as v.

Figure 3. <Pre-work> in RDP8.

Symmetry 2021, 13, 844 6 of 9

In the sorting algorithm, <pre-work> defines several factors. In particular, it defines the
symbols that should be exchanged between uf and ur. In Figure 3, 56 and 12 are symbols
that should be exchanged. Let the start node be u = u1u2u3 . . . uk-1ukuk + 1 . . . un−2un−1un,
and the destination node be v = v1v2v3 . . . vk-1vkvk + 1 . . . vn−2vn−1vn. <pre-work>.

In the address of node u, a set uf = {u1,u2,u3, . . . , un/2} and a set ur = {un/2+1, . . . un}.
In the case of node v, vf = {v1,v2,v3, . . . , vn/2} and vr = {vn/2+1, . . . vn}.

Set fdif = {uf } − {vf } and set rdif = {ur} − {vr}. There is a sequential order in fdif and
rdif, and the m-th rdif element is written as rdif [m].

In Figure 3, for example, if u = 34561278 and v = 12345678, then uf = {3,4,5,6},
mboxemphvf = {1,2,3,4}, ur = {1,2,7,8}, and vr = {5,6,7,8}. Here, fdif = {5,6}, rdif = {1,2},
|fdif | = |rdif | = 2, fdif [1] = 5, and fdif [2] = 6.

The sorting algorithm in Algorithm 1 is performed recursively until |uf | = |ur| = 1. The
sorting algorithm is as follows: = = is an equality operator, and = is an assignment operator.

Algorithm 1. sorting(u) {

1: if (|u| = =1) return;
2: <pre-work >
3: if (|fdif | > n/4) {
4: u = u→ FOn/2;
5: <pre-work >
6: }
7: exchange(u);
8: sorting(uf, vf);
9: u = u→ FOn/2;
10: sorting(uf, vr);
11: u = u→ FOn/2;
12: }

The function exchange() in Algorithm 2 exchanges fdif in uf with rdif in ur. If exchange()
is executed once, then there is no additional symbol exchange with uf and ur.

Algorithm 2. exchange(u) {

1: for (m = 1; m ≤ |fdif |; m + +) {
2: k = fdif [m];
3: MTFk(uf);
4: FOn/2;
5: FOn;
6: k = rdif[m];
7: MTFk(uf);
8: FO(n/2) + 1;
9: }
10: if (|fdif | is odd) FOn;
11: }

The Algorithm 2 exchanges symbols based on the following method.

Move the first symbol to be exchanged to u1 via MTF().
Flip a half through FOn/2.
Flip the whole thing through FOn.
Move the second symbol to be exchanged to u1 via MTF().
Exchange u1 and u(n/2) + 1 with each other through FOn + 1.

The diameter is the distance between the two farthest nodes in the graph. The diameter
is an important measure for evaluating a graph, and, in the worst case, it is the sorting time
complexity. It represents the software cost when the graph is implemented in a system.

Symmetry 2021, 13, 844 7 of 9

Theorem 5. The diameter of RDPn is 0.5n(log2n)2 + nlog2n.

Proof. The diameter analysis is substituted by finding the worst-case time complexity of
the sorting algorithm. The number of calls, a, of sorting(u) is called recursively as follows:
|u| and |v| are reduced by half each time the function is called, and the function is
terminated when the size becomes one. Therefore, a = log2n. In the worst case, the number
of symbols exchanged is b = n/2 when the function is called once in the sorting algorithm.
The operations required to exchange two symbols with each other are MTF() and FO, which
are performed twice and thrice, respectively. If the number of exchanged symbols is odd,
FO is required only once. The number of times MTF() is executed for a symbol is log2n
in the worst case. The number of operations required to exchange the two symbols is
c = 2log2n + 3 + 1.

The diameter, k = a × (bc)/2, where a is the number of times that sorting() is called,
and (bc)/2 is the internal time complexity of sorting().

k = a · (bc)/2.
= log2n · ((n/2 × (2log2n + 4))/2).

= log2n · n/4(2log2n + 4).
= log2n(0.5nlog2n + n).
= 0.5n(log2n)2 + nlog2n

. �

Network cost is an important measure for evaluating graphs. Table 1 shows the
network cost of RDPn vs. various pancake-like graphs. The diameter and degree of
pancake [2,10], restricted pancake [6], burnt pancake [1,2], restricted burnt pancake [6], and
signed permutation [8,10] have been presented in a previous study [6]. The network cost is
shown by the Big-O notation.

Table 1. Comparison of network cost with other classes of pancake graphs.

Graph. No. of Node Degree Diameter Network Cost

pancake [2]
n! n − 1

O(5n/3) ;1.67n2

[9] O(18n/11) ;1.64n2

restricted
[6] n! n/2 + 1 O(3.5n) ;1.7n2

pancake

burnt [2]
2n × n! n(n + 1)/2

O(3n/2) ;0.75n3

pancake [1] O(23n/14) ;0.82n3

restricted
[6] 2n × n! n/2 + 2 O(4.5n) ;2.25n2

burnt pancake

signed [8]
2n × n! n(n − 1)/2 O(n2) ;0.5n4

permutation [10] O(n1.5) ;0.5n3.5

RDP n! 2log2n − 1 O(n(log2n)2) ;2n(log2n)3

Because O((log2n)3) < O(n2), RDP is superior to other pancake-like graphs as shown
in Table 1 in terms of network cost.

5. Conclusions

Pancake-like graphs are used in various fields wherein network cost is an important
evaluation measure. We have provided an RDP that has a smaller network cost than
existing pancake-like graphs. In RDPn, the number of nodes was n!, the degree was
2log2n − 1, and the diameter was 0.5n(log2n)2 + nlog2n. The network cost of RDPn was
O((log2n)3). we propose an RDP that has a lower network cost than pancake-like graphs.
The pancake-like graphs have been studied for sorting problems, interconnection networks,

Symmetry 2021, 13, 844 8 of 9

and DNA computing models. We hope that RDP will be used as a model to solve problems
in various fields. We analyzed the topological properties of the RDP and connected graphs
and proposed a more efficient sorting algorithm. It is expected that various algorithms,
such as broadcasting, parallel path, spanning tree, and embedding algorithms, can be
improved based on this graph in the future. Time complexity is a measure used to evaluate
sorting algorithms. It refers to the number of times the main operations are performed so
that the algorithm can terminate. I wonder if it is correct to compare sorting algorithms
using only time complexity. I think the number of main operations can also be included in
the evaluation. I think this idea needs more discussion.

Author Contributions: Conceptualization, J.-H.S. and H.-O.L.; methodology, J.-H.S.; software, J.-H.S.;
validation, J.-H.S.; formal analysis, J.-H.S.; investigation, J.-H.S.; resources, J.-H.S.; data curation,
J.-H.S.; writing—original draft preparation, J.-H.S.; writing—review and editing, J.-H.S.; visualization,
J.-H.S.; supervision, H.-O.L.; project administration, H.-O.L.; funding acquisition, H.-O.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. 2020R1A2C1012363).

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiang, H. Target Set Selection on generalized pancake graphs. Indian J. Pure Appl. Math. 2020, 51, 379–389. [CrossRef]
2. Gates, W.H.; Papadimitriou, C.H. Bounds for sorting by prefix reversal. Discret. Math. 1979, 27, 47–57. [CrossRef]
3. Yamamura, A.; Csuhaj-Varjú, E.; Dömösi, P.; Vaszil, G. Rearrangement Problem of Multidimensional Arrays by Prefix Reversals.

In Proceedings of the 15th International Conference on Automata and Formal Languages, Debrecen, Hungary, 4–6 September
2017; pp. 9–10.

4. Cheng, D.-W.; Chan, C.-T.; Hsieh, S.-Y. Constructing Independent Spanning Trees on Pancake Networks. IEEE Access 2019, 8,
3427–3433. [CrossRef]

5. Mendia, V.; Sarkar, D. Optimal broadcasting on the star graph. IEEE Trans. Parallel Distrib. Syst. 1992, 3, 389–396. [CrossRef]
6. Seo, J.-H.; Kim, J.-S.; Lee, H.-O. An algorithm for sorting pancake by restricted reversals. J. Supercomput. 2015, 71, 3832–3850.

[CrossRef]
7. Araki, T.; Horiyama, T.; Nakano, S.I.; Okamoto, Y.; Otachi, Y.; Uehara, R.; Uno, T.; Yamanaka, K. Sorting by Five Prefix Re-versals.

IPSJ SIG Tech. Rep. 2020, 2020-AL-179, 1–7.
8. Blanco, S.A.; Buehrle, C.; Patidar, A. On the number of pancake stacks requiring four flips to be sorted. arXiv 2019,

arXiv:1902.04055.
9. Chitturi, B.; Fahle, W.; Meng, Z.; Morales, L.; Shields, C.O.; Sudborough, I.H.; Voit, W. An (18/11)n upper bound for sorting by

prefix reversals. Theor. Comput. Sci. 2009, 410, 3372–3390. [CrossRef]
10. Tannier, E.; Bergeron, A.; Sagot, M.-F. Advances on sorting by reversals. Discret. Appl. Math. 2007, 155, 881–888. [CrossRef]
11. Akers, S.; Krishnamurthy, B. A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 1989, 38,

555–566. [CrossRef]
12. Wang, R.; Zhu, Q. The h-extra conditional diagnosability of burnt pancake networks under the PMC model. In Proceedings of the

2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS), Harbin, China, 3–5 June 2017;
pp. 1–6.

13. Heydari, M.H.; Sudborough, I. On the Diameter of the Pancake Network. J. Algorithms 1997, 25, 67–94. [CrossRef]
14. Yang, Y.-C.; Kao, S.-S.; Klasing, R.; Hsieh, S.-Y.; Chou, H.-H.; Chang, J.-M. The Construction of Multiple Independent Spanning

Trees on Burnt Pancake Networks. IEEE Access 2021, 9, 16679–16691. [CrossRef]
15. Yeh, C.-H.; Varvarigos, E. Macro-star networks: Efficient low-degree alternatives to star graphs for large-scale parallel architectures.

In Proceedings of the 6th Symposium on the Frontiers of Massively Parallel Computation (Frontiers ’96); Institute of Electrical
and Electronics Engineers (IEEE), Annapolis, MD, USA, 27–31 October 2002; pp. 290–297.

16. Pai, K.-J.; Chang, R.-S.; Chang, J.-M. Constructing dual-CISTs of pancake graphs and performance assessment of protection
routings on some Cayley networks. J. Supercomput. 2021, 77, 990–1014. [CrossRef]

17. Berman, P.; Hannenhalli, S.; Karpinski, M. 1.375-Approximation Algorithm for Sorting by Reversals. In Proceedings of the 10th
European Symposium on Algorithms, Rome, Italy, 17–21 September 2002; pp. 200–210.

18. Elias, I.; Hartman, T. A 1.375-Approximation Algorithm for Sorting by Transpositions. In International Workshop on Algorithms in
Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 204–215.

19. Grusea, S.; Labarre, A. The distribution of cycles in breakpoint graphs of signed permutations. Discret. Appl. Math. 2013, 161,
1448–1466. [CrossRef]

http://doi.org/10.1007/s13226-020-0406-8
http://doi.org/10.1016/0012-365X(79)90068-2
http://doi.org/10.1109/ACCESS.2019.2962549
http://doi.org/10.1109/71.149958
http://doi.org/10.1007/s11227-015-1473-1
http://doi.org/10.1016/j.tcs.2008.04.045
http://doi.org/10.1016/j.dam.2005.02.033
http://doi.org/10.1109/12.21148
http://doi.org/10.1006/jagm.1997.0874
http://doi.org/10.1109/ACCESS.2021.3049290
http://doi.org/10.1007/s11227-020-03297-9
http://doi.org/10.1016/j.dam.2013.02.002

Symmetry 2021, 13, 844 9 of 9

20. Haynes, A.K.; Broderick, M.L.; Brown, A.D.; Butner, T.L.; O Dickson, J.; Harden, W.L.; Heard, L.H.; Jessen, E.L.; Malloy, K.J.;
Ogden, B.J.; et al. Engineering bacteria to solve the Burnt Pancake Problem. J. Biol. Eng. 2008, 2, 1–12. [CrossRef] [PubMed]

21. Heyer, L.J.; Poet, J.L.; Broderick, M.L.; Compeau, P.E.C.; Dickson, J.O.; Harden, W.L. Bacterial Computing: Using E. coli to Solve
the Burnt Pancake Problem. Math Horiz. 2010, 17, 5–10. [CrossRef]

22. Seo, J.; Lee, H.O. Design and analysis of the rotational binary graph as an alternative to hypercube and Torus. J. Supercomput.
2020, 76, 7161–7176. [CrossRef]

23. Cohen, D.S.; Blum, M. On the problem of sorting burnt pancakes. Discret. Appl. Math. 1995, 61, 105–120. [CrossRef]
24. Bafna, V.; Pevzner, P.A. Genome rearrangements and sorting by reversals. SIAM J. Comput. 2002, 25, 148–157.

http://doi.org/10.1186/1754-1611-2-8
http://www.ncbi.nlm.nih.gov/pubmed/18492232
http://doi.org/10.4169/194762110X489242
http://doi.org/10.1007/s11227-019-03115-x
http://doi.org/10.1016/0166-218X(94)00009-3

	Introduction
	Preliminaries and Definition of Recursively Divided Pancake
	Topological Properties
	Sorting Algorithm and Network Cost Comparison
	Conclusions
	References

