
symmetryS S

Article

Mixed Sensitivity-Based Robust H∞ Control Method for
Real-Time Hybrid Simulation

Xizhan Ning 1,2

����������
�������

Citation: Ning, X. Mixed

Sensitivity-Based Robust H∞ Control

Method for Real-Time Hybrid

Simulation. Symmetry 2021, 13, 840.

https://doi.org/10.3390/sym13050840

Academic Editor: Jan Awrejcewicz

Received: 16 April 2021

Accepted: 7 May 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Civil Engineering, Huaqiao University, Xiamen 361021, China; xzning@hqu.edu.cn
2 Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province, Huaqiao University,

Xiamen 361021, China

Abstract: Real-time hybrid simulation (RTHS), dividing the emulated structure into numerical
substructures (NS) and physical substructures (PS), is a powerful technique to obtain responses
and then to assess the seismic performance of civil engineering structures. A transfer system,
a servo-hydraulic actuator or shaking table, is used to apply boundary conditions between the
two substructures. However, the servo-hydraulic actuator is inherently a complex system with
nonlinearities and may introduce time delays into the RTHS, which will decrease the accuracy and
stability of the RTHS. Moreover, there are various uncertainties in RTHS. An accurate and robust
actuator control strategy is necessary to guarantee reliable simulation results. Therefore, a mixed
sensitivity-based H∞ control method was proposed for RTHS. In H∞ control, the dynamics and
robustness of the closed-loop transfer system are realized by performance weighting functions. A
form of weighting function was given considering the requirement in RTHS. The influence of the
weighting functions on the dynamics was investigated. Numerical simulations and actual RTHSs
were carried out under symmetric and asymmetric dynamic loads, namely sinusoidal and earthquake
excitation, respectively. Results indicated that the H∞ control method used for RTHS is feasible, and
it exhibits an excellent tracking performance and robustness.

Keywords: real-time hybrid simulation; H∞ control; time delay; mixed sensitivity

1. Introduction

Real-time hybrid simulation (RTHS) [1], or the real-time substructure pseudo-dynamic
test, is a cost-effective and versatile experimental technique to evaluate structural perfor-
mance under dynamic excitations. It originated from the pseudo-dynamic test [2] first
proposed by a Japanese researcher in the 1970s, which is known as hybrid simulation (HS)
nowadays. HS takes advantage of numerical analysis and physical experiments, in which
the emulated structure is divided into several substructures: the part that cannot be simu-
lated exactly is experimentally tested in the laboratory, which is denoted as the physical
substructure (PS), and the rest is simulated by a computer program, which is denoted as
the numerical substructure (NS) [3,4]. In RTHS, boundary conditions between the two
substructures are imposed on the PS by a transfer system, a servo-hydraulic actuator or
shaking table, in a real-time manner. This allows RTHS the ability to test rate-dependent
components, such as TMD, AMD, and MR dampers. In recent decades, much progress has
been achieved [5–8].

However, due to the inherent nonlinear dynamics of the actuator–specimen system,
the desired displacement cannot be realized at the end of the time integration step. This
is often called the time delay, which will decrease the accuracy and may lead to RTHS
instabilities [9]. Therefore, to carry out a successful RTHS, the detrimental effect of time
delay must be mitigated. Horiuchi et al. [9] assumed a constant time delay and proposed
a polynomial extrapolation method. Subsequently, more accurate strategies have been
investigated to consider the variation in time delay [10–13].
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Modern control theory was also used to deal with time delay, where the control
plant includes the servo-hydraulic and the specimen. The inverse control technique was
introduced by Chen and Ricles [14], where the servo-hydraulic actuator is modeled by a
first-order transfer function. Carrion and Spencer [15] proposed a model-based control
approach, where a low-pass filter is combined with the inverted actuator system plant.
In this method, a higher-order control plant can be used. Ning et al. [16] proposed an
adaptive feedforward control method, where the Kalman filter is used to estimate the
adjustable parameters. Xu et al. proposed a frequency evaluation index-based compensa-
tion for RTHS [17]. A two-stage delay compensation method, combining the feedforward
and polynomial extrapolation, was proposed by Wang et al. [18]. A polynomial-based
feedforward prediction algorithm was combined with a robust linear-quadratic-gaussian
controller that was proposed by Zhou et al. [19] to deal with the adverse effects of time
delay. Ning et al. [20] proposed an adaptive feedforward and feedback control method
based on a discrete control plant, of which the model order is not restrained.

However, there are differences between the control plant model and the actuator–
specimen system. Hence, preliminary discussions have been made on the robustness of the
control strategy to model uncertainties [21–23]. In this study, a mixed sensitivity-based H∞
control method was introduced to deal with the time delay and uncertainties in real-time
hybrid simulation. The H∞ control theory is overviewed in Section 2. The selection of a per-
formance weighting function is presented in Section 3, where the influence of the weighting
function on the system dynamics is discussed. Subsequently, the proposed method is
validated through numerical simulations and actual RTHS in Sections 4 and 5, respectively.

2. Overview of H∞ Control Theory

The standard setup of H∞ control is shown in Figure 1. In this figure, w, u, z, and
y are vector-valued signals: w is the exogenous input, typically consisting of command
signals, disturbances, and sensor noises; u is the control signal; z is the performance output
that is to be minimized; y is the measured output. G is the generalized plant and K is the
controller to be designed.
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Figure 1. Block diagram of the standard H∞ control.

In mixed sensitivity-based H∞ control, the generalized control plant, or augment con-
trol plant, can be formulated from feedback control. For a typical feedback control diagram
shown in Figure 2a, three functions: sensitivity function S, complementary sensitivity
function T, and controller sensitivity R, are defined, and they are calculated by

S = (1 + PK)−1, T = I − S = PK(1 + PK)−1, R = K(1 + PK)−1. (1)

where P is the transfer function of the control plant, and K is the to-be-designed controller.
The sensitivity function S is the transfer function between the reference input r and track-
ing error e, or between the disturbance and measurement output y. The complementary
sensitivity function T is the transfer function between the reference input r and measure-
ment output y. The controller sensitivity R reflects the control effort, which is the transfer
function between the reference r and controller output u.
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Figure 2. Formulation of the standard H∞ problem. (a) Weighted feedback control system; (b) equiv-
alent standard H∞ problem.

In RTHS, it is expected that the loading system can accurately reproduce the command
signal and is less sensitive to external disturbances, i.e., S→0 and T→1 are demanded. To
meet this requirement and consider the robustness index of additive and multiplicative
uncertainties [24], performance weighting functions, namely WS, WR, and WT, are intro-
duced to the feedback control loop, as shown in Figure 2a. Thus, the equivalent standard
H∞ block diagram can be reached, which is shown in Figure 2b. Hence, the generalized
plant G, from (w, u) to (z, y), is given as follows:

G(s) =
[

G11G12
G21G22

]
=


WS −PWs
0 WR
0 PWT
1 −P

. (2)

In H∞ control theory [24], the controller is synthesized by optimizing the H∞-norm
of the cost-function, a transfer function from the exogenous input w to the performance
output z, which is calculated by

Twz = G11 + G12K(I−G22K)−1G21 =

 WS(s)S(s)
WR(s)R(s)
WT(s)T(s)

, (3)

Thus, the H∞ control problem can be formulated as follows: find a controller K that
makes the closed-loop system internally stable, and make the H∞ norm of Equation (3) the
least (optimal), or less than a given positive constant (suboptimal) [24]. However, it is often
not necessary to design an optimal controller in practice, and it is usually much cheaper to
obtain controllers that are very close in the norm sense to the optimal ones. Hence, the H∞
suboptimal controller was used in this study, in which the cost-function satisfies

‖Twz‖∞ < γ, (4)

where γ is a positive number, and the minimum value is in relation to the generalized plant
G [24].

Let a possible state-space realization for the generalized plant G be calculated by

.
x = Ax + B1w + B2u

z = C1x + D11w + D12u
y = C2x + D21w + D22u

(5)

where x is the state vector, and the dimensions of w, u, z, and y are compatible with that
of x.

Suppose G satisfies the following assumptions [24]:

• (A, B2) is stabilizable and (C2, A) is detectable;
• D12 = [0; I]T and D21 = [0 I];
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•
[

A− jωI B2
C1 D12

]
has full column rank for all ω;

•
[

A− jωI B1
C2 D21

]
has full row rank for all ω.

Then, a controller can be designed employing the DGKF method by solving two
Riccati equations [24].

It should be noted that the internally stable controller K is not unique in the suboptimal
problem, and the central controller is used in general.

3. Weighting Function and Its Influence

Section 2 shows that the performance weighting function plays an important role in
H∞ controller design. In this section, the weighting function with adjustable parameters is
proposed. Moreover, the influence of the parameters on the system dynamics is discussed.

3.1. Selection of Performance Weighting Function
3.1.1. Weighting WS

WS is the weighting function of the sensitivity function S. In the RTHS used for
earthquake engineering, the frequency of the commanded signals and disturbances is
generally very low. Hence, to track the reference signal with high accuracy and to suppress
the external disturbances, the sensitivity function S should be small enough over the low-
frequency range, while in the high-frequency band beyond the command signal, there are
no additional restraints for the sensitivity function S. Therefore, the weighting function WS
should have a high gain over the low-frequency range. Hence, WS can be selected as

WS =
as + bωd

s + c
(6)

where a, b, and c are adjustable parameters, and ωd is the desired bandwidth of the system.
The singular value of WS

−1 is shown in Figure 3. It is seen from the figure that, if c is small
enough, that the sensitivity function S will tend to zero when the frequency is not very
high, which means that the controlled system can realize the command perfectly. Typically,
–60 dB is small enough for the sensitivity function S when the frequency is low; hence, it is
recommended that c is less than 0.01.
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3.1.2. Weighting WT

WT is the weighting function of the complementary sensitivity function T, which
represents the characteristic of the multiplicative uncertainties [24]. Hence, the weighting
WT can be selected as

σ

(
G(jω)

G0(jω)
− 1
)
< σ(WT(jω)), ∀ω (7)
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where G is the actual plant, G0 is the nominal or analytical plant, and σ is the singular
value. Once WT is determined, it can remain unchanged, because it is related to the model
of the control plant.

In RTHS, it is expected that T should be close to 1 to achieve the reference command,
especially over the concerned frequency band. Afterward, T should be small enough to
suppress the modeling errors over the high-frequency range, which will also diminish the
effect of measurement noise. Furthermore, if the gain of WT decreases quickly over the
high-frequency range, the measurement noise will be suppressed effectively. Hence, for
practical purposes, the recommended form of function WT is given by

WT = hs2 + ms + n (8)

where h, m, and n are adjustable parameters. It should be noted that WTP should be a
rational function. If not, the form in Equation (8) should be modified. Examples can be
found in the subsequent sections.

3.1.3. Weighting WR

The weighting WR is associated with the additive uncertainties [24]. Typically, the
weighting WR is introduced to satisfy the premises of the H∞ control theory. While it is
seen in Section 2, WR is the weighting of the controller sensitivity R, which is related to the
command sent to the servo valve in RTHS. A high controller gain will destabilize the system
due to measurement noise. Hence, to suppress the maximum magnitude of the controller,
the weighting WR can be selected as a small constant. The weighting WR can be eliminated.

3.2. Influence on the System Dynamics

In RTHS, it is expected that the servo-hydraulic actuator can realize the desired dis-
placement command quickly and precisely. Hence, to give guidance on weighting function
selection, the influence of the parameters in the weighting function on the dynamics, namely
the settling time, overshoot, and steady-state error, were investigated in this subsection. The
control plant, from the controller output u to measurement displacement y, was taken as

P =
20.99

s + 1.418
. (9)

By several trials, the weighting functions were selected as follows:

WS =
0.0475s + 170.1

s + 0.001
, WT =

2500 (s+250) (s+14.14)

(s + 1.571× 104)
2 , WR = 0.001. (10)

It should be noted that as the control plant is a first-order transfer function, the form
of the weighting function WT is modified to guarantee that WTP is a rational function.
The step response was obtained and is shown in Figure 4. It is seen that the controlled
system could respond to the reference command quickly, and there was no steady-state
error, indicating a perfect tracking performance.
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3.2.1. Influence of WS

1. Parameter a in WS

To analyze the influence of the parameter a on weighting function WS, the other
parameters in the weightings were kept unchanged. By changing a from 0 to 3.5, the
dynamics were calculated via the step response, which is shown in Figure 5. It is seen from
the figure that with the increase in parameter a, the settling time grew rapidly, while the
overshoot decreased quickly. The steady-state error almost remained the same. Hence, it is
recommended that a small positive value should be used for parameter a.
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Figure 5. Effect of parameter a on WS. (a) Settling time; (b) overshoot; (c) steady-state error.

2. Parameter b in WS

When designing the weightings in Equation (10), the desired system band was 20 Hz
and b was 1.35. To analyze the influence of the parameter b on weighting function WS,
the other parameters in the weightings were kept unchanged. By changing b from 0 to
1.5, the dynamics were calculated by the step response, which is shown in Figure 6. It is
seen in Figure 6 that when parameter b was less than 0.1, with the increase in parameter
b, the settling time decreased rapidly, while the overshoot almost remained unchanged.
When parameter b was larger than 0.1, with the increase in parameter b, the settling time
decreased very slowly, while the overshoot increased quickly. The steady-state error almost
remained unchanged. It is seen in Equation (6) and Figure 3 that with the increase in b, the
system bandwidth widened, resulting in the response speed accelerating and the overshoot
increasing. Hence, it is recommended that a larger b should be used if one expects a faster
response speed.
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Figure 6. Effect of parameter b on WS. (a) Settling time; (b) overshoot; (c) steady-state error.

3. Parameter c in WS

The parameter c was changed from 0 to 1.5 to investigate its influence, while the other
parameters in the weightings were kept unchanged. The dynamics were calculated by the
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step response, which is shown in Figure 7. It is seen that with the increase in parameter c,
the settling time and the overshoot almost remained unchanged, while the steady-state
error increased. Hence, it is recommended that the parameter c should be small enough to
eliminate the steady-state error, which is very important to RTHS.
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Figure 7. Effect of parameter c on WS. (a) Settling time; (b) overshoot; (c) steady-state error.

3.2.2. Influence of WT

For convenience of analysis, the weighting function WT in Equation (10) can be
rewritten as

WT =
0.0225s2 + 5.9431s + 79.5216

(0.003s + 47.1239)2 . (11)

1. Parameter h in WT

Keeping the other parameters in the weightings unchanged, the parameter h was
varied from 0 to 0.3 to examine its influence. The dynamics were calculated via the step
response, which is shown in Figure 8. With the increase in parameter h, the settling time
decreased first and then increased rapidly. The overshoot almost remained unchanged at
the beginning and then increased quickly, while the steady-state error decreased quickly
and then remained unchanged.
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Figure 8. Effect of parameter h on WT. (a) Settling time; (b) overshoot; (c) steady-state error.

2. Parameter m in WT

To analyze the influence of the parameter m on weighting function WT, the other
parameters in the weightings were kept unchanged. By changing m from 0 to 30, the
dynamics were calculated by the step response, which is shown in Figure 9. With the
increase in parameter m, the settling time almost remained unchanged first and then
decreased quickly. Then, the settling time increased with the increase in parameter m.
The overshoot decreased with the increase in parameter m, and then almost remained
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unchanged regardless of how the parameter m increased. Meanwhile, the steady-state error
remained unchanged first and then fluctuated at a relatively high value.
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3. Parameter n in WT

By varying the parameter n from 0 to 450, the dynamics were calculated via the step
response correspondingly, which are shown in Figure 10. It is seen that with the increase in
parameter n, the settling time and steady-state error varied in a very small range, which
could be viewed as unchanged. Meanwhile, the overshoot increased with the parameter n.
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where the symbols and their values are listed in Table 1. The damping coefficient CE is cal-

culated by the damping ratio and natural frequency of the specimen. Then, the transfer func-

tion of the nominal model is 
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Figure 10. Effect of parameter n on WT. (a) Settling time; (b) overshoot; (c) steady-state error.

3.2.3. Influence of WR

The weightings WS and WT were kept unchanged, and the weighting WR was varied
from 0 to 1.5. The dynamics were calculated via the step response, which is shown in
Figure 11. With the increase in weighting WR, the settling time increased. When the
weighting WR increased in a very small range near zero, the overshoot decreased quickly.
Then, the overshoot almost remained at zero with the increase in WR. The steady-state
error fluctuated at a relatively small value. Hence, it is recommended that a small positive
number is used for weighting WR.
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Figure 11. Effect of WR. (a) Settling time; (b) overshoot; (c) steady-state error.

4. Numerical Validation

In this section, a nonlinear model of the servo-hydraulic actuator [25] was employed
to validate the effectiveness of the proposed H∞ control method used for RTHS.

Typically, the H∞ controller is designed by employing a nominal analytical model
of the physical testing system, in which the PS is included. Hence, a linear model of the
servo-hydraulic actuator, or nominal plant, is obtained from the nonlinear model for design
convenience, which is given by

P(s) =
2βApk0

MEVs3 + (CEV + 2βkMEk0)s2 + (KEV + 4βA2
p + 2pA2

p + 2kβCEk0)s + 2kβKEk0
. (12)

where the symbols and their values are listed in Table 1. The damping coefficient CE is
calculated by the damping ratio and natural frequency of the specimen. Then, the transfer
function of the nominal model is

P(s) =
7.748× 106

s3 + 165.7s2 + 3.706× 105s + 5.235× 105 . (13)

Table 1. Values of system parameters for simulation [25].

Item Parameter Value Parameter Value

Servovalve
Natural frequency 816.81 rad/s Damping ratio 0.7
Servo-valve gain k0 1.0674 m2/s Supply pressure p 19.995

Actuator
Piston area Ap 0.0248 m2 Volume V 0.0069 m3

Effective bulk modulus of oil β 677.8 MPa Pressure difference feedback gain k 0.0002

Specimen Mass ME 56.289 kg Damping ratio 0.05
Stiffness KE 2276.3 kN/m

It should be noted that the units have been transformed into the international system
of units.

4.1. Robustness Investigation

In a real application, there are differences between the nominal model and the phys-
ical testing system, and the characteristics of the PS will vary during RTHS. Hence, the
robustness of the H∞ controller was investigated numerically in this section.

4.1.1. Modeling Uncertainties

• Controller design

When designing the H∞ controller, the modeling uncertainties and measurement noise
should be considered first, followed by the dynamics of the controlled system. Hence, it is
recommended that the designed order of the weighting function is WT, WS, and WR.
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To determine the modeling uncertainties, a series of linear numerical models of the
nonlinear model were calculated. Then, the uncertainties were obtained, whose singular
values are shown in Figure 12. Later, the weighting WT can be designed. It is seen in the
figure that the modeling error was very small when the frequency was not very high; then,
the modeling uncertainties increased with the frequency. Hence, the weighting WT should
cover the uncertainties over all the frequency ranges. Through several trials, the expression
for WT was given by

WT(s) = 2× 10−5s2 + 0.005s + 0.25 (14)
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Figure 12. Modeling uncertainties and weighting function WT.

Subsequently, the dynamics of the controlled system were considered. It is ex-
pected that the controlled system should respond to the command quickly and without a
steady-state error. Hence, the other two weightings were determined after several trials,
which were

WS(s) =
0.01s + 63
s + 0.001

, WR = 0.1 (15)

Eventually, a feasible solution was reached, and the H∞ central controller was

K(s) =
7, 731, 236.8628(s + 1.413)(s2 + 164.3s + 3.704× 105)

(s + 1.021 × 106) (s + 1171) (s + 568.5 ) (s + 0.001)
(16)

Afterward, the performance of the controlled system was examined through per-
formance curves and the step response, which are given in Figure 13. A fast response
speed is observed in Figure 13a, and there is no steady-state error. It can also be seen
from Figure 13b that the complementary sensitivity function T was almost identical to 1
when the frequency was less than 10 Hz, indicating that the controlled system could track
the command very well. It is seen in the figure that the curves of the sensitivity function
S and complementary sensitivity function T were below the weighting functions WS

−1

and WT
−1, respectively, indicating that the selected weighting function could meet the

robust performance [24]. Moreover, over the concerned frequency, the sensitivity function
S was far less than 1, indicating that the controlled system exhibited a strong robustness
considering the disturbance.

• Modeling errors

To investigate the robustness of the H∞ controller to modeling uncertainties, two
cases were considered here. For the first case, the multiplicative uncertainties of 50% were
considered, while for the second case, the controller designed employing a linear model
was used for the nonlinear model. Step responses for the two cases are shown in Figure 14,
and the response without any uncertainties is also given in the figure for convenience
of comparison.
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Figure 13. Performance of the controlled system. (a) Step response; (b) performance curve.
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Figure 14. Step responses. (a) Case 1: multiplicative uncertainties; (b) case 2: nonlinear model.

It is seen in the figure that when the multiplicative uncertainties were considered,
steady-state errors and overshoots were still not observed, while the settling time was less
than the initial state. When the H∞ controller was used for the nonlinear model, it was
found that there were obvious fluctuations, and overshoot and steady-state errors occurred.
However, the overshoot was very small (less than 0.5%), and the steady-state error tended
to zero. Hence, the H∞ controller exhibited strong robustness to modeling uncertainties.

4.1.2. Variation of the Specimen

• Stiffness

Two different stiffness coefficients were considered for the PS, 1.5 and 0.1 times the
initial one, respectively. The time histories of the change ratio under the step response
are given in Figure 15. It is seen from the figure when the stiffness coefficient varied, the
steady-state error occurred. The change ratio for the stiffness decrease was smaller than
that for the stiffness increase, and they were within the acceptable range. Hence, the H∞
controller was robust to the variation in stiffness.
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Figure 15. Change ratio of step response for different stiffnesses. (a) KE = 0.1KE0; (b) kE = 1.5KE0.
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• Damping

To assess the robustness of the H∞ controller, two different damping ratios, 0.1 and
1.5 times the initial one, respectively, were considered for the PS. The time histories of the
change ratio under the step response are given in Figure 16. It is found that the change
ratios were negligible compared to those in Figure 15. With time, the change ratio tended
to zero, which means that the steady-state error was zero. This indicates that the damping
characteristics had limited influences on the step responses, and the H∞ controller exhibited
a strong robustness.
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Figure 16. Change ratio of step response for different stiffnesses. (a) CE = 0.1CE0; (b) CE = 1.5CE0.

4.2. Virtual RTHS

In this section, virtual RTHSs were conducted on a single-degree-of-freedom (SDOF)
structure. The mass was 1200.8 kg, the structural stiffness was 2276.3 kN/m, and the
damping ratio was 5%. A nonlinear PS was employed, of which the mass and stiffness
of the PS were 56.6384 kg and 2276.3 kN/m, respectively, the yield displacement was
7.6 mm, and the stiffness coefficient after yield was 0.12. The earthquake excitation was
El Centro (NS, 1940), whose peak ground acceleration (PGA) was scaled to 0.16g. In the
virtual hybrid simulation, the α method [26] was adopted to solve the equation of motion,
and the time integral was 0.01 s. A pure dynamic analysis of the whole structure was
performed to serve as an exact reference solution, where the stepwise integral method was
CDM-RST [25], and the time step was 0.01 s. Due to the PS being changed, the controller
was re-designed, and the controller was:

K =
14, 893, 750.8909(s + 2.094× 104)(s + 1.047× 104)(s + 1.413)(s2 + 164.3s + 3.704× 105)

(s + 1.305 × 106) (s + 2.096 × 104) (s + 1.031 × 104) (s + 1196) (s + 669.9 ) (s + 0.001004)
(17)

The time histories of displacement obtained by virtual RTHS were compared with
those of the reference solution, which is shown in Figure 17. It is seen in the figure that a
shifting was observed for the displacement due to the yielding of the structure. However,
the responses were in good agreement with those of the reference solution under the
earthquake excitation.
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5. Experimental Validation
5.1. Overview of the Test
5.1.1. Experimental Setup

To validate the effectiveness of the proposed H∞ control method, actual real-time
hybrid simulations were conducted on an SDOF structure. The loading system at the
Structural and Seismic Testing Center of Harbin Institute of Technology was employed,
which consists of an FTS system and a dSPACE 1104 board. The FTS system comprises a
servo-hydraulic actuator, displacement sensor, force sensor, and servovalve. The displace-
ment sensor is an LWH-200 with a maximum stroke of 200 mm, which is produced by
Novotechnik. The force sensor is PSD-5tSJTT with a capacity of 5 T, which is produced by
Vishay. The servovalve is MOOG-761-3005, produced by Moog. The experimental setup is
shown in Figure 18.
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Considering the restraints of the loading system, a spring was taken as the specimen
and was loaded in the axial direction. In RTHS, the central difference method was adopted
to solve the equation of motion, and the time integral was 0.02 s. The equation of motion
solved by the LSIM command in MATLAB served as the exact reference solution, where
the time step was 0.02 s.

To diminish the effect of measurement noise, an elliptic filter was designed by the
digital filter design module, with stop frequencies of 100 and 30 Hz for displacement and
force, respectively. The sampling time for the filter was 1000 Hz.

5.1.2. Controller Design

Similar to that used in Section 4, the analytical model was established theoretically
using the technical index of the servo-hydraulic actuator, which is provided by the manu-
facturer. The transfer function from u to y is

P =
4βk0 Ap(

4βA2
p + 4pA2

p + VKe

)
s + 4βkk0KE

(18)

where the parameters are listed in Table 2. Hence, the numerical model is given by

P(s) =
33.74

s + 0.5739
(19)
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Table 2. Values of system parameters.

Parameter Value Parameter Value

Servo-valve gain k0 0.0512 m2/s Supply pressure p 19.995
Piston area Ap 0.0015 m2 Volume V 0.0043 m3

Effective bulk modulus of oil β 677.8 MPa Pressure difference feedback gain k 0.0002

The mathematical model in between the input and output in the frequency domain
is shown in Figure 19. It is seen in Figure 19a that within the frequency range of interest,
the model was in good agreement with the test data, while for the phase, differences were
observed when the frequency became large. However, the analytical model can reflect the
major dynamics of the actual testing system.
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It should be noted that the H∞ controller was designed in the continuous-time do-

main, while the dSPACE is a digital sampling system. Hence, the H∞ controller was con-

verted to discrete form by the c2d command in MATLAB. The discrete method was 

Tustin, and the sampling time was identical to that in dSPACE, namely 1000 Hz. 

5.2. Loading System Verification 

The feasibility of the designed H∞ controller was verified first. The step response is 

given in Figure 20. It is seen in the figure that there was a pure delay in the system and no 

steady-state error. The rise and settling times were 0.018 and 0.048 s, respectively. The 

time of first achieving the command was 0.025 s. It seems that the H∞ controller could not 

complete the RTHS. However, the step response is very rigorous, so the additional test 

was carried out to further verify the dynamic performance. 

 

Figure 20. Step response with H∞ controller. 

A sinusoidal signal was discretized with a sampling time of 0.02 s, which was used 

as the command signal. The response is shown in Figure 21. It is seen in the figure that at 

the end of each step, the measurement displacements were in good agreement with the 

command, indicating that the H∞ controller was suitable for RTHS. 

 

1 10
-50

-40

-30

-20

-10

0

10

20

 

 

A
m

p
li

tu
d

e 
(d

B
)

Frequency (Hz)

 Test data

 Model

 

1 10

-250

-200

-150

-100

-50

0

50

100

150

200

 

 

P
h

a
se

 (
°)

Frequency (Hz)

 Test data

 Model

 

0.00 0.05 0.10 0.15

0.0

1.5

3.0

4.5

0.042

D
is

p
la

ce
m

en
t 

(m
m

)

Time (s)

 Command

 Response

0.019
0.028 0.067

Figure 19. Model validation. (a) Magnitude; (b) phase.

The weighting functions were determined using the recommended method given in
Section 3. After several trials, they were selected as

WS =
0.05s + 62.83

s + 0.01
, WT =

833.3333(s+805) (s+19.51)
(s+2.09× 104) (s+1.05× 104)

, WR = 1× 10−6 (20)

Eventually, a feasible solution was achieved and the controller was

K(s) =
7.6251× 108 (s + 2.094 × 104) (s + 1.047 × 104) (s + 0.5739)
(s + 2.812× 1010)(s + 0.01048)(s2 + 1892s + 1.086× 102)

(21)

It should be noted that the H∞ controller was designed in the continuous-time domain,
while the dSPACE is a digital sampling system. Hence, the H∞ controller was converted to
discrete form by the c2d command in MATLAB. The discrete method was Tustin, and the
sampling time was identical to that in dSPACE, namely 1000 Hz.

5.2. Loading System Verification

The feasibility of the designed H∞ controller was verified first. The step response is
given in Figure 20. It is seen in the figure that there was a pure delay in the system and
no steady-state error. The rise and settling times were 0.018 and 0.048 s, respectively. The
time of first achieving the command was 0.025 s. It seems that the H∞ controller could not
complete the RTHS. However, the step response is very rigorous, so the additional test was
carried out to further verify the dynamic performance.

A sinusoidal signal was discretized with a sampling time of 0.02 s, which was used as
the command signal. The response is shown in Figure 21. It is seen in the figure that at
the end of each step, the measurement displacements were in good agreement with the
command, indicating that the H∞ controller was suitable for RTHS.
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Figure 21. Tracking performance under sinusoidal signal.

5.3. RTHS
5.3.1. Sinusoidal Excitation

RTHS under sinusoidal excitation was first carried out by employing the H∞ controller.
The frequency of the excitation was 2 Hz, and the amplitude was increased slowly from 0
to 344.492 N. The period and damping ratios of the simulated structure were 1 s and 0.02,
respectively. The stiffness of the NS was the same as that of the PS, which was 34 kN/m.
The tracking performance of the actuator with the H∞ controller was examined first, and
the commanded and measured displacements are shown in Figure 22. It is seen in the
figure that at the end of each time integration step, the displacement measurement was
almost identical to that of the command. Moreover, the reference solution is also given in
Figure 22. It is seen that the measured displacements were in good agreement with the
reference ones.
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Figure 22. Steady-state response under sinusoidal excitation. (a) Overall view; (b) enlarged view.

5.3.2. Earthquake

A series of RTHSs were conducted on a spring specimen with a stiffness of 35 kN/m.
Three different numerical substructures, whose stiffnesses were 35, 17.5, and 0 kN/m,
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were considered. The damping ratio was 0.1. For the NS with a stiffness of 35 kN/m, the
period was 2 s. The earthquake excitation was El Centro (NS, 1940), and the peak ground
acceleration (PGA) was scaled to 50 gal. The displacement time histories, overall and
enlarged view, are shown in Figure 23, together with the reference solution.
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Figure 23. Displacement time histories under earthquake excitation. (a) Overall view for Case 1; (b) enlarged view for Case
1; (c) overall view for Case 2; (d) enlarged view for Case 2; (e) overall view for Case 3; (f) enlarged view for Case 3.

It is seen in the figure that the measured displacements were almost identical to
the command for the three cases, indicating a perfect tracking performance of the H∞-
controlled system. They were further verified by the RMSE collected in Table 3.

Table 3. Stiffness of NS and RMS error of hybrid simulation.

Case Stiffness of NS
RMSE (%)

Tracking RTHS

1 35 kN/m 2.77 12.47
2 17.5 kN/m 3.04 13.07
3 0 kN/m 2.31 17.96
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If focusing on the displacement response and reference solution, one will find that
the displacements of RTHS matched the reference well before the first displacement peak.
Subsequently, differences emerged, especially at each positive or negative peak.

It is seen in the figure that the tracking performance was perfect, but the simulation
results were barely satisfactory. The reason is that the measured force was not synchronized
with the desired displacement. There were two different filters, which may introduce
additional time delays differently.

6. Conclusions

Real-time hybrid simulation is a powerful technique to evaluate the structural per-
formance under dynamic loads, especially for structures with velocity- or acceleration-
dependent components. Due to the inherent nonlinearities of the servo-hydraulic actuator
and the uncertainties in the systems, the boundary conditions between the two substruc-
tures could be realized completely. Hence, a mixed sensitivity-based H∞ control method
was proposed for RTHS. The main conclusions that could be reached are as follows.

1. The principle of the H∞ control theory was presented briefly. Theoretically, the
H∞ control strategy is an optimization problem. By introducing the performance
weighting function to the feedback control system, the standard H∞ control problem
can be formulated.

2. The weighting function selection method was proposed, and the influences of the
weighting function on the system dynamics were discussed. Typically, WS should be
close to an integrator to eliminate the steady-state error, and a large numerator will
generate a fast response speed. WT should be determined by evaluating the model
uncertainties in advance, and it should have a slope of approximately 40 dB/dec over
the high-frequency range to suppress the unmodeled dynamics and measurement
noise. A small positive constant value is usually used for WR.

3. The robustness of the H∞ controller was investigated numerically. When considering
the model uncertainties and characteristic variation in the specimen, the overshoot
and steady-state error varied in an acceptable range, indicating the strong robustness
of the H∞ controller.

4. The effectiveness and feasibility of the proposed method were validated via numerical
simulations and actual RTSHs. When considering the nonlinear characteristics of
the specimen, the actual modeling uncertainties, or the measurement noise, the H∞-
controlled system showed an excellent tracking performance, indicating that it is
suitable to use the H∞ controller for RTHS.

However, it should be noted that the proposed method was only validated via a linear
elastic specimen, and a nonlinear physical substructure should be used to further validate
the feasibility. Furthermore, as the H∞ controller is still a feedback controller in essence,
the time delay cannot be eliminated. Hence, it is necessary to combine the H∞ controller
with other strategies.
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Nomenclature
a, b, and c Adjustable parameters in weighting function WS
e Tracking error
h, m, and n Adjustable parameters in weighting function WT
j Imaginary unit
k Pressure difference feedback gain
k0 Servo-valve gain
p Supply pressure
r Reference input
u Control signal or controller output
w Exogenous input
x State vector
y Measured output
z Performance output
A, B, C, D Coefficient matrix
Ap Piston area
G Generalized plant
G0 Nominal or analytical plant
K Controller
KE Stiffness of specimen
ME Mass of specimen
P Transfer function of the control plant
R Controller sensitivity
S Sensitivity function
T Complementary sensitivity function
Twz Transfer function from input w to output z
V Volume
WS, WR, and WT Weighting function
β Effective bulk modulus of oil
γ Positive number
ω Frequency
ωd Desired bandwidth
σ Singular value
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