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Abstract: The generalized interval-valued trapezoidal fuzzy best-worst method (GITrF-BWM) pro-
vides more reliable and more consistent criteria weights for multiple criteria group decision making
(MCGDM) problems. In this study, GITrF-BWM is integrated with the extended TOPSIS (technique
for order preference by similarity to the ideal solution) and extended VIKOR (visekriterijumska
optimizacija i kompromisno resenje) methods for the selection of the optimal industrial robot using
fuzzy information. For a criteria-based selection process, assigning weights play a vital role and
significantly affect the decision. Assigning weights based on direct opinions of decision makers
can be biased, so weight deriving models, such as GITrF-BWM, overcome this discrepancy. In
previous studies, generalized interval-valued trapezoidal fuzzy weights were not derived by using
any MCGDM method for the robot selection process. For this study, both subjective and objective
criteria are considered. The preferences of decision makers are provided with the help of linguistic
terms that are then converted into fuzzy information. The stability and reliability of the methods
were tested by performing sensitivity analysis, which showed that the ranking results of both the
methodologies are not symmetrical, and the integration of GITrF-BWM with the extended TOPSIS
method provides stable and reliable results as compared to the integration of GITrF-BWM with the
extended VIKOR method. Hence, the proposed methodology provides robust optimal industrial
robot selection.

Keywords: generalized interval-valued trapezoidal fuzzy best-worst method; extended VIKOR;
extended TOPSIS; robot; hybrid MCGDM

1. Introduction

Nowadays, the decision-making process includes subjective and uncertain criteria for
the selection procedure. Industrial robots are used in all manufacturing industries with the
aim of improving functionality and productivity. The market is full of industrial robots
with various types of special features of industrial work, including many specifications and
related skills. In such situations, industries require an expert team of decision makers in
the selection process of robots that are suitable for a particular production and application.
For multiple criteria group decision making (MCGDM) processes, decision makers/experts
generally have different opinions about the same fact due to their knowledge structure,
experience, and area of expertise.

In this paper, the generalized interval-valued trapezoidal fuzzy best-worst method
(GITrF-BWM) is integrated with the generalized interval-valued trapezoidal fuzzy TOPSIS
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(GITrF-TOPSIS) and generalized interval-valued trapezoidal fuzzy VIKOR (GITrF-VIKOR)
methods. Both methods are distance-based but not symmetrical. For weight calculations,
decision makers provided their preferences using linguistic terms. They felt more com-
fortable giving opinions using linguistic terms; then, the more reliable and consistent
generalized interval-valued trapezoidal fuzzy weights (GITrFWs) were calculated using
GITrF-BWM. Similarly, experts provided their preferences about the alternatives with
respect to each subjective criteria using linguistic terms that were then converted into the
GITrFNs. The provided fuzzy information was aggregated and normalized, and then using
GITrFWs, fuzzy information was converted to a weighted normalized form. The ranking
was obtained using two different integrated methods: (1) GITrF-BWM integrated with
the GITrF-TOPSIS method and (2) GITrF-BWM integrated with the GITrF-VIKOR method.
Rankings of each decision maker and aggregated decision ranking were tabulated and
pictured. Sensitivity analysis was performed with respect to criteria; the results showed
that GITrF-TOPSIS was more sensitive with respect to c2 and c3, and GITrF-VIKOR was
more sensitive with respect to c2, c3, c5 and c6. This implies that the GITrF-VIKOR method
provides better rank reversal with respect to criteria as compared to the GITrF-TOPSIS
method, which is more stable.

The rest of the paper is organized as follows, Section 3 provides the basic definitions,
and Section 4 describes the steps for GITrF-BWM. In Section 5, the steps for ranking using
GITrF-TOPSIS are explained, and in Section 6, the steps for ranking using GITrF-VIKOR are
explained. Section 7 consists of the robot selection process, Section 8 provides a sensitivity
analysis of the methodology and Section 10 provides the conclusion of the research.

2. Literature Review

In 1965, Zadeh invented an extension of the classical set called the fuzzy set [1].
Bellman and Zadeh discovered in 1970 that the decision-making process involves fuzzy
information as all humans have different ways of thinking [2]. There is extensive use of
trapezoidal fuzzy numbers in multi-criteria decision making (MCDM) due to applied and
reliable results [3–6]. Wei and Chen [7] discovered generalized interval-valued trapezoidal
fuzzy numbers (GITrFNs) that are an extension of the generalized trapezoidal fuzzy num-
bers discovered by Chen in 1985 [8]. The success of these extensions in MCDM problems
is obtaining more fame. Similarity measures of the GITrFNs based on geometric distance
and the center of gravity were proposed by Wei and Chen [9]. A similarity measure based
on the geometric distance of GITrFNs was applied by Wei and Chen for a risk analysis
MCDM problem [7]. Liu discovered and applied aggregation operators of GITrFNs for
the MCGDM problem [10]. Liu and Jin proposed the weighted geometric aggregation
operators for MCGDM problems using GITrFNs [11]. Generalized trapezoidal numbers
reduce the computational cost for a transportation problem using GITrFNs, as proposed by
Ebrahimnejad [12]. Mathematical modeling and solutions to the models are important and
their importance can be seen in management, social, and engineering applications [13–21].
Rashid, Beg, and Husnine [22] proposed an extended technique for order preference by
similarity to the ideal solution (TOPSIS), which uses GITrFNs for the selection of robots
considering both objective and subjective criteria but lacks a weights deriving procedure.
Ali, Rashid and Chu [23,24] provided a best-worst methodology and a hybrid best-worst
EDAS methodology for industrial robot selection but they did not have considered fuzzy
information for the aggregation process. It is useful and significant to investigate MCGDM
methods using generalized fuzzy information like GITrFNs, as its particular cases involve
generalized trapezoidal, trapezoidal, interval-valued triangular, triangular and interval
fuzzy numbers, etc.

Opricovic [25] developed the visekriterijumska optimizacija i kompromisno resenje
(VIKOR) method to solve discrete MCDM problems that have non-commensurable and
conflicting criteria. For the majority, “maximum group utility” and for the opponent,
“minimum of an individual regret” are the key factors to provide a compromise solution
using the VIKOR method as it is a serviceable tool for MCDM problems. A robot se-
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lection problem solved by Athawale, Chatterjee, and Chakraborty [26] using the VIKOR
method determines the applicability and advantages of the technique. Chatterjee, Athawale,
and Chakraborty [27] make a relative performance comparison of a robot selection problem
solved using the elimination et choice translating reality (ELECTRE) and VIKOR methods.
The interval-valued trapezoidal fuzzy numbers are integrated with the VIKOR method in
a systematic and logical approach for the industrial robot selection problem. An extension
of the VIKOR method for a triangular intuitionistic fuzzy environment was proposed by
Devi [28], in which alternatives are evaluated using triangular intuitionistic fuzzy num-
bers. Both quantitative and qualitative criteria were considered for a robot selection novel
MCDM method by Rao, Patel, and Parnichkun [29]. Tansel, Yurdakul, and Dengiz [30]
presented a robot selection process based on a fuzzy analytic hierarchy process (FAHP)
and the ROBSEL two-phase method that is less dependent on the experts’ opinions for
the selection process. Bairagi, Dey, Sarkar, and Sanyal [31] calculated weights using FAHP
and utilize them to calculate ranking using the fuzzy VIKOR, fuzzy TOPSIS, and com-
plex proportional assessment of alternatives with grey relations (COPRAS-G) methods.
Liu et al. [32] solved a robot selection MCDM problem by using the TOPSIS method in
which decision makers evaluated criteria using interval two-tuple linguistic fuzzy sets. Lan-
baran et al. [33] evaluated investment opportunities proposing the fuzzy TOPSIS extension
using an interval-valued fuzzy set. Parameshwaran, Kumar, and Saravanakumar [34] made
criteria selection using the fuzzy delphi method for an educational robot selection; here,
weights were calculated using the FAHP method, and alternative rankings were obtained
using the fuzzy VIKOR and fuzzy TOPSIS methods. Bairagi, Dey, Sarkar, and Sanyal [35]
solved a robot selection MCDM problem by presenting the technique of precise order pref-
erences (TPOP) methodology. Samantra, Datta, and Mahapatra [36] proposed an extended
VIKOR MCGDM method using GITrFNs for the selection of industrial robots but did not
adopt a proper weight deriving procedure. Ghorabaee [37] utilized interval type-2 fuzzy
numbers by extending the VIKOR method to a fuzzy environment for a robot selection
problem for which he used the Spearman correlation coefficient to analyze the stability
of the method. Jiang et al. [38] used the fuzzy DEMATEL MCDM method to identify the
critical variables for sustainable manufacturing. Joshi and Kumar [39] extended the TOPSIS
MCDM method by introducing a Choquet integral operator for an interval-valued intu-
itionistic hesitant fuzzy set for the alternative ranking purpose. BWM, TOPSIS, and VIKOR
are very practical methods that have wide areas of application and success in decision
processes [40–46].

3. Preliminaries

Zadeh invented the fuzzy set in 1965 by extending the classical set [1]. This theory
is used to solve problems that have uncertain and vague environments. A fuzzy set in
defined in the form of a pair (U, µ) where U represent a set of discourse and a function
µ : U → [0, 1] that maps each element x ∈ U to the real number in the interval [0, 1], called
a membership function:

Definition 1 ([8]). Equation (1) represents a generalized trapezoidal fuzzy number (GTrFN):

GT(g) =


h− m−g

m−l , for l < g 6 m;
h, for m 6 g 6 n;
h− g−n

u−n , for n 6 g < u;
0, for g 6 l and g > u

(1)

that is denoted by G = (l, m, n, u; h), where h ∈ [0, 1] is the height of G, and ∀ l, m, n, u ∈ R,
l 6 m 6 n 6 u.

Definition 2 ([47]). Let GL
T(gi) and GU

T (gi) be two GTrFNs, hL
gi

and hU
gi

denote the heights of
GL

T(gi) and GU
T (gi), respectively, where lL

i , mL
i , nL

i , uL
i , lU

i , mU
i , nU

i , uU
i ∈ R. Let G = {g1, g2,



Symmetry 2021, 13, 839 4 of 22

g3, · · · , gn} be a universe of discourse, and a generalized interval-valued trapezoidal fuzzy set GTr
defined on G is represented by Equation (2):

GTr =
{〈

gi,
[

GL
T(gi), GU

T (gi)
]〉
|gi ∈ G

}
=
{〈

gi,
[(

lL
i , mL

i , nL
i , uL

i ; hL
gi

)
,
(

lU
i , mU

i , nU
i , uU

i ; hU
gi

)]〉
|gi ∈ G

} (2)

where lL
i 6 mL

i 6 nL
i 6 uL

i , lU
i 6 mU

i 6 nU
i 6 uU

i , 0 6 hL
gi

6 hU
gi

6 1, lU
i 6 lL

i , uL
i 6 uU

i .

Moreover, GL
T(gi) =

(
lL
i , mL

i , nL
i , uL

i ; hL
gi

)
, GU

T (gi) =
(

lU
i , mU

i , nU
i , uU

i ; hU
gi

)
.

A GITrFN GTr(g) =
[
GL

T(g), GU
T (g)

]
consists of the two GTrFNs GL

T(g) = (lL, mL, nL,

uL; hL
g) and GU

T (g) =
(

lU , mU , nU , uU ; hU
g

)
, where GL

T(g) is called the lower trapezoidal

fuzzy number, and GU
T (g) is called the upper trapezoidal fuzzy number. The normal

interval-valued trapezoidal fuzzy number is obtained by having hL
g = hU

g = 1 in the
GITrFN GTr(g). If GL

T(g) = GU
T (g), then GTr(g) becomes a GTrFN. The operational rules

for the GITrFNs can be seen in Chen [47].

Definition 3. The ranking of GITrFN G̃Tr is represented by the graded mean integration represen-
tation (GMIR) R(GTr) [48–50].

The GMIR R(GTr) of GITrFN GTr(g) = [(lL, mL, nL, uL; hL), (lU , mU , nU , uU ; hU)] is
calculated by Equation (3):

R(GTr) =
lL + lU + 2(mL + mU) + 2(nL + nU) + uL + uU

12
(3)

Definition 4. [51] Let G1Tr =
[(

lL
1i, mL

1i, nL
1i, uL

1i; hL
1i
)
,
(
lU
1i , mU

1i , nU
1i , uU

1i ; hU
1i
)]

and G2Tr = [(lL
2i,

mL
2i, nL

2i, uL
2i; hL

2i), (l
U
2i , mU

2i , nU
2i , uU

2i ; hU
2i)] be two GITrFNs. Their distance dT is defined by

Equation (4):

dT(G1Tr, G2Tr) =
1
8

(∣∣∣hL
1i × lL

1i − lL
2i × hL

2i

∣∣∣+ ∣∣∣hL
1i ×mL

1i −mL
2i × hL

2i

∣∣∣+ ∣∣∣hL
1i × nL

1i − nL
2i × hL

2i

∣∣∣+ ∣∣∣hL
1i × uL

1i − uL
2i × hL

2i

∣∣∣
+
∣∣∣hU

1i × lU
1i − lU

2i × hU
2i

∣∣∣+ ∣∣∣hU
1i ×mU

1i −mU
2i × hU

2i

∣∣∣+ ∣∣∣hU
1i × nU

1i − nU
2i × hU

2i

∣∣∣+ ∣∣∣hU
1i × uU

1i − uU
2i × hU

2i

∣∣∣) (4)

Definition 5 ([36]). Let G1Tr =
[(

lL
1i, mL

1i, nL
1i, uL

1i; hL
1i
)
,
(
lU
1i , mU

1i , nU
1i , uU

1i ; hU
1i
)]

=
[
GL

1 , GU
1
]

and G2Tr = [
(
lL
2i, mL

2i, nL
2i, uL

2i; hL
2i
)
,
(
lU
2i , mU

2i , nU
2i , uU

2i ; hU
2i
)
] = [GL

2 , GU
2 ] be two GITrFNs. Their

distance dV is defined by Equation (5):

dV(G1Tr, G2Tr) =
1
2

√(
yGL

1
− yGL

2

)2
+
(

xGL
1
− xGL

2

)2
+
(

yGU
1
− yGU

2

)2
+
(

xGU
1
− xGU

2

)2
(5)

where (xGL
1

, yGL
1
) , (xGU

1
, yGU

1
) , (xGL

2
, yGL

2
), and (xGU

2
, yGU

2
) are the coordinates of center of gravity

(CoG) points belonging to the GTrFNs GL
1 , GU

1 , GL
2 , and GU

2 , respectively. Computational steps for
evaluation of CoG points can be seen in Wei and Chen [7].

4. GITrF-BW Method

The GITrF-BWM method proposed by Rashid and Ali [52] is a fuzzy extension of the
classical best-worst method (BWM) that is more consistent and more reliable compared to
the classical BWM due to its lower consistency ratio and that it provides unique results.
The generalized interval-valued trapezoidal fuzzy pairwise comparisons for a research
object that have n criteria are performed using the following decision makers’ linguistic
terms: “Equally important (EI)”, “Weakly important (WI)”, “Fairly important (FI)”, “Very
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important (VI)’ and “Absolutely important (AI)”. Table 1 and Figure 1 represent the
transformation rules of decision makers’ linguistic evaluation to the GITrFNs.

Table 1. Transformation of decision makers’ linguistic terms to GITrFNs [52].

GITrFNs Transformation Linguistic Terms

[(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)] Equally Important (EI)
[(0.7857, 1.0238, 1.1429, 1.381; 0.8), (0.6667, 0.9048, 1.2619, 1.5; 1)] Weakly Important (WI)
[(1.6429, 1.9286, 2.0714, 2.3571; 0.8), (1.5, 1.7857, 2.2143, 2.5; 1)] Fairly Important (FI)
[(2.6429, 2.9286, 3.0714, 3.3571; 0.8), (2.5, 2.7857, 3.2143, 3.5; 1)] Very Important (VI)
[(3.6429, 3.9286, 4.0714, 4.3571; 0.8), (3.5, 3.7857, 4.2143, 4.5; 1)] Absolutely Important (AI)

Figure 1. Graphical representation of fuzzy evaluation table for GITrF-BWM.

The pairwise comparison matrix using GITrFNs is represented by the Equation (6),

P̃ =


p̃11 p̃12 · · · p̃1n
p̃21 p̃22 · · · p̃2n

...
...

. . .
...

p̃n1 p̃n2 · · · p̃nn

 (6)

where p̃ij (a GITrFN) represents the relative generalized interval-valued trapezoidal fuzzy
preference (GITrFP) of criterion i to criterion j; when i = j, p̃ij = {(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)}.
The basic principle of BWM [53] is adopted to have the matrix P̃, the principle dictates that
only fuzzy reference comparisons are sufficient instead of n pairwise comparisons.

Definition 6 ([52]). A generalized interval-valued trapezoidal fuzzy reference comparison (GITrF-
RC) is defined by p̃ij, only if i is the best element and/or j is the worst element.

By using GITrF-BWM, GITrFWs of criteria can be calculated. To determine GITrFWs
of criteria/alternatives the following steps of GITrF-BWM are adopted.

4.1. Step 1. Selection of a Criteria Set

Decision makers determine a criteria set K = {k1, k2, k3, · · · , kn} for the evaluation
of alternatives. For example, a set can be {safety, quality, price, style, comfort} for a car
selection problem.
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4.2. Step 2. Selection of Most Favorable Criterion and Least Favorable Criterion

Decision makers make a selection of a most favorable criterion and a least favorable
criterion among all the criteria and call them the best criterion “denoted by kB” and worst
criterion “denoted by kW”, respectively. For a car selection, the price and style can be the
best and worst criteria, respectively.

4.3. Step 3. GITrF-RC of the Best Criterion over All Other Criteria

The important part of the GITrF-BWM is the GITrF-RC. Definition 6 determines that
the GITrF-RC has two parts; one is the pairwise comparison p̃ij where i is the best element
(ki = sB), and the other is the pairwise comparison p̃ij where j is the worst element
(k j = sW). Using the rules of transformation of linguistic terms to GITrFNs defined in
Table 1 and Figure 1, the performed GITrFPs of the best criterion to all other criteria in the
form of linguistic terms are converted to GITrFNs. In this way, the generalized interval-
valued trapezoidal fuzzy vector for best to other criteria is obtained and is denoted by
Equation (7):

P̃B = ( p̃B1, p̃B2, p̃B3, · · · , p̃Bn) (7)

where P̃B is the generalized interval-valued trapezoidal fuzzy best to another vector; p̃Bj
represents the GITrFP of the best criterion kB over criteria k j, j = 1, 2, 3, · · · , n.

4.4. Step 4. GITrF-RC of All of the Other Criteria over the Worst Criterion

Using rules of transformation of linguistic terms to GITrFNs defined in Table 1 and
Figure 1, the performed GITrFP of all of the other criteria over the worst criteria in the form
of linguistic terms are converted to GITrFNs. In this way, a generalized interval-valued
trapezoidal fuzzy vector from all other criteria to the worst criterion is obtained and is
denoted by Equation (8):

P̃W = ( p̃1W , p̃2W , p̃3W , · · · , p̃nW) (8)

where P̃W is the generalized interval-valued trapezoidal fuzzy other to worst vector;
and p̃iW represents the GITrFP of all other criteria ki over the worst criterion kW , i =
1, 2, 3, · · · , n.

4.5. Step 5. Determine the GITrFWs of Criteria

We can have optimal GITrFWs for each of the criteria for ˜twB
/

˜twj
= p̃Bj and ˜twj

/
˜twW

=

p̃jW , for each generalized interval-valued trapezoidal fuzzy pair ˜twB
/

˜twj
and ˜twj

/
˜twW

,

but it cannot be always true. Thus, the maximum absolute gaps
∣∣∣ ˜twB

/
˜twj
− p̃Bj

∣∣∣ and∣∣∣ ˜twj
/

˜twW
− p̃jW

∣∣∣ are minimized, which satisfies these conditions for all j. Here ˜twB, ˜twj

and ˜twW are GITrFNs, which are very different from those in BWM. We used the GMIR
method to transform the GITrFWs of criteria to crisp weights. Thus, to determine the
GITrFWs ( ˜tw∗1 , ˜tw∗2 , ˜tw∗3 , · · · , ˜tw∗n), we can have the constrained optimization model (9):

min max
j

{∣∣∣∣∣ ˜twB
˜twj
− p̃Bj

∣∣∣∣∣,
∣∣∣∣∣ ˜twj

˜tww
− p̃jW

∣∣∣∣∣
}

Subject to:
n

∑
j=1

R
(

˜twj
)
= 1 ; lLw

j 6 mLw
j 6 nLw

j 6 uLw
j ;

lUw
j 6 mUw

j 6 nUw
j 6 uUw

j ; 0 6 hLw
j 6 hUw

j 6 1 ;

lUw
j 6 lLw

j ; uLw
j 6 uUw

j ; lUw
j > 0 ; j = 1, 2, 3, · · · , n.

(9)
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where:
w̃B =

[(
lLw
B , mLw

B , nLw
B , uLw

B ; hLw
B

)
,
(

lUw
B , mUw

B , nUw
B , uUw

B ; hUw
B

)]
,

w̃j =
[(

lLw
j , mLw

j , nLw
j , uLw

j ; hLw
j

)
,
(

lUw
j , mUw

j , nUw
j , uUw

j ; hUw
j

)]
,

w̃W =
[(

lLw
W , mLw

W , nLw
W , uLw

W ; hLw
W

)
,
(

lUw
W , mUw

W , nUw
W , uUw

W ; hUw
W

)]
,

p̃Bi =
[(

lL
Bj, mL

Bj, nL
Bj, uL

Bj; hL
Bj

)
,
(

lU
Bj, mU

Bj, nU
Bj, uU

Bj; hU
Bj

)]
,

p̃jW =
[(

lL
jW , mL

jW , nL
jW , uL

jW ; hL
jW

)
,
(

lU
jW , mU

jW , nU
jW , uU

jW ; hU
jW

)]
.

The mathematical model (9) is converted into a non-linear optimization model that is
represented by Equation (10).

min ξ̃

subject to:∣∣∣∣∣ ˜twB
˜twj
− p̃Bj

∣∣∣∣∣ ≤ ξ̃ ;

∣∣∣∣∣ ˜twj
˜twW
− p̃jW

∣∣∣∣∣ ≤ ξ̃

n

∑
j=1

R
(

˜twj
)
= 1 ; lLw

j 6 mLw
j 6 nLw

j 6 uLw
j ;

lUw
j 6 mUw

j 6 nUw
j 6 uUw

j ; 0 6 hLw
j 6 hUw

j 6 1 ;

lUw
j 6 lLw

j ; uLw
j 6 uUw

j ; lUw
j > 0 ; j = 1, 2, 3, · · · , n.

(10)

where ξ̃ =
[(

lLξ , mLξ , nLξ , uLξ ; hLξ
)
,
(
lUξ , mUξ , nUξ , uUξ ; hUξ

)]
.

Consider lLξ 6 mLξ 6 nLξ 6 uLξ ; lUξ 6 mUξ 6 nUξ 6 uUξ ; by supposing ξ̃∗ =
[(ε∗, ε∗, ε∗, ε∗; ε∗), (ε∗, ε∗, ε∗, ε∗; ε∗)] , ε∗ 6 lUξ , model (10) can be converted into model (
11).

min ξ̃∗

Subject to:∣∣∣∣∣∣
[(

lLw
B , mLw

B , nLw
B , uLw

B ; hLw
B
)
,
(
lUw
B , mUw

B , nUw
B , uUw

B ; hUw
B
)][(

lLw
j , mLw

j , nLw
j , uLw

j ; hLw
j

)
,
(

lUw
j , mUw

j , nUw
j , uUw

j ; hUw
j

)] −[(lL
Bj, mL

Bj, nL
Bj, uL

Bj; hL
Bj

)
,
(

lU
Bj, mU

Bj, nU
Bj, uU

Bj; hU
Bj

)]∣∣∣
6 [(ε∗, ε∗, ε∗, ε∗; ε∗), (ε∗, ε∗, ε∗, ε∗; ε∗)]∣∣∣∣∣∣

[(
lLw
j , mLw

j , nLw
j , uLw

j ; hLw
j

)
,
(

lUw
j , mUw

j , nUw
j , uUw

j ; hUw
j

)]
[(

lLw
W , mLw

W , nLw
W , uLw

W ; hLw
W
)
,
(
lUw
W , mUw

W , nUw
W , uUw

W ; hUw
W
)] −[(lL

jW , mL
jW , nL

jW , uL
jW ; hL

jW

)
,
(

lU
jW , mU

jW , nU
jW , uU

jW ; hU
jW

)]∣∣∣
6 [(ε∗, ε∗, ε∗, ε∗; ε∗), (ε∗, ε∗, ε∗, ε∗; ε∗)]

n

∑
j=1

R
(

˜twj
)
= 1 ; lLw

j 6 mLw
j 6 nLw

j 6 uLw
j ; lUw

j 6 mUw
j 6 nUw

j 6 uUw
j ; 0 6 hLw

j 6 hUw
j 6 1 ; lUw

j 6 lLw
j ;

uLw
j 6 uUw

j ; lUw
j > 0, j = 1, 2, 3, · · · , n.

(11)

The optimal GITrFWs
(

˜tw∗1 , ˜tw∗2 , ˜tw∗3 , · · · , ˜tw∗n
)

are obtained by the solution of Equa-
tions (11).

5. GITrF-TOPSIS Method

Generally, MCGDM problems involve fuzzy information. To handle fuzzy informa-
tion, GITrFNs are very useful and provide good results. Decision makers provide their
preferences using linguistic terms as they feel difficulty in providing their opinion us-
ing GITrFNs. The provided linguistic information is converted into fuzzy information.
Preference conversion rules of linguistic terms to GITrFNs are provided in Table 2.
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Table 2. The rules of preference conversion of linguistic terms to GITrFNs, according to Chen [47].

GITrFNs Linguistic Terms

[(0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)] Absolutely poor (AP)
[(0.0075, 0.0075, 0.015, 0.0525; 0.8), (0.0, 0.0, 0.02, 0.07; 1.0)] Very poor (VP)
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)] Poor (P)
[(0.2325, 0.255, 0.325, 0.3575; 0.8), (0.17, 0.22, 0.36, 0.42; 1.0)] Medium poor (MP)
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)] Medium (M)
[(0.65, 0.6725, 0.7575, 0.79; 0.8), (0.58, 0.63, 0.80, 0.86; 1.0)] Medium good (MG)
[(0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)] Good (G)
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)] Very good (VG)
[(1.0, 1.0, 1.0, 1.0; 1.0), (1.0, 1.0, 1.0, 1.0; 1.0)] Absolutely good (AG)

The ranking process with the help of the GITrF-TOPSIS method using GITrFNs has
the following procedural steps:

5.1. Step 1. Experts’ Alternatives and Criteria Sets

For an MCGDM problem P̃ =
[
p̃ij
]

m×n to be a fuzzy decision matrix, E = {e1, e2, · · · , ek}
is the set of the experts involved in the decision process, A = {A1, A2, · · · , Am} is the set
of the considered alternatives and K = {k1, k2, · · · , kn} is the set of the criteria used for
evaluating the alternatives.

5.2. Step 2. Aggregation of Group Decision

The aggregated performance of alternative Ai with respect to criterion k j for an
MCGDM problem with k experts is calculated by Equation (12). Aggregated weights of
criteria are calculated by Equation (13).

p̃ij =
1
k

[
p̃1

ij + p̃2
ij + · · ·+ p̃k

ij

]
(12)

˜twj =
1
k

[
˜tw1

j + ˜tw2
j + · · ·+ ˜twk

j

]
(13)

5.3. Step 3. Normalization Process

Given p̃ij =
[(

lL
ij, mL

ij, nL
ij, uL

ij; hL
xij

)
,
(

lU
ij , mU

ij , nU
ij , uU

ij ; hU
xij

)]
the normalized performance

rating can be calculated by Equations (14) or (15) depending on the type of criteria.

ñij =

[(
lL
ij

u+
j

,
mL

ij

u+
j

,
nL

ij

u+
j

,
uL

ij

u+
j

; hL
xij

)
,

(
lU
ij

u+
j

,
mU

ij

u+
j

,
nU

ij

u+
j

,
uU

ij

u+
j

; hU
xij

)]
, i = 1, 2, · · · , n, j ∈ B (14)

where u+
j = max

i
uU

ij , j ∈ B.

ñij =

[(
l−j
uL

ij
,

l−j
nL

ij
,

l−j
mL

ij
,

l−j
lL
ij

; hL
xij

)
,

(
l−j
uU

ij
,

l−j
nU

ij
,

l−j
mU

ij
,

l−j
lU
uij

; hU
xij

)]
, i = 1, 2, · · · , n, j ∈ K (15)

where l−j = min
i

lU
ij , j ∈ K, where B and K are associated with benefit and cost criteria,

respectively. This normalization method is used to preserve the property that the ranges
of normalized interval numbers fall within the interval [0, 1]. The weighted normalized
matrix Ṽ can be constructed as follows: R̃ =

[
r̃ij
]

n×m ; where r̃ij = ˜twj × ñij.

5.4. Step 4. GITrF-PIS and GITrF-NIS

Let B be a collection of benefit criteria (i.e., the larger k j is, the greater the preference)
and K be a collection of cost criteria (i.e., the smaller k j is, the greater the preference).
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The generalized interval-valued trapezoidal fuzzy positive-ideal solution (GITrF-PIS),
denoted as Ã+ = (Ṽ+

1 , Ṽ+
2 , · · · , Ṽ+

n ), and the generalized interval-valued trapezoidal fuzzy
negative-ideal solution (GITrF-NIS), denoted as Ã− = (Ṽ−1 , Ṽ−2 , · · · , Ṽ−n ), are defined by
Equations (16) and (17), respectively.

A+ =

[
((max

i
vL

1ij, max
i

vL
2ij, max

i
vL

3ij, max
i

vL
4ij; max

i
hLvij)|j ∈ B, (min

i
vL

1ij, min
i

vL
2ij, min

i
vL

3ij, min
i

vL
4ij; min

i
hLvij)|j ∈ K),

((max
i

vU
1ij, max

i
vU

2ij, max
i

vU
3ij, max

i
vU

4ij; max
i

hUvij)|j ∈ B, (min
i

vU
1ij, min

i
vU

2ij, min
i

vU
3ij, min

i
vU

4ij; min
i

hUvij)|j ∈ K)

]
,

i = 1, 2, · · · , m.

(16)

Ã+ = (Ṽ+
1 , Ṽ+

2 , · · · , Ṽ+
n ).

where Ṽ+
j =

[
(vL+

1j , vL+
2j , vL+

3j , vL+
4j ; hL+

vj ), (vU+
1j , vU+

2j , vU+
3j , vU+

4j ; hU+
vj )

]
, j = 1, 2, · · · , n.

A− =

[
((min

i
vL

1ij, min
i

vL
2ij, min

i
vL

3ij, min
i

vL
4ij; min

i
hLvij)|j ∈ B, (max

i
vL

1ij, max
i

vL
2ij, max

i
vL

3ij, max
i

vL
4ij; max

i
hLvij)|j ∈ K),

((min
i

vU
1ij, min

i
vU

2ij, min
i

vU
3ij, min

i
vU

4ij; min
i

hUvij)|j ∈ B, (max
i

vU
1ij, max

i
vU

2ij, max
i

vU
3ij, max

i
vU

4ij; max
i

hUvij)|j ∈ K)

]
,

i = 1, 2, · · · , m.

(17)

Ã− = (Ṽ−1 , Ṽ−2 , · · · , Ṽ−n ).

where Ṽ−j =
[
(vL−

1j , vL−
2j , vL−

3j , vL−
4j ; hL−

vj ), (vU−
1j , vU−

2j , vU−
3j , vU−

4j ; hU−
vj )

]
, j = 1, 2, ..., n.

5.5. Step 5. Ideal and Anti-Ideal Matrices

The ideal separation matrix is denoted by Equation (18) and the anti-ideal separation
matrix is denoted by Equation (19).

D+ =


dT
(
r̃11,Ṽ+

1
)
+ dT

(
r̃12,Ṽ+

2
)
+ · · ·+ dT

(
r̃1n,Ṽ+

n
)

dT
(
r̃21,V+

1
)
+ dT

(
r̃22,Ṽ+

2
)
+ · · ·+ dT

(
r̃2n,Ṽ+

n
)

...
...

. . .
...

dT
(
r̃m1,Ṽ+

1
)
+ dT

(
r̃m2,Ṽ+

2
)
+ · · ·+ dT

(
r̃mn,Ṽ+

n
)
 (18)

D− =


dT
(
r̃11,Ṽ−1

)
+ dT

(
r̃12,Ṽ−2

)
+ · · ·+ dT

(
r̃1n,Ṽ−n

)
dT
(
r̃21,Ṽ−1

)
+ dT

(
r̃22,Ṽ−2

)
+ · · ·+ dT

(
r̃2n,Ṽ−n

)
...

...
. . .

...
dT
(
r̃m1,Ṽ−1

)
+ dT

(
r̃m2,Ṽ−2

)
+ · · ·+ dT

(
r̃mn,Ṽ−n

)
 (19)

5.6. Step 6. Relative Closeness

The relative closeness of each alternative to the ideal solution is calculated by Equa-
tion (20).

RC(Ai) =
D−i

D+
i + D−i

, i = 1, 2, · · · , m. (20)

where D−i =
n
∑

j=1
dT

(
r̃ij, Ṽ−j

)
and D+

i =
n
∑

j=1
dT

(
r̃ij, Ṽ+

j

)
.

5.7. Step 7. Ranking

The rank of alternatives Ai(i = 1, 2, · · · , m) is achieved by arranging RC(Ai) in
decreasing order, the greater the value RC(Ai), the better the alternative Ai.
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6. GITrF-VIKOR Method

For the fuzzy MCGDM problems, preferences provided by the decision makers are
recorded in fuzzy information. GITrFNs are more applicable and widely used fuzzy
numbers for MCGDM problems. The VIKOR method using GITrFNs consists of the
following steps. Steps 1, 2, 3, and 4 are the same as in the GITrF-TOPSIS method.

6.1. Step 5. Calculation of S and R

In this step, the values of Si and Ri (i = 1, 2, · · · , m) are calculated using
Equations (21) and (22), respectively.

Si =
n

∑
j=1

wj

dV

(
Ṽ+

j , r̃ij

)
dV

(
Ṽ+

j , Ṽ−j
) (21)

Ri = max
j

wj
dV

(
Ṽ+

j , r̃ij

)
dV

(
Ṽ+

j , Ṽ−j
)
 (22)

where wj =
x ˜twj

+y ˜twj
n
∑
j

x ˜twj
+

n
∑
j

y ˜twj

and (x ˜twj
, y ˜twj

) are CoG points of ˜twj.

6.2. Step 6. Compute Q Value

The values Qi, (i = 1, 2, · · · , m) are calculated by Equation (23).

Qi = v
(Si − S∗)
(S− − S∗)

+ (1− v)
(Ri − R∗)
(R− − R∗)

(23)

Here, S∗ = min
i

Si, S− = max
i

Si, R∗ = min
i

Ri and R− = max
i

Ri, where v is intro-

duced as the weight of the strategy of “the majority” of criteria (or ”the maximum group
utility”), here v = 0.5.

6.3. Step 7. Ranking

In this step, ranking of alternatives is performed by sorting the values S, R and Q,
in ascending order, the lower value determines the better alternative.

7. Optimal Robot Selection Process

Assume that four decision makers (DMs) (DM1, DM2, DM3, DM4) of a company
are given the task of best robot selection among five robots (R1, R2, R3, R4, R5). For this
task, DMs consider six criteria, i.e., man–machine interface (C1), programming flexibility
(C2), vendor’s service contact (C3), purchase cost (C4), load capacity (C5) and positioning
accuracy (C6). Among them, C1, C2 and C3 are subjective criteria and C4, C5 and C6 are
objective criteria. Decision makers independently selected best and worst criteria by giving
their preferences using linguistic variables from Table 1 that were recorded in Table 3 and
their weights were calculated using GITrF-BWM (Model 11), and the calculated weights
were aggregated using Equation (13) to have final aggregated weights of criteria recorded
in Table 4.

The preferences of DMs for alternatives with respect to subjective criteria (C1, C2, C3)
were given using Table 2, recorded in Table 5 and aggregated using Equation (12). The rat-
ings of objective criteria (C4, C5, C6) were recorded in Table 6. Normalized ratings of robots
with respect to criteria were calculated using Equations (14) and (15) and were recorded in
Table 7. Weighted normalized ratings were calculated using aggregated weights of criteria
from Table 4 and using normalized ratings of robots with respect to criteria in Table 7 and
were recorded in Table 8. GITrF-PIS and GITrF-NIS were calculated using Equations (16)
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and (17) and were recorded in Table 9; here C1, C2, C3 and C5 are benefit criteria and C4 and
C6 are non-benefit criteria.

Table 3. Decision makers’ preferences for weight calculations.

DM1 p̃21 p̃23 p̃24 p̃25 p̃26 p̃14 p̃34 p̃54 p̃64
WI FI AI FI WI VI FI VI VI

DM2 p̃51 p̃52 p̃53 p̃54 p̃56 p̃13 p̃23 p̃43 p̃63
WI FI AI WI FI VI FI VI VI

DM3 p̃12 p̃13 p̃14 p̃15 p̃16 p̃26 p̃36 p̃46 p̃56
WI WI FI FI AI VI FI FI VI

DM4 p̃51 p̃52 p̃53 p̃54 p̃56 p̃21 p̃31 p̃41 p̃61
AI FI VI FI WI VI WI FI VI

Table 4. Weights of criteria and aggregated weights.

DMs Weights GITrFNs

DM1

w1 [(0.1997, 0.2109, 0.2204, 0.2417; 0.8), (0.1955, 0.2019, 0.2332, 0.2514; 1)]
w2 [(0.2434, 0.2578, 0.2702, 0.2950; 0.8), (0.2308, 0.2462, 0.2857, 0.3064; 1)]
w3 [(0.1410, 0.1472, 0.1569, 0.1769; 0.8), (0.1337, 0.1399, 0.1684, 0.1855; 1)]
w4 [(0.0673, 0.0689, 0.0664, 0.0779; 0.8), (0.0657, 0.0669, 0.0789, 0.0813; 1)]
w5 [(0.1709, 0.1915, 0.2064, 0.2394; 0.8), (0.1583, 0.1782, 0.2241, 0.2561; 1)]
w6 [(0.2008, 0.2107, 0.2205, 0.2419; 0.8), (0.1899, 0.2015, 0.2332, 0.2471; 1)]

DM2

w1 [(0.1994, 0.2105, 0.2199, 0.2410; 0.8), (0.1895, 0.2014, 0.2327, 0.2508; 1)]
w2 [(0.1407, 0.1425, 0.1565, 0.1770; 0.8), (0.1344, 0.1118, 0.1679, 0.1848; 1)]
w3 [(0.0664, 0.0689, 0.0700, 0.0776; 0.8), (0.0649, 0.0670, 0.0742, 0.0809; 1)]
w4 [(0.1994, 0.2105, 0.2198, 0.2368; 0.8), (0.1903, 0.2012, 0.2343, 0.2508; 1)]
w5 [(0.2423, 0.2579, 0.2701, 0.2946; 0.8), (0.2307, 0.2462, 0.2858, 0.3060; 1)]
w6 [(0.1314, 0.1902, 0.2058, 0.2387; 0.8), (0.1577, 0.1778, 0.2241, 0.2491; 1)]

DM3

w1 [(0.2595, 0.2745, 0.2910, 0.3306; 0.8), (0.2422, 0.2593, 0.3161, 0.3475; 1)]
w2 [(0.2496, 0.2646, 0.2833, 0.3282; 0.8), (0.2297, 0.2476, 0.3126, 0.3444; 1)]
w3 [(0.2024, 0.2101, 0.2222, 0.2553; 0.8), (0.1905, 0.1996, 0.2433, 0.2695; 1)]
w4 [(0.1913, 0.2021, 0.2135, 0.2500; 0.8), (0.1761, 0.1952, 0.2354, 0.2660; 1)]
w5 [(0.2326, 0.2626, 0.2808, 0.3260; 0.8), (0.2067, 0.2385, 0.3099, 0.3437; 1)]
w6 [(0.0830, 0.0877, 0.0909, 0.1046; 0.8), (0.0806, 0.0841, 0.0969, 0.1111; 1)]

DM4

w1 [(0.0749, 0.0778, 0.0803, 0.0871; 0.8), (0.0738, 0.0758, 0.0850, 0.0973; 1)]
w2 [(0.1896, 0.2124, 0.2297, 0.2726; 0.8), (0.1746, 0.1970, 0.2511, 0.2857; 1)]
w3 [(0.1060, 0.1114, 0.1152, 0.1295; 0.8), (0.1021, 0.1069, 0.1225, 0.1369; 1)]
w4 [(0.1584, 0.1672, 0.1802, 0.2037; 0.8), (0.1541, 0.1590, 0.1932, 0.2129; 1)]
w5 [(0.2680, 0.2862, 0.3008, 0.3293; 0.8), (0.2556, 0.2722, 0.3192, 0.3492; 1)]
w6 [(0.2248, 0.2374, 0.2488, 0.2748; 0.8), (0.2124, 0.2253, 0.2691, 0.2864; 1)]

Aggregate

w1 [(0.1834, 0.1934, 0.2029, 0.2251; 0.8), (0.1753, 0.1846, 0.2168, 0.2368; 1)]
w2 [(0.2058, 0.2193, 0.2349, 0.2682; 0.8), (0.1924, 0.2007, 0.2543, 0.2803; 1)]
w3 [(0.1290, 0.1344, 0.1411, 0.1598; 0.8), (0.1228, 0.1284, 0.1521, 0.1682; 1)]
w4 [(0.1541, 0.1622, 0.1700, 0.1921; 0.8), (0.1466, 0.1556, 0.1855, 0.2028; 1)]
w5 [(0.2285, 0.2496, 0.2645, 0.2973; 0.8), (0.2128, 0.2338, 0.2848, 0.3138; 1)]
w6 [(0.1600, 0.1815, 0.1915, 0.2150; 0.8), (0.1602, 0.1722, 0.2058, 0.2234; 1)]
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Table 5. Rating of robots under subjective criteria expressed in linguistic variables.

Criteria Rotots Decision Makers

D1 D2 D3 D4

C1

R1 M M G VG
R2 M G M G
R3 G M VG MG
R4 VG VG MG P
R5 MG MG G G

C2

R1 G P G MG
R2 VG G VG G
R3 G M VG VG
R4 P MG G P
R5 MG VG MG G

C3

R1 M M G G
R2 G M VG MG
R3 G G G VG
R4 VG VG MG G
R5 MP MG P MP

Table 6. Ratings of robots with respect to objective criteria.

Criteria Rotots Rating of Criteria

C4

R1 [(72.25, 72.50, 72.70, 73.00; 0.8), (72.00, 72.25, 73.50, 74.00; 1)]
R2 [(69.00, 69.50, 70.00, 71.00; 0.8), (68.50, 68.80, 71.50, 72.00; 1)]
R3 [(67.50, 68.00, 69.00, 69.50; 0.8), (67.00, 67.30, 70.00, 70.30; 1)]
R4 [(70.00, 70.25, 70.65, 71.00; 0.8), (69.75, 70.00, 71.50, 72.00; 1]
R5 [(68.50, 69.00, 70.00, 70.75; 0.8), (68.00, 68.50, 71.25, 72.25; 1)]

C5

R1 [(48.50, 49.00, 50.00, 50.50; 0.8), (48.00, 48.25, 51.00, 52.00; 1)]
R2 [(44.00, 44.50, 45.00, 45.50; 0.8), (43.50, 43.80, 46.00, 46.50; 1)]
R3 [(43.50, 44.00, 45.00, 45.50; 0.8), (43.00, 43.30, 47.00, 47.50; 1)]
R4 [(45.00, 45.50, 46.00, 47.00; 0.8), (44.50, 45.00, 47.50, 48.50; 1)]
R5 [(47.50, 48.00, 48.50, 49.00; 0.8), (46.50, 47.50, 49.25, 50.50; 1)]

C6

R1 [(0.115, 0.120, 0.130, 0.135; 0.8), (0.100, 0.110, 0.140, 0.142; 1)]
R2 [(0.150, 0.157, 0.165, 0.170; 0.8), (0.140, 0.145, 0.180, 0.185; 1)]
R3 [(0.162, 0.165, 0.170, 0.175; 0.8), (0.155, 0.160, 0.185, 0.190; 1)]
R4 [(0.130, 0.136, 0.145, 0.151; 0.8), (0.120, 0.125, 0.155, 0.166; 1)]
R5 [(0.173, 0.178, 0.182, 0.189; 0.8), (0.168, 0.172, 0.190, 0.199; 1)]

Table 7. Normalized decision matrix.

Criteria Robots Normalized Rating Value of Criteria

C1

R1 [(0.6926, 0.7391, 0.8067, 0.8292; 0.8), (0.6257, 0.7049, 0.8415, 0.8934; 1)]
R2 [(0.6475, 0.6926, 0.7773, 0.8060; 0.8), (0.5683, 0.6503, 0.8197, 0.8852; 1)]
R3 [(0.7602, 0.7992, 0.8668, 0.8900; 0.8), (0.6967, 0.7650, 0.9016, 0.9508; 1)]
R4 [(0.7193, 0.7548, 0.7930, 0.8081; 0.8), (0.6776, 0.7350, 0.8142, 0.8443; 1)]
R5 [(0.7828, 0.8128, 0.8975, 0.9276; 0.8), (0.7104, 0.7705, 0.9399, 1.0000; 1)]

C2

R1 [(0.5844, 0.6148, 0.6821, 0.7075; 0.8), (0.5228, 0.5812, 0.7157, 0.7690; 1)]
R2 [(0.8782, 0.9137, 0.9530, 0.9645; 0.8), (0.8376, 0.8934, 0.9746, 1.0000; 1)]
R3 [(0.7817, 0.8217, 0.8648, 0.8782; 0.8), (0.7360, 0.7995, 0.8883, 0.9188; 1)]
R4 [(0.4080, 0.4385, 0.4981, 0.5235; 0.8), (0.3503, 0.4086, 0.5279, 0.5812; 1)]
R5 [(0.7690, 0.7982, 0.8610, 0.8832; 0.8), (0.7132, 0.7665, 0.8934, 0.9365; 1)]
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Table 7. Cont.

Criteria Robots Normalized Rating Value of Criteria

C3

R1 [(0.6061, 0.6483, 0.7276, 0.7545; 0.8), (0.5320, 0.6087, 0.7673, 0.8286; 1)]
R2 [(0.7116, 0.7481, 0.8114, 0.8331; 0.8), (0.6522, 0.7161, 0.8440, 0.8900; 1)]
R3 [(0.8427, 0.8772, 0.9329, 0.9501; 0.8), (0.7903, 0.8491, 0.9616, 1.0000; 1)]
R4 [(0.8510, 0.8843, 0.9277, 0.9418; 0.8), (0.8082, 0.8619, 0.9514, 0.9795; 1)]
R5 [(0.4143, 0.4399, 0.5115, 0.5422; 0.8), (0.3504, 0.4041, 0.5473, 0.6061; 1)]

C4

R1 [(0.9178, 0.9216, 0.9241, 0.9273; 0.8), (0.9054, 0.9116, 0.9273, 0.9306; 1)]
R2 [(0.9437, 0.9571, 0.9640, 0.9710; 0.8), (0.9306, 0.9371, 0.9738, 0.9781; 1)]
R3 [(0.9640, 0.9710, 0.9853, 0.9926; 0.8), (0.9531, 0.9571, 0.9955, 1.0000; 1)]
R4 [(0.9437, 0.9483, 0.9537, 0.9571; 0.8), (0.9306, 0.9371, 0.9571, 0.9606; 1)]
R5 [(0.9470, 0.9571, 0.9710, 0.9781; 0.8), (0.9273, 0.9404, 0.9781, 0.9853; 1)]

C5

R1 [(0.9327, 0.9423, 0.9615, 0.9712; 0.8), (0.9231, 0.9279, 0.9808, 1.0000; 1)]
R2 [(0.8462, 0.8558, 0.8654, 0.8750; 0.8), (0.8365, 0.8423, 0.8846, 0.8942; 1)]
R3 [(0.8365, 0.8462, 0.8654, 0.8750; 0.8), (0.8269, 0.8327, 0.9038, 0.9135; 1)]
R4 [(0.8654, 0.8750, 0.8846, 0.9038; 0.8), (0.8558, 0.8654, 0.9135, 0.9327; 1)]
R5 [(0.9135, 0.9231, 0.9327, 0.9423; 0.8), (0.8942, 0.9135, 0.9471, 0.9712; 1)]

C6

R1 [(0.7407, 0.7692, 0.8333, 0.8696; 0.8), (0.7042, 0.7143, 0.9091, 1.0000; 1)]
R2 [(0.5882, 0.6061, 0.6369, 0.6667; 0.8), (0.5405, 0.5556, 0.6897, 0.7143; 1)]
R3 [(0.5714, 0.5882, 0.6061, 0.6173; 0.8), (0.5263, 0.5405, 0.6250, 0.6452; 1)]
R4 [(0.6623, 0.6897, 0.7353, 0.7692; 0.8), (0.6024, 0.6452, 0.8000, 0.8333; 1)]
R5 [(0.5291, 0.5495, 0.5618, 0.5780; 0.8), (0.5025, 0.5263, 0.5814, 0.5952; 1)]

Table 8. Weighted normalized decision matrix.

Criteria Robots Weighted Normalized Rating Value of Criteria

C1

R1 [(0.1270, 0.1430, 0.1637, 0.1867; 0.8), (0.1097, 0.1301, 0.1824, 0.2115; 1)]
R2 [(0.1187, 0.1340, 0.1577, 0.1814; 0.8), (0.0996, 0.1200, 0.1777, 0.2096; 1)]
R3 [(0.1394, 0.1546, 0.1759, 0.2003; 0.8), (0.1221, 0.1412, 0.1954, 0.2251; 1)]
R4 [(0.1319, 0.1460, 0.1609, 0.1819; 0.8), (0.1187, 0.1357, 0.1765, 0.1999; 1)]
R5 [(0.1435, 0.1572, 0.1821, 0.2088; 0.8), (0.1245, 0.1422, 0.2037, 0.2368; 1)]

C2

R1 [(0.1203, 0.1349, 0.1602, 0.1897; 0.8), (0.1006, 0.1166, 0.1820, 0.2156; 1)]
R2 [(0.1807, 0.2004, 0.2239, 0.2587; 0.8), (0.1611, 0.1793, 0.2479, 0.2803; 1)]
R3 [(0.1609, 0.1802, 0.2032, 0.2355; 0.8), (0.1416, 0.1604, 0.2259, 0.2576; 1)]
R4 [(0.0840, 0.0962, 0.1170, 0.1404; 0.8), (0.0674, 0.0820, 0.1343, 0.1629; 1)]
R5 [(0.1583, 0.1751, 0.2023, 0.2369; 0.8), (0.1372, 0.1538, 0.2272, 0.2625; 1)]

C3

R1 [(0.0782, 0.0871, 0.1026, 0.1206; 0.8), (0.0653, 0.0781, 0.1167, 0.1394; 1)]
R2 [(0.0918, 0.1005, 0.1145, 0.1332; 0.8), (0.0801, 0.0919, 0.1284, 0.1497; 1)]
R3 [(0.1087, 0.1179, 0.1316, 0.1519; 0.8), (0.0970, 0.1090, 0.1463, 0.1682; 1)]
R4 [(0.1097, 0.1188, 0.1309, 0.1505; 0.8), (0.0992, 0.1106, 0.1447, 0.1648; 1)]
R5 [(0.0534, 0.0591, 0.0722, 0.0867; 0.8), (0.0430, 0.0519, 0.0832, 0.1020; 1)]

C4

R1 [(0.1414, 0.1495, 0.1571, 0.1781; 0.8), (0.1327, 0.1418, 0.1720, 0.1887; 1)]
R2 [(0.1454, 0.1552, 0.1639, 0.1865; 0.8), (0.1364, 0.1458, 0.1806, 0.1983; 1)]
R3 [(0.1486, 0.1575, 0.1675, 0.1907; 0.8), (0.1397, 0.1489, 0.1846, 0.2028; 1)]
R4 [(0.1454, 0.1538, 0.1621, 0.1839; 0.8), (0.1364, 0.1458, 0.1775, 0.1948; 1)]
R5 [(0.1459, 0.1552, 0.1650, 0.1879; 0.8), (0.1359, 0.1463, 0.1814, 0.1998; 1)]

C5

R1 [(0.2131, 0.2352, 0.2544, 0.2887; 0.8), (0.1965, 0.2169, 0.2793, 0.3138; 1)]
R2 [(0.1933, 0.2136, 0.2289, 0.2602; 0.8), (0.1780, 0.1969, 0.2519, 0.2806; 1)]
R3 [(0.1911, 0.2112, 0.2289, 0.2602; 0.8), (0.1760, 0.1947, 0.2574, 0.2866; 1)]
R4 [(0.1977, 0.2184, 0.2340, 0.2687; 0.8), (0.1821, 0.2023, 0.2601, 0.2926; 1)]
R5 [(0.2087, 0.2304, 0.2467, 0.2802; 0.8), (0.1903, 0.2135, 0.2697, 0.3047; 1)]
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Table 8. Cont.

Criteria Robots Weighted Normalized Rating Value of Criteria

C6

R1 [(0.1185, 0.1396, 0.1596, 0.1870; 0.8), (0.1128, 0.1230, 0.1871, 0.2234; 1)]
R2 [(0.0941, 0.1100, 0.1220, 0.1433; 0.8), (0.0866, 0.0957, 0.1419, 0.1596; 1)]
R3 [(0.0914, 0.1068, 0.1161, 0.1327; 0.8), (0.0843, 0.0931, 0.1286, 0.1441; 1)]
R4 [(0.1060, 0.1252, 0.1408, 0.1654; 0.8), (0.0965, 0.1111, 0.1647, 0.1862; 1)]
R5 [(0.0847, 0.0997, 0.1076, 0.1243; 0.8), (0.0805, 0.0906, 0.1197, 0.1330; 1)]

Table 9. GITrF-PIS and GITrF-NIS for criteria.

Criteria GITrF-PIS/GITrF-NIS Normalized Rating Value of Criteria

C1
GITrF-PIS [(0.1435, 0.1572, 0.1821, 0.2088; 0.8), (0.1245, 0.1422, 0.2037, 0.2368; 1)]
GITrF-NIS [(0.1187, 0.1340, 0.1577, 0.1814; 0.8), (0.0996, 0.1200, 0.1765, 0.1999; 1)]

C2
GITrF-PIS [(0.1807, 0.2004, 0.2239, 0.2587; 0.8), (0.1611, 0.1793, 0.2479, 0.2803; 1)]
GITrF-NIS [(0.0840, 0.0962, 0.1170, 0.1404; 0.8), (0.0674, 0.0820, 0.1343, 0.1629; 1)]

C3
GITrF-PIS [(0.1097, 0.1188, 0.1316, 0.1519; 0.8), (0.0992, 0.1106, 0.1463, 0.1682; 1)]
GITrF-NIS [(0.0534, 0.0591, 0.0722, 0.0867; 0.8), (0.0430, 0.0519, 0.0832, 0.1020; 1)]

C4
GITrF-PIS [(0.1414, 0.1495, 0.1571, 0.1781; 0.8), (0.1327, 0.1418, 0.1720, 0.1887; 1)]
GITrF-NIS [(0.1486, 0.1575, 0.1675, 0.1907; 0.8), (0.1397, 0.1489, 0.1846, 0.2028; 1)]

C5
GITrF-PIS [(0.2131, 0.2352, 0.2544, 0.2887; 0.8), (0.1965, 0.2169, 0.2793, 0.3138; 1)]
GITrF-NIS [(0.1911, 0.2112, 0.2289, 0.2602; 0.8), (0.1760, 0.1947, 0.2519, 0.2806; 1)]

C6
GITrF-PIS [(0.0847, 0.0997, 0.1076, 0.1243; 0.8), (0.0805, 0.0906, 0.1197, 0.1330; 1)]
GITrF-NIS [(0.1185, 0.1396, 0.1596, 0.1870; 0.8), (0.1128, 0.1230, 0.1871, 0.2234; 1)]

7.1. GITrF-TOPSIS Results

The ideal separation matrix (D+), anti ideal separation matrix (D−), relative closeness
(RC) and robot ranking are presented in Table 10. Moreover, the ranking order of individual
DMs and the aggregated ranking order of the GITrF-TOPSIS method are recorded in
Table 11 and pictured in Figure 2.

Figure 2. Decision makers’ ranking and aggregated ranking of robots using the GITrF-
TOPSIS method.
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Table 10. D+, D−, RC and ranking of the GITrF-TOPSIS method.

D+ D− RC Ranking

0.1485 0.1038 0.4114 4
0.0795 0.1728 0.6850 2
0.0613 0.1911 0.7572 1
0.1620 0.0903 0.3579 5
0.0871 0.1653 0.6549 3

Table 11. Ranking results of the GITrF-TOPSIS method.

GITrF-TOPSIS Ranking

DM1 R3 � R2 � R5 � R1 � R4
DM2 R5 � R4 � R2 � R3 � R1
DM3 R3 � R1 � R2 � R4 � R5
DM4 R3 � R5 � R2 � R1 � R4

Aggregated R3 � R2 � R5 � R1 � R4

7.2. GITrF-VIKOR Results

Si, Ri and Qi were calculated using Equations (21)–(23) and were recorded in Table 12.
Moreover, the ranking order of individual DMs and the aggregated ranking order of the
GITrF-VIKOR method were recorded in Table 13 and pictured in Figure 3.

Figure 3. Decision makers’ ranking and aggregated ranking of robots using the GITrF-
VIKOR method.

Table 12. Si, Ri, Qi and ranking of the GITrF-VIKOR method.

Si Ri Qi Ranking

0.4760 0.1749 0.7099 4
0.5301 0.1693 0.7058 3
0.4381 0.1689 0.5176 2
0.6130 0.1761 1 5
0.3578 0.1505 0 1
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Table 13. Ranking results of the GITrF-VIKOR method.

GITrF-VIKOR Ranking

DM1 R3 � R5 � R4 � R1 � R2
DM2 R5 � R4 � R2 � R3 � R1
DM3 R1 � R4 � R3 � R2 � R5
DM4 R5 � R1 � R3 � R2 � R4

Aggregated R5 � R3 � R2 � R1 � R4

8. Sensitivity Analysis

Sensitivity analysis was performed to test how the ranking order of an MCDM method
is sensitive to the variation of the weights of criteria. Sensitivity analysis was performed
first by adding 0.1 to each criterion and then subtracting 0.1 from each criterion separately
and adjusting other criteria accordingly to test the results with little variation in the weights
and see the rank reversal of the two methods, i.e., GITrF-TOPSIS and GITrF-VIKOR. The six
cases of sensitivity analysis of the GITrF-TOPSIS method are shown in Figure 4a–f, where
the higher value determines the better alternative. Here, the deviations of values from
the aggregated values are noted. The results show that GITrF-TOPSIS was more sensitive
with respect to criteria c2 and c3 as shown in Figures 5 and 6. The six cases of sensitivity
analysis of the GITrF-VIKOR method are shown in Figure 7a–f, where the lower value
determines the better alternative. Here, the deviations of values from the aggregated values
are noted. The results show that GITrF-VIKOR was more sensitive with respect to criteria
c2, c3, c5, and c6 as shown in Figures 8 and 9. It can be noted that the GITrF-VIKOR method
provided more rank reversal behavior for small variations in criteria values, whereas
the GITrF-TOPSIS method had less rank reversal in this scenario. The higher sensitivity
and additional rank reversal behavior of the GITrF-VIKOR method is due to the distance
formula (Equation (5)) used for the method. Thus, the overall sensitivity results show
that the GITrF-TOPSIS method is more stable with respect to criteria as compared to the
GITrF-VIKOR method.
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Figure 4. Sensitivity analysis with respect to criteria for the GITrF-TOPSIS method.

Figure 5. Sensitivity analysis of the GITrF-TOPSIS method by increased weights.

Figure 6. Sensitivity analysis of the GITrF-TOPSIS method by decreased weights.
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Figure 7. Sensitivity analysis with respect to criteria for the GITrF-VIKOR method.

Figure 8. Sensitivity analysis of the GITrF-VIKOR method by increased weights.
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Figure 9. Sensitivity analysis of the GITrF-VIKOR method by decreased weights.

9. Discussion

Industrial robot selection is a very difficult task in this competitive marketplace.
For this selection process, deciding weights for criteria is an important factor to consider.
GITrFBWM is a robust and more consistent MCDM method that assigns weights to the crite-
ria based on preferences provided by the decision makers by utilizing their knowledge struc-
tures, experience, and expertise. For ranking of robots, the GITrF-TOPSIS and GITrF-VIKOR
methods were used, and their results were compared. This is a group decision-making
process that provides slightly different results for both methods. The MCDM/MCGDM
method that provides less rank reversal for a small variation in criteria weights is called a
stable method. Sensitivity analysis showed that the GITrF-TOPSIS method is more stable
and reliable for this selection process. The proposed hybrid methodologies GITrFBWM-
GITrF-TOPSIS and GITrFBWM-GITrF-VIKOR are general methodologies that are not only
useful for this proposed problem but can be applied to many similar types of selection pro-
cesses.

10. Conclusions

The classical methods almost fail to convey the vagueness and imprecision of the
linguistic assessment. Linguistic terms are used to assist experts in providing their opinions
and then convert these terms to GITrFNs. Robot selection MCGDM problems were dis-
cussed with regards to two hybrid methodologies: (1) GITrF-BWM with GITrF-TOPSIS and
(2) GITrF-BWM with GITrF-VIKOR. GITrFWs are derived using GITrF-BWM, and the rank-
ing of the robots was performed using these weights along with the GITrF-TOPSIS and
GITrF-VIKOR methods separately. There is uncertainty and vagueness in real problems as
human thinking is fuzzy, and thus such situations are modeled and handled using fuzzy set
theory. In this research, GITrFNs were used to obtain more convincing and reliable results,
as GITrFNs cover a wide area of uncertainty and applications. GITrF-BWM gives more
consistent and reliable weights of criteria due to a lower consistency ratio that is a vital
part of any MCDM problem. The ranking results for each decision maker and aggregated
ranking results were presented for each methodology. Sensitivity analysis was performed
to see the most critical weights for this problem. More sensitive criteria need more attention
as compared to less sensitive criteria; the results show that the GITrF-TOPSIS method is
more stable with respect to the criteria as compared to the GITrF-VIKOR method. Direct
opinion-based decisions can be biased, and thus hybrid MCDM/MCGDM methodologies
are needed. The proposed hybrid methodologies remedy biasess in decision processes. This
research also classifies the sensitivity behavior of the proposed methods. These methodolo-
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gies are general and can be applied to any criteria-based selection problem, and especially
to solve social, economic, waste management, and engineering problems.

The proposed hybrid MCGDM methodologies can be applied to different manage-
rial and engineering applications, for example hospital site selection, recruitment selec-
tion, project selection, etc. In the future, We will integrate GITrFBWM with other fuzzy and
classical MCDM/MCGDM methods such as fuzzy EDAS, fuzzy CODAS, etc., and will con-
duct a comparative study and analysis for different social, economic, waste management,
and engineering applications.
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BWM Best-worst method
COPRAS-G COmplex PRoportional ASsessment of alternatives with Grey relations
CoG Center of gravity
DM Decision maker
ELECTRE ELimination Et Choice Translating REality
FAHP Analytic hierarchy process
GITrFNs Generalized interval-valued trapezoidal fuzzy numbers
GITrFWs Generalized interval-valued trapezoidal fuzzy weights
GITrF-BWM Generalized interval-valued trapezoidal fuzzy best-worst method
GITrFP Generalized interval-valued trapezoidal fuzzy preference
GITrF-RC Generalized interval-valued trapezoidal fuzzy reference comparison
GITrF-PIS Generalized interval-valued trapezoidal fuzzy positive-ideal solution
GITrF-NIS Generalized interval-valued trapezoidal fuzzy negative-ideal solution
GMIR Graded mean integration representation
MCDM Multi-criteria decision making
MCGDM Multiple criteria group decision-making
TOPSIS Technique for Order Preference by Similarity to the Ideal Solution
TPOP Technique of Precise Order Preferences
VIKOR VIsekriterijumska optimizacija i KOmpromisno Resenje

References
1. Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353.
2. Bellman, R.; Zadeh, L. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, B141–B273.
3. Wu, P.; Liu, S.; Zhou, L.; Chen, H. A fuzzy group decision making model with trapezoidal fuzzy preference relations based on

compatibility measure and COWGA operator. Appl. Intell. 2018, 48, 46–67.
4. Wu, P.; Wu, Q.; Zhou, L.; Chen, H.; Zhou, H. A consensus model for group decision making under trapezoidal fuzzy numbers

environment. Neural Comput. Appl. 2019, 31, 377–394.
5. Wu, P.; Zhou, L.; Zheng, T.; Chen, H. A fuzzy group decision making and its application based on compatibility with multiplicative

trapezoidal fuzzy preference relations. Int. J. Fuzzy Syst. 2017, 19, 683–701.



Symmetry 2021, 13, 839 21 of 22

6. Luo, M.; Long, H. Picture Fuzzy Geometric Aggregation Operators Based on a Trapezoidal Fuzzy Number and Its Application.
Symmetry 2021, 13, 119.

7. Wei, S.H.; Chen, S.M. Fuzzy risk analysis based on interval-valued fuzzy numbers. Expert Syst. Appl. 2009, 36, 2285–2299.
8. Chen, S.H. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst. 1985, 17, 113–129.
9. Wei, S.H.; Chen, S.M. A new similarity measure between interval-valued trapezoidal fuzzy numbers based on geometric distance

and the center-of-gravity-points. In Proceedings of the IEEE 2007 International Conference on Machine Learning and Cybernetics,
Hong Kong, China, 19–22 August 2007; Volume 3, pp. 1412–1417.

10. Liu, P. A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal
fuzzy numbers. Expert Syst. Appl. 2011, 38, 1053–1060.

11. Liu, P.; Jin, F. A multi-attribute group decision-making method based on weighted geometric aggregation operators of interval-
valued trapezoidal fuzzy numbers. Appl. Math. Model. 2012, 36, 2498–2509.

12. Ebrahimnejad, A. A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy
numbers. Appl. Soft Comput. 2014, 19, 171–176.

13. Sulaiman, T.; Bulut, H.; Baskonus, H. On the exact solutions to some system of complex nonlinear models. Appl. Math. Nonlinear
Sci. 2020, 6, 29–42.

14. Yu, J. A Model Study Based on Social Network Relational Dimensions and Structural Dimensions. Appl. Math. Nonlinear Sci.
2020, 5, 121–128.

15. Alghamd, M.; Alshaery, A. Mathematical Algorithm for Solving Two–Body Problem. Appl. Math. Nonlinear Sci. 2020, 5, 217–228.
16. Li, R.; Sun, T. Assessing factors for designing a successful B2C E–Commerce website using fuzzy AHP and TOPSIS–Grey

methodology. Symmetry 2020, 12, 363.
17. de Assis, R.; Pazim, R.; Malavazi, M.; Petry, P.d.C.; de Assis, L.; Venturino, E. A mathematical model to describe the herd

behaviour considering group defense. Appl. Math. Nonlinear Sci. 2020, 5, 11–24.
18. Zhu, P.; Fan, Q.; Zhu, J. Empirical Analysis on Environmental Regulation Performance Measurement in Manufacturing Industry:

A Case Study of Chongqing, China. Appl. Math. Nonlinear Sci. 2020, 5, 25–34.
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