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Abstract: We examined the basic conservation laws for diffeomorphism symmetry in the context of
spontaneous diffeomorphism and local Lorentz-symmetry breaking. The conservation laws were
used as constraints on a generic series of terms in an expansion around a flat background. We found
all such terms for a two-tensor coupling to cubic order in the metric and tensor field fluctuations. The
results are presented in a form that can be used for phenomenological calculations. One key result is
that if we preserve the underlying diffeomorphism symmetry in a spontaneous-symmetry breaking
scenario, one cannot decouple the two-tensor fluctuations from the metric fluctuations at the level of
the action, except in special cases of the quadratic actions.

Keywords: Lorentz violation; gravity; spontaneous-symmetry breaking

1. Introduction

The diffeomorphism, the operation of mapping points on a spacetime manifold, is
a fundamental symmetry transformation in gravitational theories of physics. Together with
local Lorentz transformations in the tangent space at each point, these comprise the gauge
symmetry groups that allow general relativity (GR) to be formulated as a local gauge theory
of gravitation [1]. Since local gauge symmetries can be broken in quantum field theories,
for instance, via spontaneous symmetry breaking, it is natural to question whether the same
could occur for local Lorentz and diffeomorphism symmetries [2]. Much recent work has
been devoted to the possibility of spacetime-symmetry breaking, and its possible detection
in sensitive tests [3–7]. Among the theoretical mechanisms for this symmetry breaking is we
have elegant spontaneous symmetry breaking, in which the underlying action maintains
the local symmetries, but due to the presence of a potential energy function with a nonzero
minimum for a tensor field, the solutions of the model break this symmetry.

A systematic approach to studying the theory and phenomenology of hypothetical
diffeomorphism and local Lorentz violation is the use of effective field theory [8–10]. In this
approach, generic symmetry breaking terms are added to the action of general relativity
and the standard model [11]. These terms can generally be written using coordinate invari-
ant contractions of background tensor fields and gravitational or matter field operators.
The imposition of perfect symmetry occurs when these background tensor fields vanish,
and any statistically significant nonzero value for their components would indicate a break-
ing of diffeomorphism and local Lorentz symmetry. The use of a standard Sun-centered
coordinate system to express the experimental measurements of these background coef-
ficients allows cross comparisons between a wide variety of tests [4]. For example, the
results of time-delay VLBI measurements in the solar system already limited the coefficient
s00 that describes the variation of the speed of gravity compared to light at parts in 105 [12],
well beyond the initial constraints obtainable from the first gravitational wave observation.
These measurements were subsequently improved from the simultaneous observations
of electromagnetic waves and gravitational waves [13]. In both tests, the same set of
coefficients sµν controls the deviation from GR, at least in the lowest order description of
the effective field theory framework [14–17].
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To date, much of the development of effective field theory approaches to diffeomor-
phism and Lorentz breaking have focused on the weak-field regime, in which the spacetime
metric can be expanded around a flat background [15,18,19]. For many measurements, it is
appropriate to use this limit [20–25]. However, it is of importance to extend results beyond
this level, and some work already exists in this regard [26–34]. A generic action quadratic
in the metric fluctuations hµν has already been constructed to describe any Lorentz vio-
lation that can be written in the form L ∼ hK̂h, where K̂ contains arbitrary coefficients
and any number of partial derivatives [15,17,35]. This form assumes that the coefficients
are constant and the fluctuation around their background values can be eliminated from
the action by inserting their solutions from the field equations. The class of models in which
this “decoupling” is possible has been studied in various toy models with vectors and ten-
sors [36–38]. However, a full study remains incomplete at higher order in small fluctuations
hµν around a flat background.

We started the investigation in this work of higher-order terms in the weak-field
expansion around a flat background. A general cubic action is constructed for the case of
two-tensor couplings sµν under the assumption of spontaneous-symmetry breaking. Using
an expansion around the background or vacuum values, we show that when proceeding
to cubic order in the action, terms that include the fluctuations s̃µν are needed for proper
adherence to the underlying diffeomorphism symmetry. Thus, one cannot generally
decouple the fluctuations from the metric fluctuations at the level of the action to cubic and
higher order, in contrast to past assumptions about the quadratic order terms [15]. We also
show that these terms can be matched to a general covariant version of the effective field
theory at the second and higher order in sµν [31,39].

The paper is organized as follows. First, we consider the terms originally proposed
in Reference [11], and argue for the inclusion of dynamical terms for the fluctuations
in Section 2. In Section 3, we perform a general construction of all possible terms in the
quadratic and cubic order Lagrange densities. Then, we discuss the match to “covariant”
terms in Section 4. In Section 5, we display the field equations resulting from the general
action. Finally, we summarize in Section 6, and comment on generalizations of this work.
We adopt natural units in this work, and conventions in past articles [11,15].

2. Background on the Action

The observer covariant form of the action for the effective field theory framework
in the gravity sector is:

S = 1
16πGN

∫
d4x
√
−g
(
(1− u)R + sαβRαβ + tαβγδRαβγδ

)
+ S′, (1)

where tαβγδ, sαβ, and u are the coefficient fields for Lorentz violation, controlling the size
of the mass dimension 4 (M4) Lorentz-violating terms [11] (the gravitational constant GN
has the mass dimension M−2). The term S′ contains additional dynamical contributions to
the coefficients, should the origin of the symmetry breaking be spontaneous.

In the spontaneous symmetry breaking scenario, the following expansions are used:

gαβ = ηαβ + hαβ,

u = u + ũ,

sαβ = sαβ + s̃αβ, (2)

tαβγδ = tαβγδ + t̃αβγδ.

The vacuum expectation value for the coefficients are denoted with bars, for ex-
ample, for sαβ it is 〈sαβ〉 = sαβ, and we assume the constancy of these coefficients (e.g.,
∂µsαβ = 0). A flat background spacetime metric is assumed so that ηαβ is constant in Carte-
sian coordinates and we assume that the partial derivatives of sαβ vanish to avoid global
energy–momentum conservation violation [15]. From here on, we use the flat metric ηαβ

and its inverse ηαβ to raise and lower indices on quantities unless specified. Note that
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converting expressions from covariant form to linear, quadratic, cubic or beyond, must
include the appropriate use of (2) [40]. For example, for the metric inverse:

gαβ = ηαβ − ηαγηβδhγδ + ηαγηεδηβζ hγδhεζ + O(h3),

= ηαβ − hαβ + hαγh β
γ + O(h3), (3)

where in the second line it is understood that the indices are raised and lowered with
the Minkowski metric.

Much work has been done by assuming a quadratic order and “decoupled” version of
(1). This implies that only the vacuum values of the coefficients sαβ, tαβγδ, and u contribute
to the gravitational effects of Lorentz violation in the weak-field limit. The Lagrange
density for the gravity sector in this limit, up to overall constant scalings, can be written as

L = 1
4κ (−hαβGαβ + sαβhγδGαγβδ), (4)

with κ = 8πGN and where the Einstein curvature tensor Gµν and the curvature double dual
Gαγβδ are linear order in hµν. Despite the lack of fluctuations ũ, s̃, t̃ in the second term, this
remains invariant under linearized gauge transformations of hµν. Thus, the fluctuations
of the coefficients ũ, s̃αβ, and t̃αβγδ are assumed to have been decoupled via their field
equations. The latter process involves assumptions on the dynamics in S′ [15], which limits
the class of possible models included [38]. On the other hand, (4) represents the simplest
limit in which the focus is on the effects acting on only the known gravitational degrees of
freedom in hµν, thereby invoking Occam’s razor for the already ambitious suggestion of
Lorentz violation.

We note that the coefficients tαβγδ also do not appear in the quadratic action (4). The
fact that this occurs can be viewed as a consequence of the assumptions on the dynamics of
the coefficients that leads to the decoupled form of (4). Alternatively, (4) can be derived by
considering all possible operators in a general quadratic action of the form hK∂∂...h [17],
and then truncating the expansion to only mass dimension 4 coefficients for Lorentz
violation. Either way, a deeper understanding of why the tαβγδ coefficients vanish in this
limit represents a statement of the “t-puzzle” [41]. While alternative covariant actions have
been countenanced leading to physical effects of tαβγδ [28,30,34], so it remains unexplained
why it does not occur in (4).

In this work, we include the fluctuation terms so that we relax the assumptions made
in (4), and thus consider a more general version of S′. To include the generality of possible
s̃µν dynamics, we posit all possible kinetic, potential, and coupling terms with the constraint
that we only consider terms in the Lagrange density with no higher than second order
terms in derivatives, and first-order terms in the vacuum coefficients sµν. We will attempt
here the sµν case, however, other coefficients can similarly be accommodated.

3. General Construction of Lagrange Density

First, we start with the quadratic action terms. These Lagrange density terms, discard-
ing those equivalent by partial integration, are constructed from scalar density contractions
of the following:

L(2) ⊃ All contractions of {hαβ∂γ∂δhεζ , sαβhγδ∂ε∂ζ hηθ , s̃αβ∂γ∂δ s̃εζ , s̃αβ∂γ∂δhεζ ,

sαβ s̃γδ∂ε∂ζ hηθ , sαβ s̃γδ∂ε∂ζ s̃ηθ}. (5)

In addition, there are potential-type terms that are dealt with separately below. We
note that the form of the terms considered in (5) includes, in the second set of terms∼sh∂∂h,
the general structure of the Lorentz-violating terms considered in the quadratic Lagrangian
construction of Ref. [17], and it will include the general relativity terms from ∼h∂∂h. We
truncate the series in this work by considering terms of second order in derivatives, though
the pattern could be generalized to accommodate higher derivative terms.
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For the cubic terms in the action, the construction follows similarly by including
all possible terms cubic in hαβ, or quadratic in hαβ and linear in s̃αβ, etc. We truncate
the expansion to leading order in the vacuum values sab, since these terms will be of
primary interest for phenomenology. The structure of these terms, again discarding those
equivalent by integration by parts, is:

L(3) ⊃ All Contractions of {hαβhγδ∂ε∂ζ hηθ , hαβ∂γhδε∂ζ hηθ , sαβhγδhεζ ∂η∂θhκλ,

sαβhγδ∂εhζη∂θhκλ, hαβ s̃γδ∂ε∂ζ s̃θκ , hαβ∂γ s̃δε∂ζ s̃θκ , sαβ s̃γδhεζ ∂η∂θhκλ,

sαβ s̃γδ∂εhζη∂θhκλ, s̃αβhγδ∂ε∂ζ hηθ , s̃αβ∂γhδε∂ζ hηθ , s̃αβ s̃γδ∂ε∂ζ s̃ηθ , (6)

s̃αβ∂γ s̃δε∂ζ s̃ηθ , sαβhγδ s̃εζ∂η∂θ s̃κλ, sαβhγδ∂ε s̃ζη∂θ s̃κλ}.

Among all the terms considered in (5) and (6) are the would-be decoupled terms,
i.e., those terms that do not have s̃ in them. If such terms are possible through cubic order,
they will appear in this construction.

We then impose the requirement of diffeomorphism invariance of the action without
assuming that the field equations are satisfied (this is an “off-shell” requirement). The
quantity constructed by the series

L = L(2) + L(3) + ..., (7)

is a scalar density of weight −1. In the spontaneous-symmetry breaking scenario, this
function depends on the matter fields, the vacuum values of the coefficients for Lorentz
violation (sµν), the metric fluctuations hµν and coefficient fluctuations s̃µν. To impose
the symmetry requirement, we will need the infinitesimal diffeomorphism symmetry
transformations, which are given by the Lie derivatives of the underlying fields gµν and
sµν along an arbitrary vector field ξµ. These transformations are:

Lξ gµν = gλµ∂νξλ + gλν∂µξλ + ξλ∂λgµν,

Lξ sµν = sλµ∂νξλ + sλν∂µξλ + ξλ∂λsµν. (8)

From this, we can derive the effective Lie derivatives, or diffeomorphism transforma-
tions for the field fluctuations:

Lξ hµν = ∂µξν + ∂νξµ + hµλ∂νξλ + hνλ∂µξλ + ξλ∂λhµν,

Lξ s̃µν = (sλµ + s̃λµ)∂νξλ + (sλν + s̃λν)∂µξλ + ξλ∂λ s̃µν. (9)

where we impose ∂λsµν = 0 in the chosen asymptotically flat Cartesian coordinates.
In this treatment, it is necessary to keep all terms in linear order in ξα, in order to re-
sult in the correct conservation laws. This includes terms typically discarded like ∼ξh
in the linearized limit.

The total action will take the form:

S = SM +
∫

d4x(L(2) + L(3) + ...), (10)

where the first term is the matter sector, which we assume to be minimally coupled to
gravity. The remaining terms are those that we seek to construct and are the focus in what
follows. Under a diffeomorphism, one can show that total change in the action takes
the form:

δS =
∫

d4x

(
δL

δhαβ
Lξ hαβ +

δL
δs̃αβ
Lξ s̃αβ

)
. (11)

At this stage, we make no assumption about whether the field equations are satisfied.
The insertion of (9) and using integration by parts gives:
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δS = −
∫

d4x
{

∂β

(
δL

δhγβ

)
+ Γγ

αβ

δL
δhαβ

+ gδγsδα∂β

(
δL

δs̃αβ

)

+ gδγ 1
2 (∂α s̃βδ + ∂β s̃αδ − ∂δ s̃αβ)

δL
δhαβ

}
gγεξε. (12)

The quantity in braces will vanish for “off-shell” diffeomorphism invariance of the ac-
tion in the spontaneous-symmetry breaking scenario. For more details, the reader is
referred to expositions on Noether identities in the context of Lorentz and diffeomorphism
breaking presented in Refs. [11,42–47].

We take the general expansion in Equations (5) and (6) and insert an arbitrary parame-
ter in front of each independent contraction. The starting Lagrange density for quadratic
order takes the form:

L(2) = C1hαβsγδ∂α∂βhγδ + C2hαβsγ
γ∂α∂βhδ

δ + C3hαβs γ
α ∂γ∂βhδ

δ + ..., (13)

with the remaining terms not displayed here for brevity. For the cubic terms, these take
the form:

L(3) = A1h γ
α hαβsδε∂γ∂βhδε + A2hhβγsδε∂γ∂βhδε + A3h γ

α hαβsδ
δ∂γ∂βh + ..., (14)

only displaying the first few terms. Note that because the Lagrange density has mass
dimension 4, and sµν is taken as dimensionless, the parameters Cn and An have mass
dimension 2.

The idea is to insert the total Lagrange density into the vector combination of terms
in brackets (12) above, and demand the result be zero. All tensorially independent terms
must vanish and this imposes many relations among the arbitrary parameters {Cn} and
{An}. When one imposes these relations on the parameterized Lagrange densities (13) and
(14), a vastly smaller subset of these terms remains, each obeying the off-shell conservation
law expected from the underlying diffeomorphism symmetry. This entire calculation is
carried out within the Mathematica set of packages in xAct, including in particular, the xTras
package [48].

We now display the Lagrange density result in several pieces. Firstly, the entire process
produces the quadratic and cubic Lagrange densities of general relativity, up to integration
by parts. Secondly, scalings of GR by the trace sα

α occur, which we leave out of our tables
below because these are unobservable scalings, as expected. Neglected also are terms that
satisfy the constraints (12), but do not contribute to the gravitational field equation for
hµν, such as, for example, terms in equation (5) of the form s∂s̃∂s̃. We find the following
quadratic terms organized in the generic form:

L(2) = L(2)GR +
10

∑
n=1

αnM(2)
n , (15)

where theM(2)
n terms are listed in the Table 1. Where necessary for clarity, terms with

the parentheses label of (1) are first order in the metric hαβ and s̃αβ fluctuations, while those
with the label (2) are second order. All Christoffel symbols are taken to first order in hαβ

with indices raised and lowered with the flat metric. It is also useful to use a linearized
Christoffel symbol Γ̃ with the substitution hαβ → s̃αβ. Thus:

Γαβγ = 1
2 (∂βhγα + ∂γhβα − ∂αhβγ),

Γ̃αβγ = 1
2 (∂β s̃γα + ∂γ s̃βα − ∂α s̃βγ). (16)

Two different contractions of the Christoffel symbols with one free index are defined by
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ΓAµ = Γα
αµ,

Γµ
B = Γµα

α, (17)

with the same definitions holding for Γ̃. We employ some shorthands like Γ2
A = (ΓA)

α(ΓA)α,
h = hαβηαβ, and s̃ = s̃αβηαβ. Finally, we use shorthands for curvature-like quantities built

from Γ̃αβγ, like, for example, G̃(1)
µν = ∂αΓ̃α

µν − ∂µΓ̃Aν − 1
2 ηµν(∂αΓ̃Bα − ∂αΓ̃Aα).

Table 1. Quadratic order terms in (15).

Term Expression

L(2)GR − 1
4κ hαβG(1)

αβ

M(2)
1 sαβ s̃αβR(1)

M(2)
2 s̃αβG̃(1)

αβ −
1
2 s̃∂βΓ̃Aβ + s̃ sαβ∂αΓBβ

M(2)
3 s β

α s̃αγ(R(1)
βγ − ∂δΓβγδ) +

1
2 s̃αβ∂γΓ̃αβγ

M(2)
4 −s̃αβG̃(1)

αβ

M(2)
5 sαβ s̃ γ

α (R(1)
βγ + ∂δΓβγδ)− 1

2 s̃αβ∂γΓ̃αβγ

M(2)
6 2sαβ s̃γδ(R(1)

γαβδ − ∂δΓαβγ) + s̃αβ∂γΓ̃γ
αβ

M(2)
7 −s̃αβ∂γΓ̃γ

αβ + 2sαβ s̃γδ∂δΓαβγ

M(2)
8 −s̃∂αΓ̃Aα + 2sαβ s̃∂δΓαβδ

M(2)
9 hαβsγδG(1)αγβδ − sαβhαβR(1) + 2s̃αβR(1)

αβ

M(2)
10 (s̃− sαβhαβ)R(1)

Similarly, the cubic terms can be organized as

L(3) = L(3)GR +
10

∑
n=1

αnM(3)
n , (18)

and they are listed in Table 2. We use parenthesis around indices to denote symmetrization
with a factor of 1/2, and brackets denote antisymmetrization with a factor of 1/2.

One consequence of this construction is that there are no termsM(2)
n +M(3)

n that are de-
void of the fluctuations s̃αβ, save for the GR terms. In other words, in Equations (5) and (6),
terms of the form sh∂∂h with cubic counterparts hs∂h∂h, hsh∂∂h would be decoupled, how-
ever, such terms do not occur in the results in the Tables 1 and 2. Furthermore, no linear
combination of these terms can be taken to eliminate the fluctuations. This shows it is not
possible to construct terms in the action at the cubic order, and second order in deriva-
tives, that arise from spontaneous symmetry breaking that also fully decouple the metric
fluctuations and the coefficient fluctuations.

For the potential terms for the two-tensor sαβ, these are functions of the four possible
independent scalar traces of products of the tensor sαβgβγ [49]. Note that this includes
the possibility of having "steep” potentials that vanish in the linearized or higher-order
approximations. For example, one useful potential is a function of sα

α via

V =
1
4

λ(sα
α − x)4, (19)

where x is a constant. When expanding around a flat background, it can be shown that the
leading order effects in the field equations are of the cubic order in the fluctuations.
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Table 2. Cubic order terms in (18). Each term,M(2)
n +M(3)

n , is invariant under the diffeomorphism transformations of
the metric fluctuations hαβ and the fluctuations s̃αβ in Equations (8) and (9).

Term Expression

2κL(3)GR hαβ(Γ γ
αβ ΓBγ + Γγ

αβΓAγ − Γγδ
αΓδγβ − 3ΓαγδΓγδ

β + ΓAαΓBβ +
1
2 Γ γ

αβ ΓAγ − 1
2 Γγδ

αΓγδβ − 1
2 ΓαγδΓ γδ

β )

+h( 3
4 ΓαβγΓγαβ − 1

2 ΓAαΓα
B + 1

4 ΓαβγΓαβγ) +
1
2 (

1
2 hhαβ − hαγhβ

γ)∂
δΓαβδ

M(3)
1

1
2 s̃αβ s̃αβR(1) − 2hαβs γ

α s̃βγR(1) + sαβ s̃αβ(ΓγδηΓγδη − Γ2
B + 1

2 hR(1) − 2hγδR(1)
γδ )

M(3)
2 2sαβ s̃γδ(ΓαγδΓBβ − Γ η

αγ Γβδη)− sαβ s̃(2Γ δη
α Γδηβ + ΓBδΓ δ

αβ + ΓBδΓδ
αβ + ΓBαΓBβ)

+hαβ(2Γ̃ γδ
α Γ̃γδβ − Γ̃ γδ

α Γ̃βγδ + Γ̃γδ
αΓ̃δγβ − 2Γ̃ γ

αβ Γ̃Bγ + Γ̃BαΓ̃Bβ)− h(Γ̃αβγΓ̃βαγ + 1
2 Γ̃2

A)

+( 1
2 hs̃sαβ − 2s̃hγαs β

γ − hγδ s̃γδsαβ)(R(1)
αβ + ∂ηΓ(αβ)η) + 2hαβ s̃ γ

α ∂γΓ̃Aβ − hs̃αβ∂αΓ̃Aβ − hαβsγδ s̃∂δΓγαβ

M(3)
3 sαβ s̃γδΓαγεΓ ε

βδ + sαβ s̃ γ
α (2ΓβδεΓδε

γ + 2ΓδεγΓδε
β + ΓβγδΓδ

B − ΓBδΓδ
βγ)

+hαβ( 1
2 Γ̃γδ

αΓ̃δγβ − 1
2 Γ̃αγδΓ̃ γδ

β − Γ̃αγδΓ̃γδ
β + Γ̃αβγΓ̃γ

B + Γ̃BγΓ̃γ
αβ + Γ̃ γ

αβ Γ̃Aγ + Γ̃γ
αβΓ̃Aγ)

−h( 1
2 Γ̃βγδΓ̃βγδ + Γ̃βγδΓ̃γδβ + 1

4 Γ̃2
B + 1

2 Γ̃AβΓ̃β
B + 1

4 Γ̃2
A) + hαβsγδ s̃ ε

γ (∂αΓδβε + R(1)
δαβε)

+hαβsγδ s̃αγ(∂εΓδβε − R(1)
βδ ) +

1
2 hsβγ s̃ δ

β (R(1)
γδ − ∂εΓγδε)− 1

2 hs̃βγ(∂δΓ̃βγδ + ∂δΓ̃δ
βγ)

+hαβsαγ s̃γδ(∂εΓβδε − R(1)
βδ ) + hαβs γ

α s̃ δ
β (∂εΓγδε − R(1)

γδ ) + 2hαβ(s̃γδ∂δΓ̃(αγ)β − s̃ γ
α ∂δΓ̃(βγ)δ)

M(3)
4 −hαβsαβ s̃γδR(1)

γδ + 2sαβ s̃γδ(ΓαγεΓ ε
βδ − ΓBαΓβγδ) + sαβ s̃(ΓBαΓBβ − ΓαδεΓ δε

β ) + h(Γ̃βγδΓ̃γδβ − Γ̃AβΓ̃β
B)

+s̃ΓAβ(Γ̃
β
A + Γ̃β

B) + hαβ(Γ̃AαΓ̃Aβ + 2Γ̃BαΓ̃Aβ + 2Γ̃γ
αβΓ̃Aγ − 2Γ̃ γ

αβ Γ̃Aγ − Γ̃BαΓ̃Bβ

+2Γ̃ γ
αβ Γ̃Bγ − 2Γ̃γδαΓ̃ γδ

β − Γ̃γδαΓ̃δγ
β + Γ̃αγδΓ̃ γδ

β + s̃∂δΓ̃δαβ)

M(3)
5 −sαβ s̃γδΓ ε

αγ Γβδε − sαβ s̃ γ
α (2Γ δε

β Γδεγ + ΓβγδΓδ
B + Γδ

BΓδβγ) + hαβ(Γ̃ γδ
α Γ̃γδβ − 1

2 Γ̃αγδΓ̃ γδ
β + 1

2 Γ̃γδ
αΓ̃δγβ)

− 1
2 h(Γ̃βγδΓ̃γδβ +

1
2 Γ̃2

B + Γ̃AγΓ̃γ
B + 1

2 Γ̃2
A)− hαβsγδ s̃αγ(R(1)

βδ + ∂εΓδβε)− hαβs γ
α s̃ δ

γ (∂εΓβδε + R(1)
βδ )

+ 1
2 hsβγ s̃ δ

β (∂εΓγδε − ∂δΓAγ)− 1
2 hs̃βγ(∂δΓ̃βγδ + ∂δΓ̃δ

βγ) + hαβ s̃ γ
α (∂δΓ̃γβδ + ∂δΓ̃δ

βγ)

−hαβs γ
α s̃ δ

β (R(1)
γδ + ∂εΓγδε)− hαβsγδ s̃ ε

γ ∂εΓδαβ +
1
2 hsβγ s̃ δ

β ∂εΓε
γδ

M(3)
6 2sαβ s̃γδ(2ΓαγεΓε

βδ + Γ ε
αβ Γεγδ + ΓεγδΓε

αβ + ΓαγδΓBβ) + 2hαβ(Γ̃ γ
αβ Γ̃Bγ + Γ̃ γ

αβ Γ̃Aγ − Γ̃ γδ
α Γ̃βγδ)

−hΓ̃βγδΓ̃γδβ + 2hαβs γ
α s̃δε(2R(1)

δβεγ + ∂εΓβγδ + ∂εΓγδβ) + hsβγ s̃δε(R(1)
δβγε − ∂εΓβγδ)

+2hαβsγδ s̃ ε
α (R(1)

βγεδ + ∂δΓγβε + ∂εΓγβδ) + 2hαβ s̃γδ∂δΓ̃αβγ − 2hαβ s̃ γ
α (∂δΓ̃ δ

βγ + ∂δΓ̃δ
βγ)

M(3)
7 −2sαβ s̃γδ(2Γ ε

αγ Γεβδ + Γ ε
αβ Γεγδ + ΓεβδΓε

αγ + ΓαγδΓBβ)

+hαβ(Γ̃ γδ
α Γ̃βγδ − 2Γ̃ γδ

α Γ̃γδβ − Γ̃γδ
αΓ̃δγβ + 2Γ̃ γ

αβ Γ̃Bγ + 2Γ̃ γ
αβ Γ̃Aγ − Γ̃BαΓ̃Bβ − 2Γ̃BαΓ̃Aβ − Γ̃AαΓ̃Aβ)

+hΓ̃αβγΓ̃βγα + hαβ s̃αβ(∂γΓ̃γ
B + ∂γΓ̃γ

A)− 4hαβs γ
α s̃δε∂εΓ(βγ)δ + hsαβ s̃γδ∂δΓ̃αβγ − 4hαβsγδ s̃ ε

α ∂εΓγβδ

M(3)
8 4sαβ s̃γδΓ ε

αβ Γγδε + 4hαβsγδ(Γ ε
γδ Γ̃αβε + ΓγαδΓ̃Aβ)− 2hαβ(2Γ̃ γ

αβ Γ̃Aγ + Γ̃AαΓ̃Aβ)

−4s̃αβΓ γ
αβ Γ̃Aγ + hΓ̃2

A − 2hsαβΓ γ
αβ Γ̃Aγ + 8hαβs γ

α Γ δ

(βγ)
Γ̃Aδ

M(3)
9 hαβsγδ(4Γ ε

αγ Γ[βδ]ε + 2Γ ε
αβ Γγδε − 3Γ ε

γα Γδβε − 2Γ ε
γδ Γεαβ + 2Γ ε

αγ Γεβδ + 2Γ ε
αβ Γεγδ

−2ΓεγδΓε
αβ + ΓεβδΓε

αγ − 8Γ(αγ)δΓAβ + 4ΓγαβΓAδ − 8Γ(αγ)δΓBβ)

+hαβs γ
α (2ΓδεγΓδε

β + 2Γδε
βΓεδγ − 2ΓBβΓBγ − 6Γ δ

(βγ)
ΓBδ − 4ΓBδΓδ

βγ − 2ΓBγΓAβ

+4ΓBβΓAγ − 8Γ δ

(βγ)
ΓAδ − 8Γδ

βγΓAδ)

+hsαβ(−Γ(δε)βΓδε
α +

1
2 ΓBαΓBβ + Γ γ

αβ ΓBγ + ΓBγΓγ
αβ + ΓBαΓAβ +

3
2 ΓAαΓAβ − Γ γ

αβ ΓAγ − Γδ
αβΓAδ)

+2s̃αβ(ΓγδβΓγδ
α − ΓBγΓγ

αβ) + 2hαβ s̃γδR(1)
γαβδ − 4hαβ s̃ γ

α R(1)
βγ + hs̃αβR(1)

αβ − 2hαβhγδs ε
α ∂δΓ(βε)γ

−3hαβhγδsαγ∂δΓAβ − 4h γ
α hαβs δ

β ∂εΓ(γδ)ε + hhαβs δ
β ∂εΓ(γδ)ε

M(3)
10 s̃(ΓαβγΓαβγ − ΓBαΓα

B) + hαβsγδ(2Γ ε
αβ Γγδε − Γ ε

γδ Γεαβ + ΓγδαΓAβ − 3ΓBαΓγδβ)

− 1
2 hαβsαβ(ΓBγΓγ

B + ΓAγΓγ
A) + 4hαβs γ

α (Γ δ

(βγ)
ΓAδ − Γ δ

(βγ)
ΓBδ) + hsαβ(Γ γ

αβ ΓBγ − Γ γ
αβ ΓAγ)

−2hαβ s̃R(1)
αβ + ( 1

2 hs̃− hαβ s̃αβ)R(1) − 1
2 hαβhγδsαβ∂εΓγδε
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4. Covariant Construction of Lagrange Density

As an alternative method to Section 3, we can construct fully covariant Lagrangian
for the gravitational sector including the sαβ terms. We seek kinetic Lagrangian terms
that would produce the ones in the expansion in the previous section. These terms were
included as a second order in sαβ expansion in Ref. [31]. These are labeled a1 − a11 and ob-
tained by considering all possibilities of scalar contractions of sαβsγδRµνκλ and∇γsαβ∇δsµν,
and discarding surface terms:

Lcov =

√−g
2κ

[
a1sλ

λR + a2sµνRµν + a3
1
2 (∇µsνλ)(∇µsνλ) + a4

1
2 (∇µsµλ)(∇λsβ

β)

+a5
1
2 (∇µsµλ)(∇νsν

λ) + a6
1
2 (∇µsν

ν)(∇µsλ
λ) + a7sµνsκλRµκνλ (20)

+a8sµνsµ
λRνλ + a9sλ

λsµνRµν + a10sµνsµνR + a11sλ
λsµ

µR
]
.

The covariant terms can be matched to the cubic and quadratic terms by expanding
them to the relevant orders. The expansion, however, is cumbersome, hence the advantage
of the earlier construction. We find the following matches at quadratic order in the expan-
sion:

La1 = a1
2κM

(2)
10 + O(3) + O(s2)

La2 = a2
2κM

(2)
9 + O(3) + O(s2)

La3 = a3
2κ

(
M(2)

5 −M
(2)
3

)
+ O(3) + O(s2)

La4 = a4
4κ

(
M(2)

2 +M(2)
7 + 1

2M
(2)
8

)
+ O(3) + O(s2)

La5 = a5
2κ

(
M(2)

5 + 1
2M

(2)
7

)
+ O(3) + O(s2) (21)

La6 = a6
2κM

(2)
8 + O(3) + O(s2)

La7 = − a7
2κ

(
M(2)

6 +M(2)
7

)
+ O(3) + O(s2)

La8 = a8
2κ

(
M(2)

3 +M(2)
5

)
+ O(3) + O(s2)

La9 = a9
2κ

(
M(2)

2 +M(2)
4 − 2M(2)

8 + 1
2 sα

αM
(2)
9

)
+ O(3) + O(s2)

La10 = a10
κ M

(2)
1 + O(3) + O(s2)

La11 = a11
κ sα

αM
(2)
10 + O(3) + O(s2)

Here, O(3) denotes terms of cubic order in fluctuations h3, s̃3, h2 s̃, etc. while the O(s2)
includes terms of second order in the vacuum values sµν. We note that one could have
started with the covariant expansion instead of going through the process of the earlier
section in the work. However, the quadratic and cubic expansions are more useful for
approximate solutions for weak fields, for which one has to expand, order by order, in any
case. Furthermore, the conservation law construction can be used for more general tensor
couplings, for which it may be challenging to construct the covariant terms. The terms
in (20) are a subset of the recent construction in Ref. [39].

5. Field Equations

We turn to the field equations from the action above. Considering the large number
of terms in the tables above, abbreviations will be used for different pieces of the field
equations. Multiple partial derivatives will be abbreviated as ∂αβ... = ∂α∂β.... The variation
of the entire Lagrange density (through cubic order) with respect to the metric fluctuations
yields the field equations in the form:
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δL
δhµν

= − 1
2κ (G

(1))µν + 1
2 Tµν

M + 1
2 τµν + δLV

δhµν
+ α1sαβ(∂µν − ηµν�)s̃αβ

+α2(sα(µ∂ν)∂α − 1
2 ηµνsαβ∂αβ)s̃ + α3(sαβ∂β∂(µ s̃ν)

α − sα(µ�s̃ν)
α − 1

2 ηµνsαβ∂γβ s̃ γ
α )

+α5(sα(µ∂ν)∂β s̃ β
α − 1

2 ηµνsαβ∂γβ s̃ γ
α ) + α6(sαβ∂αβ s̃µν − 2sα(µ∂βα s̃ν)β) (22)

+α7sµν∂αβ s̃αβ + α8sµν�s̃ + α9(2(G̃(1))µν + 2sαβ(G(1))αµβν)

+(α9 + α10)[(∂
µν − ηµν�)(s̃− sαβhαβ)− sµνR(1))],

where ταβ contains the full variation of the cubic terms τµν = 2δL(3)/δhµν, and the factor
of 2 was chosen so that it matches the GR pseudo tensor in the correct limit. Here, LV
is the portion of the Lagrange density with the potential energy function for s̃µν, and
Tµν

M comes from the variation of the matter sector with respect to the metric fluctuations.
Similarly, the variation of the Lagrange density with respect to the two-tensor fluctuations
s̃αβ is:

δL
δs̃µν

= (τs)
µν + δLV

δs̃µν
+ α1sµνR(1) + α2[2(G̃(1))µν − 1

2 ηµν(�s̃ + sαβ(∂αβh− 2∂γβh γ
α ))]

+α3[
1
2�s̃µν − 1

2 sα(µ∂ν)∂αh + sα(µ∂αβhν)β − sα(µ�hν)
α]− 2α4(G̃(1))µν

+α5[− 1
2�s̃µν − 1

2 sα(µ∂ν)∂αh + sα(µ∂ν)∂βh β
α ] (23)

+α6[−�s̃µν + 2∂α∂(µ s̃ν)α + sαβ(∂αβhµν − ∂β∂(µhν)
α)]

+α7(�s̃µν − 2∂α∂(µ s̃ν)α + sαβ∂µνhαβ)− α8ηµν�(s̃− sαβhαβ)

+2α9(R(1))µν + α10ηµνR(1),

where (τs)µν = δL(3)/δs̃µν. The matter sector will have its own field equations which
depend on the system to be modeled. We note here that when the field equations hold, the
stress–energy tensor for matter will be conserved, a fact that can be exploited in solving
the post-Newtonian limit.

The generic case of Equations (22) and (23) with arbitrary parameters contains “ghost”
kinetic terms for the fluctuations s̃αβ, when treated as a field theory on a flat background.
For example, a kinetic term of the form L ∼ s̃αβ�s̃αβ will contain non-positive definite
contributions to the Hamiltonian density, and could thereby result in unstable solutions.
It is of general interest to study this issue in detail, but we do not attempt it here.

We note that this effective field theory construction represents a test framework for
Lorentz and diffeomorphism breaking. Rather than just the nine coefficients in (4), we
now have up to 10 arbitrary parameters α1 − α10 and nine coefficients sµν, for a total of 19
quantities describing Lorentz and diffeomorphism violation for gravity.

6. Summary and Outlook

In this work, we described the method to construct quadratic and cubic effective
actions for weak-field gravity studies of spontaneous symmetry breaking. The main
results are the Lagrange density terms in Equations (15) and (18) and the Tables 1 and 2.
Furthermore, we showed that the complete decoupling of the fluctuations from the metric
fluctuations cannot occur at the level of the action with only the second derivatives when
going to the cubic order in the fluctuations.

The field equations for the metric fluctuations and the two-tensor fluctuations are
given in Equations (22) and (23). Future work will solve these equations in the post-
Newtonian limit, with near-field and radiation zone solutions for applications in astro-
physics. Some preliminary analysis of the field equations in (22) and (23) shows that
the near-field post-Newtonian metric contains many of the same fluid potential function
terms that were found in Ref. [15]. We conjecture that including all of the extra terms
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in the Lagrange density could potentially provide an interesting re-analysis of the match to
the parametrized post-Newtonian metric [50,51]. The match of the action above the vector
models of Lorentz violation should also be revisited [36,52,53]. Finally, the method adopted
in this work for the two-tensor sµν could be continued and applied to other gravity sector
coefficients, such as the tαβγδ coefficients, or non-minimal coefficients.

Analysis could also proceed with the general covariant action (20), such as exploring
black hole solutions or cosmology solutions. Progress has already been made studying
strong-field gravity solutions with vector and tensor models of spontaneous Lorentz-
symmetry breaking [54,55]. Complimentary analysis with (20) would be of interest.
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