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Abstract: The concept of a spherically symmetric second-rank tensor field is formulated. A general
representation of such a tensor field is derived. Results related to tensor analysis of spherically
symmetric fields and their geometric properties are presented. Using these results, a formulation of
the spherically symmetric problem of the nonlinear theory of dislocations is given. For an isotropic
nonlinear elastic material with an arbitrary spherically symmetric distribution of dislocations, this
problem is reduced to a nonlinear boundary value problem for a system of ordinary differential
equations. In the case of an incompressible isotropic material and a spherically symmetric distribution
of screw dislocations in the radial direction, an exact analytical solution is found for the equilibrium
of a hollow sphere loaded from the outside and from the inside by hydrostatic pressures. This
solution is suitable for any models of an isotropic incompressible body, i.e., universal in the specified
class of materials. Based on the obtained solution, numerical calculations on the effect of dislocations
on the stress state of an elastic hollow sphere at large deformations are carried out.

Keywords: nonlinear elasticity; dislocation density; screw dislocations; eigenstresses; large deforma-
tions; spherical symmetry; incompressible material

1. Introduction

In this work, a spherically symmetric state in which the dislocation density tensor has
a spherically symmetric representation is determined. Herewith, the system of equations
consisting of constitutive equations, equilibrium equations, and an incompatibility equa-
tion admits a spherically symmetric solution. Despite the simplicity of representation, such
solutions help to describe complex physical and mechanical phenomena. In gas dynamics,
for the problem of the propagation of a strong blast, spherical symmetry enables one to
consider the charge as a point charge and is used to find the adiabatic unsteady motions of a
perfect gas [1]. In the paper [2], a static spherically symmetric solution for the gravitational
field equations obtained in a spherically symmetric Kalb–Ramond background allows us to
conclude that in string gravity, spacetime can have such features as a wormhole or a naked
singularity. The work [3] is devoted to static spherically symmetric spacetime with nonlin-
ear electrodynamic sources, where conditions under which the metric of static spherically
symmetric solutions of the Einstein equations associated with nonlinear electrodynamics is
regular (without singularities) at the center (origin) are established. In [4], it is investigated
which representations of the Higgs fields of the gauge group can be spherically symmetric
or at least contribute to spherical symmetry of stress-energy tensor, and a simple criterion
for the existence of nontrivial spherically symmetric Higgs fields is obtained. Two classes of
spherically symmetric static vacuum solutions of the Poincaré gauge field theory, obtained
using the double duality ansatz for the corresponding Riemann–Cartan curvature tensors
are considered in [5]. With the help of the Petrov classification scheme and the Einstein’s
field equations using a radial coordinate dependent symmetric tensor of the second-rank,
invariant with respect to inflation in the radial direction, in [6], it is investigated what the
algebraic structure of the cosmological term can be in the spherically symmetric case. In the
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paper [7], for an arbitrary number of dimensions with arbitrary torsion it is shown that in
the most general theory of gravity, only static spherically symmetric asymptotically flat
solutions of the variational equations of motion contain gravitational singularities.

Microstructure defects in the form of dislocations began to be investigated at the
beginning of the twentieth century. Some works [8–19] devoted to this topic are based on
the continuum theory of dislocations, which assumes a transition from a discrete set of
dislocations to their continuous distribution. It is advisable to carry out such a transition in
the case when the number of dislocations in a limited volume is large enough.

This paper solves the problem for an elastic sphere containing continuously distributed
dislocations. Problems about a sphere with dislocations were previously considered in the
papers [20–23]. The main result of this work is a new exact solution to the nonlinear theory
of dislocations, which is of spherical symmetry. This solution is universal in the class of
isotropic incompressible materials. Universal solutions are such solutions of the equilibrium
equations that are valid for any constitutive equations from a certain class of materials.
These solutions are used to experimentally determine the constitutive equations and to check
numerical results. For incompressible isotropic nonlinear elastic bodies, five families of
nonuniform universal deformations are known [24–32]. Universal deformations of solids with
constraints different from the incompressibility condition are studied in [33–35]. Universal
solutions for generalized models of continuous media with complex physical and mechanical
properties [36–39] are built up in [40,41].

The obtained universal solution supplements the small list of known exact solutions
of the nonlinear dislocation theory [16–19,42] and describes the influence of distributed
screw dislocations in the radial direction on large spherically symmetric deformations of a
hollow elastic sphere made of an incompressible material in the presence of an external or
internal hydrostatic pressure. The effect of dislocations on the stress state of thin and thick
spherical shells is analyzed.

2. Input Relations of the Theory of Dislocations

Let R = Xkik and r = xsis be the radius vectors of the point of the elastic body in
the reference and deformed configurations, respectively, Xk and xs (k, s = 1, 2, 3) are the
Cartesian coordinates of the reference and final states of the body, ik are the coordinate unit
vectors. In what follows, we will use the definitions of the gradient, divergence, and curl
operators in the coordinates of the reference configuration

Grad Ψ = RN ⊗ ∂Ψ

∂QN , Div Ψ = RN · ∂Ψ

∂QN , Curl Ψ = RN × ∂Ψ

∂QN , RN = ik
∂QN

∂Xk
. (1)

Here Ψ is an arbitrary differentiable tensor field, QN = QN(X1, X2, X3), N = 1, 2, 3
are some Lagrangian curvilinear coordinates, ⊗ denotes tensor multiplication, × and ·
denote vector multiplication and scalar multiplication, respectively.

The system of equilibrium equations for a nonlinear elastic medium in the absence of
mass forces consists of the equilibrium equations

DivD = 0, (2)

constitutive equations

D =
dW
dF

, W = W(G), (3)

and geometric relationships

F = Grad r,

G = F · FT . (4)

Here D is the asymmetric Piola stress tensor, also called the first Piola - Kirchhoff stress
tensor, F is the deformation gradient, G is the metric tensor, W is the specific strain energy.



Symmetry 2021, 13, 830 3 of 27

Let V be the region occupied by an elastic body in the reference configuration. To in-
troduce the concept of dislocation density in an elastic medium, consider the problem
of determining the displacement field u(R) = r(R)− R from the tensor field F(R) given
in the multiply connected domain V, which is assumed to be differentiable and single-
valued in the domain V and satisfies the compatibility equation Curl F = 0. Taking into
account that

Grad u = F− I, (5)

where I is the unit tensor, we see that in the case of a multiply connected domain the
vector field u(R), and hence the vector field r(R), generally speaking, are not uniquely
determined. This means the presence of isolated translational dislocations in the body [15],
each of which, due to (5), is characterized by the Burgers vector bn:

bn =
∮

Γn
dR · (F− I) =

∮
Γn

dR · F, n = 1, 2, ...n0 . (6)

Here, Γn is a simple closed contour encompassing the line of only one n-th dislocation.
The total Burgers vector of a discrete set of n0 dislocations according to (6) is determined
by the formula

B =
n0

∑
n=1

bn =
n0

∑
n=1

∮
dR · F . (7)

Due to the well-known properties of curvilinear integrals, in (7) it can be replaced by
a single integral over the closed contour Γ0 covering the lines of all n0 dislocations

B =
∮

Γ0

dR · F . (8)

Following [43–45], we pass to the limit from a discrete set of dislocations to their
continuous distribution and transform the contour integral (8) into a surface integral by
the Stokes formula

B =
∫∫
Σ0

N ·Curl FdΣ . (9)

Here, Σ0 is the surface spanning the contour Γ0, N is the unit normal to Σ0. The relation (9)
allows us to introduce [43,45,46] the density of continuously distributed dislocations as a
second-rank tensor α = Curl F, the flow of which through any surface is equal to the total
Burgers vector of dislocations crossing this surface. In what follows, the dislocation density
tensor is assumed to be a given function of the Lagrangian coordinates QN , which must
satisfy the solenoidality requirement

Div α = 0 . (10)

If dislocations with a given tensor density are distributed in a body, then the displace-
ment field and the vector field r(R) do not exist. In this case, the relation (4) is replaced by
the incompatibility equation

Curl F = α, (11)

and the tensor F is called the distortion tensor.
The full system of equilibrium equations for an elastic body with distributed dislo-

cations contains the components of the tensor distortion field F as unknown functions
and consists of the equilibrium Equation (2), the incompatibility Equation (11), and the
constitutive Equation (3).

If a given hydrostatic pressure q acts on a part of the body surface with normal N,
then the boundary conditions on this part of the boundary have the form [24]

N ·D = −q(det F)F−1 ·N . (12)
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If an elastic material is isotropic, then the specific energy W is the function of invariants
of the metric tensor G

W(G) = W(I1, I2, I3), (13)

I1 = tr G, I2 =
1
2

(
tr2 G− tr G2

)
, I3 = det G = (det F)2 . (14)

In the following, we will consider an isotropic incompressible material. In this case,
the specific energy is a function of only two arguments: W = W(I1, I2), since the third
invariant I3 is equal to unity due to the incompressibility condition

det F = 1 . (15)

The constitutive equation of an isotropic incompressible elastic body has the form [24,31,32]

D = D∗ − pF−T, D∗ = (τ1 + I1τ2)F− τ2G · F, (16)

τ1 = 2
∂W(I1, I2)

∂I1
, τ2 = 2

∂W(I1, I2)

∂I2
. (17)

Here, p is a pressure in an incompressible material, not expressed in terms of deformation,
τβ(I1, I2) (β = 1, 2) are the scalar response functions of an incompressible elastic medium.

Sometimes the elastic properties of an isotropic incompressible material are specified
using the function of the first and second invariants of the tensor U [24,32]:

W(G) = W(J1, J2), (18)

J1 = tr U, J2 =
1
2

(
tr2 U− tr U2

)
, U = G1/2 . (19)

The tensor D∗ in the constitutive Equation (16) is expressed through the specific
energy (18) as follows [24]

D∗ = (η1 + J1η2)A− η2F, ηβ =
∂W(J1, J2)

∂Jβ
, β = 1, 2 . (20)

Here, A is the rotation tensor. The symmetric positive definite tensor U and the properly
orthogonal tensor A form the polar decomposition of the distortion tensor

F = U ·A . (21)

3. Spherically Symmetric Tensor Fields

In the reference configuration of the elastic body, let us introduce the spherical coordi-
nates Q1 = Φ (longitude), Q2 = Θ (latitude), Q3 = R (radial distance) by the formulas

X1 = R cos Φ cos Θ, X2 = R sin Φ cos Θ, X3 = R sin Θ .

In what follows, we will use the orthonormal vector basis eΦ, eΘ, and eR consisting of
unit vectors tangent to the coordinate lines:

eΦ = −i1 sin Φ + i2 cos Φ,

eΘ = −(i1 cos Φ + i2 sin Φ) sin Θ + i3 cos Θ, (22)

eR = (i1 cos Φ + i2 sin Φ) cos Θ + i2 sin Θ .

Consider a second-rank tensor field P and represent it in the form of the decomposition

P = Pmnem ⊗ en, m, n = 1, 2, 3, (23)

e1 = eΦ, e2 = eΘ, e3 = eR .
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A tensor field P will be called spherically symmetric if the components Pmn depend
only on the radial coordinate R and it is invariant under any rotations around the radial
axis, i.e., around the ort eR. The latter means [47,48] that for any real values of χ(R),
the following equality holds:

K · P ·KT = P, K = g cos χ(R) + d sin χ(R) + eR ⊗ eR, (24)

g = eΦ ⊗ eΦ + eΘ ⊗ eΘ = I− eR ⊗ eR, d = eΦ ⊗ eΘ − eΘ ⊗ eΦ = −I× eR . (25)

Let us find a general representation of the second-rank spherically symmetric tensor
field. In (24), set χ ≡ π. Then K = 2eR ⊗ eR − I and the relation (24) gives the equality

(2eR ⊗ eR − I) · P = P · (2eR ⊗ eR − I) . (26)

From (26) it follows that eR · P · eΦ = eΦ · P · eR = eΘ · P · eR = eR · P · eΘ = 0. Setting
χ ≡ π/2 in (24), we obtain the equalities eΦ · P · eΦ = eΘ · P · eΘ, eΦ · P · eΘ = −eΘ · P · eΦ.
Thus, the tensor P has the form

P = P1(R)g + P2(R)d + P3(R)eR ⊗ eR . (27)

With the help of (25) it is easy to check that the tensors g, d and eR ⊗ eR satisfy
the relation (24) for any values of χ. Therefore, the representation (27) is necessary and
sufficient for spherical symmetry of the tensor field P.

Let us point out some elementary but useful facts related to second-rank spherically
symmetric tensors.

1. Two spherically symmetric tensors P and L commute: P · L = L · P.
2. If

(
P2

1 + P2
2
)

P3 6= 0, then there is an inverse tensor P-1 which is expressed like this:

P-1 =
P1

P2
1 + P2

2
g− P2

P2
1 + P2

2
d +

1
P3

eR ⊗ eR . (28)

3. The polar decomposition, i. e., the representation in the form P = H · S, where H
is a symmetric positive definite tensor, and S is an orthogonal tensor, for a spherically
symmetric tensor field is written in a simple and explicit form:

H =
√

P2
1 + P2

2 g + |P3|eR ⊗ eR,

S =
P1√

P2
1 + P2

2

g +
P2√

P2
1 + P2

2

d + sgn P3 eR ⊗ eR .
(29)

Arbitrary rank tensor field B = Bkl...pqek ⊗ el ⊗ · · · ⊗ ep ⊗ eq is called spherically
symmetric if its components Bkl...pq depend only on the radial coordinate and for any
values of χ the following equality holds:

Bkl...pq(R)(ek ·K)⊗ (el ·K)⊗ · · · ⊗ (ep ·K)⊗ (eq ·K) = B . (30)

4. An arbitrary spherically symmetric vector field has the form f (R)eR.
5. Using the concept of an isotropic tensor function [47,48] one can prove that the

value of an isotropic function of any number of spherically symmetric tensor arguments
of arbitrary rank is itself a spherically symmetric tensor. In particular, the product of two
second-rank spherically symmetric tensors is also a second-rank spherically symmetric tensor.
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6. With the help of Formulas (1), (22), and (27), we can derive the expressions for the
gradient, curl, and divergence of a second-rank spherically symmetric tensor field P

Grad P = eR ⊗
(

dP1

dR
g +

dP2

dR
d +

dP3

dR
eR ⊗ eR

)
+

P3 − P1

R
[eΦ ⊗ (eΦ ⊗ eR + eR ⊗ eΦ) + eΘ ⊗ (eΘ ⊗ eR + eR ⊗ eΘ)]

+
P2

R
[eΦ ⊗ (eΘ ⊗ eR − eR ⊗ eΘ) + eΘ ⊗ (eR ⊗ eΦ − eΦ ⊗ eR)], (31)

Curl P =
1
R

d
dR

(RP2)g +

(
P3 − P1

R
− dP1

dR

)
d +

2P2

R
eR ⊗ eR, (32)

Div P =

[
dP3

dR
+

2
R
(P3 − P1)

]
eR . (33)

Based on the definition (30), using (31) one can check that the third rank tensor field
Grad P is spherically symmetric.

4. Spherically Symmetric State of Elastic Hollow Sphere with Distributed
Dislocations in Radial Direction

Consider an elastic body in the form of a hollow sphere with an outer radius R0 and an
inner radius R1. Let us assume that the dislocation density tensor is of spherical symmetry,
i.e., has the form

α = α1(R)g + α2(R)d + α3(R)eR ⊗ eR . (34)

The solenoidality condition (10) due to (33) and (34) leads to the following constraint
on the scalar dislocation densities αk(R) (k = 1, 2, 3)

2α3 + R
dα3

dR
= 2α1 . (35)

We will seek the solution of the equilibrium Equation (2) and the incompatibility
Equation (11) in the form of a spherically symmetric distortion tensor field

F = F1(R)g + F2(R)d + F3(R)eR ⊗ eR . (36)

Based on (32) and (36), the tensor Equation (11) is transformed to three scalar ordinary
differential equations

2F2 = Rα3,
d

dR
(RF2) = Rα1, (37)

F3 −
d

dR
(RF1) = Rα2 . (38)

Since the dislocation densities αk(R), k = 1, 2, 3, are assumed to be given functions,
the first equation of (37) determines the function F2(R), the second equation is a conse-
quence of the first one and the relation (35). It remains to satisfy Equation (38).

From the constitutive Equations (3) and (13) and the expression (36) it follows that
in the case of an isotropic material, the Piola stress tensor will be spherically symmetric,
i.e., has the form

D = D1(R)g + D2(R)d + D3(R)eR ⊗ eR . (39)

Due to (32) and (39), the vector equilibrium Equation (2) is reduced to one scalar equation

dD3

dR
+

2(D3 − D1)

R
= 0 . (40)

The stresses D1 and D3 are expressed in terms of the distortion components F1, F2,
and F3 with the help of the constitutive relations of the material. Therefore, with the help of
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the relation (38), the Equation (40) is transformed to a second order nonlinear differential
equation with an unknown function F1(R). Thus, the problem of large deformations of
an elastic sphere with a spherically symmetric distribution of dislocations is reduced to a
nonlinear boundary value problem for an ordinary differential equation.

Some problems for elastic sphere with dislocations, the distribution of which is of
spherical symmetry, are considered in the works [20–23,49]. The paper [20] describes the
stress state of a hollow sphere made of a compressible semi-linear (harmonic) material
containing edge dislocations and subject to external or internal hydrostatic pressures.
Thanks to the selected material model and dislocation distribution, an exact solution was
built. In [21], a universal solution for the class of isotropic incompressible elastic bodies
was found, and eigenstresses in a solid sphere (in a space with a spherical cavity) with a
special distribution of edge and screw dislocations, as well as stresses in the presence of
hydrostatic pressure applied to the surface of the sphere (cavity), were determined. In [22],
for compressible and incompressible materials, the stresses in a hollow sphere, caused by
edge and screw dislocations, are numerically determined. The paper [49] contains an exact
formulation and solution of the stability problem for a hollow sphere made of a semi-linear
material with edge dislocations in the framework of the three-dimensional theory. In the
work [23], in the framework of the model of a micropolar medium and in the classical
theory of elasticity without couple stresses, an exact solution about the eigenstresses caused
by the spherically symmetric distribution of dislocations and disclinations in a hollow
linearly elastic sphere was found.

In this work, we investigate the equilibrium problem for an elastic sphere at large
deformations taking into account distributed screw dislocations in the radial direction,
i.e., in the case when α1 = α2 = 0. In this case, the solenoidality requirement (35) completely
defines the character of the dependence of the scalar screw dislocation density on the
radial coordinate

α3(R) =
2a
R2 , (41)

where a is a real constant. Denoting h(R) = RF1(R), based on (36)–(38) and (41), we obtain

F =
h(R)

R
g +

a
R

d +
dh(R)

dR
eR ⊗ eR . (42)

For comparison, consider the problem of inflation or compression of a hollow sphere
in the absence of dislocations. In this case, the displacement field exists and deformation,
as is known [24,26,32], has the form

r = r(R), ϕ = Φ, θ = Θ, (43)

where ϕ, θ, and r are the spherical coordinates of the points of the sphere in the deformed
state. The distortion tensor corresponding to the deformation (43) has the form

F =
r(R)

R
g +

dr(R)
dR

eR ⊗ eR . (44)

Comparing (42) and (44), we see that in the absence of dislocations, the function
h(R)− R represents the radial displacement of the points of the sphere.

Considering the material incompressible, from the incompressibility condition (15)
and the expression (42), we obtain a differential equation for determining the function h(R):

dh
dR

=
R2

a2 + h2 . (45)

The solution to Equation (45) is written as follows:

h3 − h3
0 + 3a2(h− h0) = R3 − R3

0, h0 = h(R0), (46)



Symmetry 2021, 13, 830 8 of 27

where h0 is an unknown constant. The cubic Equation (46) with respect to h(R) has only
one real root

h(R) =
(

ε +
√

ε2 + a6
)1/3

− a2
(

ε +
√

ε2 + a6
)−1/3

, (47)

ε =
1
2

(
R3 − R3

0

)
+

1
2

(
h2

0 + 3a2
)

h0 .

It can be shown [20] that in the absence of dislocations (a = 0), negative values of the

function h(R) = 3
√

R3 − R3
0 + h3

0 correspond to the sphere eversion deformation given by
the deformation tensor

F = − dr
dR

eR ⊗ eR −
r
R

eΦ ⊗ eΦ −
r
R

eΘ ⊗ eΘ .

Taking into account the incompressibility condition (45), we have the expression for
the distortion tensor (42) in the form

F =
h
R

g +
a
R

d +
R2

h2 + a2 eR ⊗ eR . (48)

With the help of (48), the metric tensor (4) and its invariants (14) are calculated:

G =
h2 + a2

R2 g +
R4

(h2 + a2)
2 eR ⊗ eR, (49)

I1 =
2
(
h2 + a2)

R2 +
R4

(h2 + a2)
2 , I2 =

2R2

h2 + a2 +

(
h2 + a2)2

R4 . (50)

Using Formulas (28) and (29), we find the tensor F-T, the rotation tensor A, the stretch
tensor U, and its invariants (18)

F-T =
R

h2 + a2 (hg + ad) +
h2 + a2

R2 eR ⊗ eR, (51)

A =
h√

h2 + a2
g +

a√
h2 + a2

d + eR ⊗ eR, (52)

U =
h2 + a2

R
g +

R2

h2 + a2 eR ⊗ eR, (53)

J1 =
2
√

h2 + a2

R
+

R2

h2 + a2 , J2 =
2R√

h2 + a2
+

h2 + a2

R2 . (54)

Although the displacement field does not exist in an elastic body with distributed
dislocations, it is possible to determine the elongation of the material fibers and the change
of the material surface area during deformation. Applying the well-known [47] formula
for transforming an elementary oriented area under deformation, we calculate the area s of
the surface into which the surface R = R0 turns after deformation. Using (49), we obtain

s = R2
0

√
eR ·G−1 · eR

∫ 2π

0
dΦ

∫ π
2

− π
2

cos ΘdΘ = 4π
(

h2
0 + a2

)
. (55)

Formula (55) shows that for a 6= 0 the value h0 cannot be considered the outer radius
of the deformed sphere.

Please note that distributed screw dislocations in the radial direction create a nonlinear
effect in an elastic sphere. The influence of such dislocations cannot be detected within the



Symmetry 2021, 13, 830 9 of 27

framework of the linear theory of elasticity. Indeed, as is known [44,50], the incompatibility
equation in the linear theory of elasticity has the form

Curl(Curl e)T =
1
2

Curl αT +
1
2

(
Curl αT

)T
, (56)

e ∆
=

1
2
(F− I) +

1
2

(
FT − I

)
.

Here, e is the linear strain tensor. With the help of (32), one can check that if α = α3(R)eR ⊗ eR,
then the right-hand side of Equation (56) vanishes.

In addition to the incompatibility equation, the equilibrium Equation (40) and the
boundary conditions must be fulfilled. We will assume that the outer surface of the sphere
is loaded by a uniform hydrostatic pressure q0, and the inner one is loaded by a pressure
q1. Then by virtue of (12), (39), and (51), we have the following boundary conditions

D3(R0) = −
h2

0 + a2

R2
0

q0, D3(R1) = −
h2(R1) + a2

R2
1

q1 . (57)

Based on (16), (17), (39), and (51), the constitutive equations of an isotropic incom-
pressible material in a spherically symmetric problem take the form

D1 = D∗1 −
Rh

h2 + a2 p, D2 = D∗2 −
aR

h2 + a2 p, D3 = D∗3 −
h2 + a2

R2 p, (58)

D∗1 =
h
R

(
τ1 + I1τ2 −

h2 + a2

R2 τ2

)
, D∗2 =

a
h

D∗1 , D∗3 =
R2

h2 + a2

(
τ1 + I1τ2 −

R4

(h2 + a2)
2 τ2

)
. (59)

If the specific energy is specified as a function of the tensor U, then, in accordance
with (20), (52)–(54), the components of the tensor D∗ are written as

D∗1 = h
(

η1 + J1η2√
h2 + a2

− η2

R

)
, D∗2 =

a
h

D∗1 , D∗3 = η1 + J1η2 −
R2η2

h2 + a2 . (60)

The components of the tensor D∗ are known functions of the coordinate R, since they
are expressed in terms of the function h(R) which is defined by Formula (47). The pressure
function p(R) remains unknown. Using the relations (58), we transform the equilibrium
Equation (40) into a differential equation for the function p(R):

h2 + a2

R2
dp
dR

=
dD∗3
dR

+
2(D∗3 − D∗1 )

R
. (61)

To solve the boundary value problem (57) and (61), we introduce a new unknown
function σ(R):

σ(R) =
R2

h2 + a2 D∗3 − p(R) . (62)

With the help of the incompressibility condition (45), we find

dσ

dR
=

2RD∗1
h2 + a2 −

2hR4D∗3
(h2 + a2)

3 . (63)

The boundary conditions (57) are written through the function σ(R) as follows:

σ(R1) = −q1, σ(R0) = −q0 . (64)
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The solution of Equation (63), satisfying the first boundary condition in (64) has
the form

σ(R) = 2
∫ R

R1

R
h2 + a2

(
D∗1 −

hR3

(h2 + a2)
2 D∗3

)
dR− q1 . (65)

The second boundary condition in (64) is used to determine the constant h0. The func-
tion p(R) and hence all stresses are now determined with the help of (62).

The solution (65) yields an analytical expression for the loading diagram of a sphere
with dislocations, i.e., the dependence of the difference between the internal and external
pressures on the deformation parameter h0

q1 − q0 = 2
∫ R0

R1

R
h2 + a2

(
D∗1 −

hR3

(h2 + a2)
2 D∗3

)
dR . (66)

The exact solution obtained here for the problem of large spherically symmetric
deformations of an elastic hollow sphere with radial screw dislocations is universal in the
class of isotropic incompressible materials.

Next, we will consider separately two cases of sphere loading: hydrostatic compres-
sion and inflation.

Let us write the solution of the differential Equation (61) in the form

p(R) =
∫ R

R1

f (R)dR + K, (67)

where K is the constant of integration determined from the boundary condition (57) on an
unloaded surface.

For arbitrary incompressible material, we have

f (R) =
R2

h2 + a2

[(
R2τ1

h2 + a2 + 2τ2

)′
+

2
(

R3 − h3 − a2h
)

R2(h2 + a2)
+

2τ2

R

(
2−

h
(
h2 + a2)

R3 − hR3

(h2 + a2)
2

)]
, (68)

and for Bartenev–Khazanovich material [24] (this model is also known as the Varga
model), with η1 = const = 2 and η2 = 0 in (20), this function has the form

f (R) =
2η1R

(
h2 + a2 − h

√
h2 + a2

)
(h2 + a2)

2 . (69)

In (68), ‘′’ means the derivative of the function with respect to the argument R.

5. Numerical Results

For Sections 5.2 and 5.3, the numerical results are given for models of two incompress-
ible materials: neo-Hookean and Bartenev–Khazanovich. For each of them, the cases of
thin (R1 = 0.95R0) and thick (R1 = 0.5R0) shells are considered.

Table 1 shows the pressure values for each specified case of the problem.

Table 1. Considered cases of applied loads for material models: external pressure q0 and internal
pressure q1.

Material Thin Shell Thick Shell

neo-Hookean q1 = 0.02, q0 = 0.005 q1 = 0.2, q0 = 0.2Bartenev–Khazanovich



Symmetry 2021, 13, 830 11 of 27

5.1. Problem for Solid Sphere

Since in the absence of dislocations the function h(R) defined by the expression (47)
means a radial coordinate, then for a solid sphere the boundary condition

h(0) = 0 (70)

means that the sphere maintains the continuity property. Therefore, this condition is set in
a natural way.

Suppose that the boundary condition (70) is also valid for a sphere with dislocations.
Let us check this hypothesis in the case of hydrostatic compression of a hollow sphere
by pressure q0, assuming the inner radius to be small. For specificity, we will assume
R1 = 10−7. Please note that the radial coordinate is referred to the outer radius R0, which
is equivalent to R0 = 1.

Consider a model of the neo-Hookean material [24], for which τ1 = const = 1 (due
to dimensionless stresses), τ2 = 0. Table 2 compares the values of h(0) for a solid sphere
and h(10−7) for a hollow sphere for different dislocation densities. For the corresponding
dislocation density, the parameter h0 is determined from the problem of a solid sphere,
for which the pressure q0 is calculated from the problem of a hollow sphere. In this case,
the more accurate the parameter h0 is determined, the more the values of the functions h(0)
and h(10−7) coincide.

Table 2. Comparison of the values of h(0) in the case of a solid sphere and h(10−7) in the case of a
hollow sphere for neo-Hookean material (τ1 = 1, τ2 = 0).

a h0 q0 for a Hollow Sphere h(0) h(10−7)

0 1 0 0 0
0.5 0.7564 0.582 0 0.00009
1 0.3221 −0.107 0 −0.00009

1.5 0.1477 −0.032 0 0.0003

Thus, the numerical analysis showed the validity of the boundary condition (70) for a
solid sphere with dislocations, for which the solution taking into account this condition
takes the form

h(R) =
(

1
2

R3 +
1
2

√
R6 + 4a6

)1/3
− a2

(
1
2

R3 +
1
2

√
R6 + 4a6

)−1/3
. (71)

Such a function is positive ∀R due to the relation R3 = h3 + 3a2h obtained from (45).

5.2. Inflation of Sphere

The inflation of the sphere is defined by the boundary condition (57) in the form

D3(R1) = −q1

[
F2

1 (R1) +
1
4

α2
3(R1)R2

1

]
(72)

which allows calculating h0 in (46), and by the condition that the outer surface is not loaded

D3(R0) = 0, (73)

with the help of which the constant K is found from (67).
For arbitrary incompressible material, the constant has the form

K = F3(R0)
[

F3(R0)(τ1 + I1(R0)τ2)− τ2F3
3 (R0)

]
−
∫ R0

R1

f (R)dR,
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and for Bartenev–Khazanovich material, we have

K = η1F3(R0)−
∫ R0

R1

f (R)dR,

where the function f (R) is determined by Formulas (68) and (69), respectively.
For inflation of the sphere made of the neo-Hookean material, the numerical results are

presented in Figures 1–5 in the case of a thin shell and in Figures 6–9 in the case of a thick
shell. In these figures and below, T3 and T1 are the radial and circumferential Cauchy stresses,
which are components of the symmetric Cauchy stress tensor T = (det F)−1FT ·D [24,31,32].
In this paper, the stresses are determined by the formulas: T3 = F3D3, T1 = F1D1 + F2D2.

Since, in the absence of dislocations, h0 is the outer radius of the sphere after deforma-
tion, and h1 is the inner radius, the curves at a = 0 can be considered to be the dependences
of the applied pressure on the outer and inner radii, respectively. Figures 1, 2, 6, 7 show
that with an increase in dislocation density, the stability loss occurs earlier. In addition,
dislocations reduce the sphere’s resistance to inflation. In both figures, the graphs dif-
fer slightly.

As shown in Section 4, the values h0 < 0 describe the eversion of the sphere. For h0 > 0,
the right-hand branch of the curve with a maximum describes an unstable equilibrium
position. To calculate the inflation stresses, we will use the left branch (h0 > 1 for a = 0)
corresponding to a stable equilibrium position.

For a thin shell (R1 = 0.95R0) made of the neo-Hookean material, pressure q1 = 0.02
corresponds to the following pairs (a, h0) used in Figures 3 (the scaled diagram is in
Figure 4) and 5: (0, 1.034), (0.5, 0.911), (0.9, 0.585), (1.1, 0.428).

For a thin shell (R1 = 0.95R0) made of the Bartenev–Khazanovich material, pressure
q1 = 0.02 corresponds to the following pairs (a, h0) used in Figures 10 (the scaled diagram
is in Figure 11) and 12: (0, 1.035), (0.5, 0.91), (0.9, 0.579), (1.1, 0.41).

For a thick shell (R1 = 0.5R0) made of the neo-Hookean material, pressure q1 = 0.2
corresponds to the following pairs (a, h0) used in Figures 8 and 9: (0, 1.009), (0.5, 0.838),
(0.9, 0.485), (1.1, 0.436).

For a thick shell (R1 = 0.5R0) made of the Bartenev–Khazanovich material, pressure
q1 = 0.2 corresponds to the following pairs (a, h0) used in Figures 13 and 14: (0, 1.008),
(0.5, 0.836), (0.9, 0.479), (1.1, 0.436).

Dislocations do not significantly affect the radial stress in a thin shell (Figures 3 and 4)
and significantly increase this stress in a thick shell (Figure 8). In a thin shell, the circumfer-
ential stress (Figure 5) is distributed more uniformly than in a thick one (Figure 9). In both
cases, dislocations increase the stresses in absolute value.

For the Bartenev–Khazanovich material, the solution to the sphere inflation problem
is presented in Figures 10–18. The dependence of the applied pressure on the parameter
h0, which is the outer radius after deformation in the absence of dislocations, is shown
in Figure 15 (thin shell) and Figure 16 (thick shell). For h0 > 0, the points on the part
of the curve with an extremum correspond to a stable equilibrium position up to the
maximum point and an unstable one — after it. The dependence q1(h0), as well as the
stresses T3 and T1 for the Bartenev–Khazanovich material, are of the same nature as for
the neo-Hookean material. For a thin shell, the radial stress is shown in Figure 10 and,
to scale, in Figure 11, and the circumferential stress is in Figure 12. With this, the stresses
in the Bartenev–Khazanovich material differ insignificantly from the stresses in the neo-
Hookean material. Additionally, the stresses in a thick shell (Figures 13 and 14) are close in
magnitude to the corresponding stresses of the neo-Hookean material (Figures 8 and 9).
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Figure 1. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thin shell by pressure q1, dependence
q1(h0); R0 = 1, R1 = 0.95.
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Figure 2. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thin shell by pressure q1, dependence
q1(h1); R0 = 1, R1 = 0.95.
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Figure 3. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thin shell by pressure q1 = 0.02, radial
Koshi stress T3.
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Figure 4. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thin shell by pressure q1 = 0.02, scaled
radial Koshi stress T3; R0 = 1, R1 = 0.95.
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Figure 5. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thin shell by pressure q1 = 0.02,
circumferential Koshi stress T1.
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Figure 6. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thick shell by pressure q1, dependence
q1(h0); R0 = 1, R1 = 0.5.
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Figure 7. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thick shell by pressure q1, dependence
q1(h1); R0 = 1, R1 = 0.5.
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Figure 8. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thick shell by pressure q1 = 0.2, radial
Koshi stress T3.
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Figure 9. Neo-Hookean material (τ1 = 1, τ2 = 0), inflation of thick shell by pressure q1 = 0.2,
circumferential Koshi stress T1.
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Figure 10. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thin shell by pressure
q1 = 0.02, radial Koshi stress T3.
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Figure 11. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thin shell by pressure
q1 = 0.02, scaled radial Koshi stress T3.
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Figure 12. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thin shell by pressure
q1 = 0.02, circumferential Koshi stress T1.
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Figure 13. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thick shell by pressure
q1 = 0.2, radial Koshi stress T3.
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Figure 14. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thick shell by pressure
q1 = 0.2, circumferential Koshi stress T1.
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Figure 15. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thin shell by pressure q1,
dependence q1(h0); R0 = 1, R1 = 0.95.
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Figure 16. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thick shell by pressure q1,
dependence q1(h0); R0 = 1, R1 = 0.5.
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Figure 17. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thin shell by pressure q1,
dependence q1(h1); R0 = 1, R1 = 0.95.
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Figure 18. Bartenev–Khazanovich material (η1 = 2, η2 = 0), inflation of thick shell by pressure q1,
dependence q1(h1); R0 = 1, R1 = 0.5.
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5.3. Compression of Sphere by Hydrostatic Pressure

For hydrostatic compression of the sphere by the pressure q0, the boundary condi-
tion (57) is given by the relation

D3(R0) = −q0

[
F2

1 (R0) +
1
4

α2
3(R0)R2

0

]
and allows calculating the constant h0 from (46). The no load condition on the inner surface

D3(R1) = 0

determines the unknown K from (67).
For an arbitrary incompressible material, the constant has the form

K = (τ1 + I1(R1)τ2)F2
3 (R1)− τ2F4

3 (R1),

and for Bartenev–Khazanovich material, we have

K = η1F3(R1).

In the case when the hydrostatic pressure q0 acts on the outer surface of the sphere
R = R0, in Figures 19–22 the stable branch for h0 > 0 is the right one. For the convenience of
distinguishing closely spaced curves in Figure 22, the scaled diagram is shown in Figure 23.
The results obtained for the dependence q0(h0) agree with the tension diagram from [13].

For a thin shell, the radial stress (Figure 24) and the circumferential stress (Figure 25)
in the case of a neo-Hookean material differ little from the corresponding stresses of
the Bartenev–Khazanovich material (Figures 26 and 27). The stresses in a thick shell
(Figures 28–31) show that dislocations increase the nonuniformity of dislocation distri-
bution. In this case, the lower density of dislocations in some parts of the sphere causes
higher stresses in absolute value.

For a thin shell (R1 = 0.95R0) made of the neo-Hookean material, pressure q0 = 0.005
corresponds to the following pairs (a, h0) used in Figures 24 and 25: (0, 0.993), (0.5, 0.852),
(0.9, 0.342), (1.1,−0.095).

For a thin shell (R1 = 0.95R0) made of the Bartenev–Khazanovich material, pressure
q0 = 0.005 corresponds to the following pairs (a, h0) used in Figures 26 and 27: (0, 0.993),
(0.5, 0.852), (0.9, 0.341), (1.1,−0.092).

For a thick shell (R1 = 0.5R0) made of the neo-Hookean material, pressure q0 = 0.2
corresponds to the following pairs (a, h0) used in Figures 28 and 29: (0, 0.994), (0.5, 0.793),
(0.9,−0.052), (1.1,−0.155).

For a thick shell (R1 = 0.5R0) made of the Bartenev–Khazanovich material, pressure
q0 = 0.2 corresponds to the following pairs (a, h0) used in Figures 30 and 31: (0, 0.994),
(0.1, 0.987), (0.2, 0.965), (0.5, 0.792).

As can be seen from the numerical analysis, the results for the neo-Hookean ma-
terial and the Bartenev–Khazanovich material differ insignificantly. However, as seen
in Figures 7 and 18, the q1 pressure values that correspond to the stable branch for the
neo-Hookean material, for the Bartenev–Khazanovich material, may already correspond to
the unstable branch.

Both these models are significant because they are widely used in research, experimen-
tally confirmed and mathematically correct since they satisfy the condition of ellipticity at
any deformation [24].
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Figure 19. Neo-Hookean material (τ1 = 1, τ2 = 0), hydrostatic compression of thin shell, dependence
q0(h0); R0 = 1, R1 = 0.95.
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Figure 20. Neo-Hookean material (τ1 = 1, τ2 = 0), hydrostatic compression of thick shell, depen-
dence q0(h0); R0 = 1, R1 = 0.5.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

h0

0.00

0.02

0.04

0.06

0.08

0.10

q 0

a=0

a=0.5

a=0.9

a=1.1

Figure 21. Bartenev–Khazanovich material (η1 = 2, η2 = 0), hydrostatic compression of thin shell,
dependence q0(h0); R0 = 1, R1 = 0.95.
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Figure 22. Bartenev–Khazanovich material (η1 = 2, η2 = 0), hydrostatic compression of thick shell,
dependence q0(h0); R0 = 1, R1 = 0.5.
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Figure 23. Bartenev–Khazanovich material (η1 = 2, η2 = 0), hydrostatic compression of thick shell,
scaled dependence q0(h0); R0 = 1, R1 = 0.5.
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Figure 24. Neo-Hookean material (τ1 = 1, τ2 = 0), hydrostatic compression of thin shell by pressure
q0 = 0.005, radial Koshi stress T3.
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Figure 25. Neo-Hookean material (τ1 = 1, τ2 = 0), hydrostatic compression of thin shell by pressure
q1 = 0.005, circumferential Koshi stress T1.
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Figure 26. Bartenev–Khazanovich material (η1 = 2, η2 = 0), hydrostatic compression of thin shell by
pressure q0 = 0.005, radial Koshi stress T3.
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Figure 27. Bartenev–Khazanovich material (η1 = 2, η2 = 0), hydrostatic compression of thin shell by
pressure q0 = 0.005, circumferential Koshi stress T1.
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Figure 28. Neo-Hookean material (τ1 = 1, τ2 = 0), hydrostatic compression of thick shell by pressure
q0 = 0.2, radial Koshi stress T3.
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Figure 29. Neo-Hookean material (τ1 = 1, τ2 = 0), hydrostatic compression of thick shell by pressure
q0 = 0.2, circumferential Koshi stress T1.
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Figure 30. Bartenev–Khazanovich material (η1 = 2, η2 = 0), hydrostatic compression of thick shell
by pressure q0 = 0.2, radial Koshi stress T3.
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Figure 31. Bartenev–Khazanovich material (η1 = 2, η2 = 0), hydrostatic compression of thick shell
by pressure q0 = 0.2, circumferential Koshi stress T1.

5.4. Eigenstresses in Sphere

The case of eigenstresses arising due to the presence of dislocations is investigated for
a shell made of the neo-Hookean material (Figures 32 and 33). In the absence of dislocations,
the stresses are identically zero.

For a thin shell (R1 = 0.95R0) made of the neo-Hookean material, pressures q0 = q1 = 0
correspond to the following pairs (a, h0) used in Figures 32 and 33: (0, 1), (0.5, 0.862),
(0.9, 0.401), (1.1, 0.021).

Figure 34 shows the dependence on the dislocation parameter a2 of the quantity h0 for
a thick shell R1 = 0.5R0 in the absence of an external load.
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Figure 32. Thin shell made of neo-Hookean material (τ1 = 1, τ2 = 0), radial Koshi eigenstress T3.
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Figure 33. Thin shell made of neo-Hookean material (τ1 = 1, τ2 = 0), circumferential Koshi
eigenstress T1.
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Figure 34. Neo-Hookean material (τ1 = 1, τ2 = 0), eigenstresses in sphere, dependence of quantity
h0 on dislocation parameter a2; R0 = 1, R1 = 0.5.

6. Conclusions

In this work, we have solved the problem of large deformations of a hollow elastic
sphere with distributed screw dislocations in the radial direction under loading by dis-
tributed pressure. The stress state of thin and thick shells was investigated for inflation
and hydrostatic compression.

When solving the problem, we used the spherical symmetry of the distortion and
stress tensors. The tensor equilibrium equation is reduced to a single scalar one which
is transformed to a differential equation with respect to the pressure function in an in-
compressible body, not expressed in terms of deformation. The equation for one of the
distortions, obtained from the incompressibility condition is reduced by introducing an
auxiliary function to a cubic equation for this function. Together with the constitutive
equations, the system of governing equations is closed by three scalar incompatibility
equations, of which only one is independent.
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The boundary conditions are the conditions of the presence of pressure on the in-
ner surface of the sphere for inflation and on the outer surface — during hydrostatic
compression. It is found that the boundary condition on the inner surface of a sphere of
infinitesimal radius can be set with a small error in the same way as for a solid sphere.
For numerical analysis, we used models of two incompressible materials: neo-Hookean
and Bartenev–Khazanovich. A comparison of the stress state in the presence of dislocations
and in their absence is carried out. It is observed that the dislocations have a nonlinear
effect on the stresses.
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