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Abstract: Automatic segmentation of the lungs in Chest X-ray images (CXRs) is a key step in the
screening and diagnosis of related diseases. There are many opacities in the lungs in the CXRs of
patients, which makes the lungs difficult to segment. In order to solve this problem, this paper
proposes a segmentation algorithm based on U-Net. This article introduces variational auto-encoder
(VAE) in each layer of the decoder-encoder. VAE can extract high-level semantic information, such
as the symmetrical relationship between the left and right thoraxes in most cases. The fusion of the
features of VAE and the features of convolution can improve the ability of the network to extract
features. This paper proposes a three-terminal attention mechanism. The attention mechanism uses
the channel and spatial attention module to automatically highlight the target area and improve the
performance of lung segmentation. At the same time, the three-terminal attention mechanism uses
the advanced semantics of high-scale features to improve the positioning and recognition capabilities
of the attention mechanism, suppress background noise, and highlight target features. Experimental
results on two different datasets show that the accuracy (ACC), recall (R), F1-Score and Jaccard
values of the algorithm proposed in this paper are the highest on the two datasets, indicating that the
algorithm in this paper is better than other state-of-the-art algorithms.

Keywords: chest X-ray images; U-Net; variational auto-encoder; three-terminal attention mechanism;
lung segmentation

1. Introduction

The lungs are the primary sites of diseases such as pneumonia, tuberculosis, emphy-
sema, and lung cancer [1–3]. In order to be able to obtain the lung lesions of different
patients, the corresponding image information can be obtained through X-ray medical
imaging technology [4]. CXRs, as a tool for visualization of thoracic cavity tissues, are
fast, convenient and simple in technology. CXRs can clearly reveal a large amount of
information about lung diseases, improving the basis for accurate diagnosis and treatment.
CXRs can help physicians to judge the type and condition of the disease and propose the
corresponding treatment plan [5]. Due to the poor diagnostic sensitivity of CXRs, only
experienced physicians can analyze and interpret CXRs with time and effort. A typical
CXRs analysis process includes the following steps: extracting the region of interest (ROI),
extracting the typical features in the ROI, and performing diagnosis based on the typical
features [6]. The ROI is the lung region within the bony thorax and its correct identification
is a crucial prerequisite. In most cases, the left and right thoraxes are symmetrical. When
analyzing the CXRs, the physicians first obtain the lung structure to make an accurate
diagnosis. At present, the extraction structure of the lungs is still mainly based on the
physician’s experience, and manual marking is the main method. Manual labeling is
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time-consuming and labor-intensive, which increases the burden on physicians. At the
same time, manual labeling has a subjective bias, which is not conducive to discussing
the condition between physicians [7]. Therefore, the development of an algorithm for
automatic lung segmentation has great clinical application value.

Segmenting lungs is a critical step for diagnosing diseases such as pneumonia, tuber-
culosis [8]. Many authors have pointed out that segmenting lungs is very important for
other processes. The authors of [9] segment lungs before detecting on COVID-19. When
the authors of [10] detect rotation in CXRs, they report that poor lung segmentation causes
the accuracy of the model to drop rapidly. The authors of [11] propose a technique for the
detection of pulmonary abnormalities and show that lung segmentation is a critical step
for subsequent classification.

Accurately segmenting the lungs is a challenging image processing task [12]. The
lungs have a strong transmittance to X-rays, and the gray value in the corresponding area
of CXR is low. The surrounding tissues have low transmittance to X-rays and the gray
value in the corresponding area of CXR is high. Figure 1 lists the CXRs of healthy people,
patients with a small number of opacities and patients with a large number of opacities.
In healthy people’s CXRs, the boundary between the lung and the surrounding tissues is
obvious, clear and prominent. There are slight opacities in the lungs of CXRs in patients
with a small number of opacities, especially at the edges of the lungs. The slight opacities
reduce the contrast between the edge of the lung and the surrounding tissues and make
segmentation difficult. For CXRs in patients with a large number of opacities, the boundary
between the lungs and surrounding tissues is blurred. To a large extent, it is necessary to
rely on the rich experience of physicians to correctly segment the lungs.

Figure 1. (a) The chest X-ray image for healthy people. (b) The chest X-ray image in patients with a
small number of opacities. (c) The chest X-ray image in patients with a large number of opacities.

Artificial intelligence has made many outstanding achievements in the medical
field [13,14]. Algorithms based on artificial intelligence can automatically extract target
features and resist the influence of interference such as noise. These algorithms are robust
and effective. To overcome the effects of opacities and completely segment the lungs, this
paper proposes a new lung segmentation algorithm based on U-Net [15]. Because U-Net
can not extract sufficient features from the data affected by opacities, this paper proposes
a structure based on the fusion of VAE [16] and convolutional layer. VAE is an effective
encoder that fits the distribution of training data and uses resampling to obtain latent
spatial characteristics. These latent spatial features as high-level semantic information can
effectively promote the segmentation task. the fusion VAE (FVAE) can effectively extract
rich features and obtain good segmentation results. In the encoder, the max-pooling indices
is recorded during the maximum pooling in the max-pooling step, so that the up-sampling
operation of the decoder retains accurate position information. In order to identify useful
features from the data interfered by opacities to improve the segmentation effect of the
model, this paper proposes a three-terminal attention mechanism. The three-terminal
attention mechanism uses the spatial and channel attention mechanism [17] to correct
the input features, suppress background noise and highlight the target area. At the same
time, the use of high-scale features, which have the characteristics of paying attention to
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high-level semantics such as position and contour while ignoring information such as
noise, improves the network’s ability to locate and recognize targets in low-scale features.

The main contributions of our work can be summarized as follows:
1. In the encoder-decoder structure, this paper introduces VAE into the convolutional

layer to improve the ability of the network to extract features. Simultaneously, the network
records the max-pooling indices computed in the max-pooling step and uses the he max-
pooling indices to perform accurate upsampling during upsampling.

2. This paper proposes a three-terminal attention mechanism. While suppressing
background noise and highlighting the target through the attention mechanism, the high-
level semantic information of high-scale features is used to improve the network’s ability
to locate and recognize target features in low-scale features.

2. Related Work

The ability to extract features automatically has enabled deep learning to achieve
satisfactory results in image segmentation tasks. Image semantic segmentation is pixel
level. Because the traditional Convolutional Neural Networks (CNN) for classification loses
image details during convolution and pooling, the feature map size gradually becomes
smaller. So it is impossible to indicate which object each pixel belongs to, and achieve
accurate segmentation. In order to use CNN for image segmentation tasks, scholars propose
different methods.

Long converts the traditional fully connected CNN into a deconvolution layer to
achieve end-to-end image segmentation and proposes a Fully convolutional network
(FCN) [18]. FCN has become the basic framework of semantic segmentation. FCN has
the problem of ignoring advanced semantic information, which leads to the loss of edge
information. In order to solve this problem, Kendall proposes SegNet [19] based on FCN.
Kendall introduces an encoding-decoding network structure to deep learning for the first
time. Compared with FCN, the decoding network in the encoding-decoding network
structure uses deconvolution to gradually restore the feature map to the same size as
the segmentation result. This decoding process can extract more advanced semantic
information, which is conducive to the restoration of detailed information. Downsampling
destroys the integrity of high-frequency information. SegNet stores the max-pooling indices
computed in the max-pooling step and use the max-pooling indices for upsampling in the
decoder. Although the max-pooling indices helps maintain the integrity of high-frequency
information, it also ignores neighboring information during upsampling.

Compared with natural images, medical images have regular shapes and simple
textures, and it is difficult to obtain a large number of medical images. According to
the characteristics of medical images, Ronneberger proposes U-Net [15] with a U-shaped
encoding-decoding network structure. The encoder can gradually extract the contextual
semantic information of the segmentation target in the entire image through convolution
and downsampling. The decoder gradually recovers the detailed information that provides
the basis for accurate segmentation and positioning through convolution and upsampling.
At the same time, the skip connection transfers the low-level features of the encoder to
the decoder to achieve feature fusion and solve the problem of insufficient details of the
decoder. Inspired by the application of the attention mechanism in other fields, Oktay
proposed AttU-Net [20]. Oktay proposes an attention model and adds it to the end of
the jump connection. The attention model makes the network pay more attention to the
useful information for the segmentation task, and the segmentation result is more accurate.
Zhou introduces nested and dense skip connections to U-Net to enhance the connection
between encoder and decoder, and proposes U-Net++ [21]. With the widespread use of
U-Net networks, U-Net is combined with other modules to obtain lots of U-Net-based
networks, such as R2Unet [22].

Based on the above work, many scholars apply deep learning to the lung segmentation
task of CXR images. Inspired by FCN, Hooda proposed VFCN [23] to fuse all the features
of the decoder and then directly use two upsampling to restore the output size. Simply
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upsampling twice cannot effectively extract advanced semantic features, resulting in the
same problem as FCN. Mittal [24] introduces the skip connection to SegNet and proposes
LF_Seg. In LF_Seg, the features of each layer are not only passed to the next layer, but also
fused with the output of the next layer to achieve a dense connection. Inspired by the idea
of adversarial networks, Dai [25] introduces a discriminant network into the segmented
network and proposes Scan. The discriminant network can learn the physiological structure
of the human body in the CXRs and guide the segmentation network to achieve accurate
segmentation. For abnormal CXRs, the boundary between the lung and surrounding
tissue is not clear. In order to achieve precise segmentation, context information or some
immutable hidden features are required. On the one hand, Tang [26] uses Multimodal
Unsupervised Image-to-Image Translation [27] (MUNIT) to synthesize abnormal CXR
images to increase the complexity of training samples. On the other hand, Tang uses
Criss-cross Network [28] (CCNet) to extract contextual information. Based on CCNet, Tang
proposes the XLSor network. Instead of using the attention mechanism, Selvan attempts to
obtain latent spatial features such as thoracic contours to locate the lung area. Selvan [29]
proposes VAEU-Net to extract latent spatial features from low-scale features through VAE
and improve the segmentation ability of the U-Net network. However, this method of
extracting the latent spatial features of low-scale features has limited improvement in the
segmentation performance of U-Net. Souza [30] divides the segmentation task into two
steps. First, Souza divides the CXRs into image blocks and classifies the image blocks
through the classification network to obtain the rough segmentation result. Then Souza
uses the reconstruction network to correct the coarse segmentation result and fuses the
corrected result with the coarse segmentation result to obtain the lung area. All of the
above deep learning algorithms, except XLsor, are trained and tested on simple data sets
and are not evaluated on complex data sets.

3. Materials and Methods
3.1. Dataset

This article uses four public datasets for training and testing: (1) Montgomery dataset [31]
includes 138 CXR images with a resolution of 4020 × 4892, where 80 CXR images are from
normal patients, and 58 CXR images are from patients with manifested tuberculosis (TB).
Segmentation results are divided into left and right lungs; (2) Shenzhen Hospital (SH)
dataset [31] includes 662 images, 336 images of which are from unhealthy people. Stirenko
et al. provide the segmentation results of this dataset [32]; (3) Tang et al. selecte 100 abnor-
mal CXRs with many opacities in the lung area from the Chest X-Ray dataset to create the
Small NIH (SNIH) dataset [26]; (4) The Japanese Society of Radiological Technology(JRST)
dataset [33] is released by the Japanese Society of Radiological Technology. It comprises
154 images of patients with lung nodules and 93 images of people without the disease.

We use the Montgomery dataset and Shenzhen Hospital (SH) dataset for training, and
then compare the method of this paper with other segmentation methods on the SNIH
dataset and the JRST dataset, respectively. For training and testing, we scale the images in
the training and test sets to 512 × 512.

Data Enhancement

Medical image datasets contain fewer samples and often require data enhancement
to increase the number and complexity of training samples. Data enhancement can make
the training samples contain the type of test samples as much as possible, and improve
the generalization ability of the network. We first perform a horizontal flip of the training
sample and a rotation transformation between−20 degrees and 20 degrees with an interval
of 5 degrees. These basic transformations can simulate the different postures of the person
when doing the examination. The Montgomery dataset and Shenzhen Hospital (SH) dataset
only include CXRs of healthy people and patients with moderate pneumonia. In order to
simulate the presence of a large number of opacities in the lungs, we use block masking.
We think of a large number of opacities in the lungs as missing data. As shown in Figure 2,
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the block masking simulates the opacities, increasing the complexity and diversity of the
samples. If the width of the block masking is equal to the width of the image, the height
of the block masking is half or one-third of the image’s height. If the height of the block
masking is equal to the height of the image, the width of the block masking is half or
one-third of the image’s width.

Figure 2. The block masking. (a) Original image (b) With block masking.

3.2. Model Architecture

U-Net with a U-shaped structure and jump connection is very suitable for segmenting
medical images. This article uses U-Net as the network skeleton. The network architecture
of this article is shown in Figure 3. The encoder of the model in this paper includes five
layers. The first four layers are composed of FVAE and downsampling. This article uses
maximum pooling to down-sampling and records the max-pooling indices computed in the
max-pooling step. Compared with the previous four layers, the fifth layer of the encoder
consists of two convolutions with a convolution kernel size of 3 × 3 and a stride of 1. Each
convolution is followed by Batch Normalization and ReLU. The number of channels of
the encoder is a multiple of 32. The decoder of the model in this paper has four layers.
Each layer includes two convolutions and the parameter settings of the convolutions are
the same as the fifth layer of the encoder. The reverse operation of maximum pooling is
used in the decoder for up-sampling. We use the maximum pooling sampling position for
accurate up-sampling during upsampling.

3.2.1. Fusion Variational Autoencoder

In the encoder, we proposed FVAE to replace the convolutional layer of U-Net. The
structure of FVAE is shown in Figure 3. FVAE first includes two convolutions with a
convolution kernel size of 3 × 3 and a stride of 1. Each convolution is followed by Batch
Normalization and ReLU. After two convolutions, we use VAE to extract features. The
structure of VAE is shown in Figure 3. VAE first converts the input features into one-
dimensional features, and then performs a convolution with a kernel 1 × 1 and a stride
of 1 and ReLU to obtain 2 × nlaten parameters. These 2 × nlaten are the µ and σ2 of
the nlaten Gaussian functions. We set nlaten to 32. Then VAE obtains the space features
through resampling.

High level semantic features zl , such as the relative position between the left and right
lungs and the symmetrical relationship between the left and right thoraxes, are helpful
for accurate lung segmentation. In order to effectively learn the features zl , this paper
assumes that the features zl conform to the Gaussian distribution P(zl) = N(zl ; 0, 1). For
the input xl , it is not easy to obtain the posterior probability P( zl |xl) of the feature zl .
VAE combines variational Bayes and neural networks to learn the parameters derived by
variational neural networks and then obtains the likelihood of posterior inference P( zl |xl).
The VAE(θ) network can predict the parameters

(
µθ , σ2

θ

)
of the Gaussian function. After the

parameters
(
µθ , σ2

θ

)
of the Gaussian function are obtained, this paper performs resampling

in the hidden space as shown in Figure 3 to get the latent space features zl . Because VAE
can obtain rich characteristics, VAE has been widely used in generating networks. For
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the l-th layer of the encoder, VAE extracts the features zl by minimizing the posterior
probability P(zl |xl ) and the feature distribution function P(zl). The optimization objective
of a VAE is the evidence lower bound (ELBO) [34,35] by

LVAE_l = KL[P(zl |xl )‖P(zl) ] (1)

The LVAE_l is the KL divergence between P(zl |xl ) and P(zl) = N(zl ; 0, 1). Where xl
represents the input feature.

Figure 3. The proposed architecture.

For U-Net, the convolutional layer of each layer can extract plenty of detailed infor-
mation related to the task. However, opacities make the background and the target less
distinguishable, and the convolutional layers are too few. As a result, U-Net cannot extract
sufficient high-level semantic features, such as position and edge information. The segmen-
tation results are not ideal. VAE can obtain high-level semantic information in the data by
estimating the data distribution, such as the relative position of the lungs and surrounding
organs. This high-level semantic information is beneficial for locating the contours of the
lungs and performing accurate segmentation. However, the features extracted by VAE are
not refined enough, and a great deal of detailed information is lost. In order to achieve
the complementary advantages of the convolutional layer and VAE, we splice the features
of the convolutional layer with the features of the VAE. We then use the convolutional
layer with a convolution kernel of 3 × 3 to perform feature fusion and channel number
shrinking. Through feature fusion, the convolutional layer and VAE can complement each
other’s advantages. Therefore, FVAE can extract both detailed information and high-level
semantic information, which improves the model’s ability to extract features.
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3.2.2. Three-Terminal Attention Mechanism

The attention mechanism enables the model to learn where to look and what is
essential. The improvement of the attention mechanism has attracted the attention of many
scholars. In order to increase the attention to task-related features and reduce the influence
of interference information such as background noise during the jump connection, this
paper proposes a three-terminal attention mechanism. The structure of the three-terminal
attention mechanism is shown in Figure 4.

Figure 4. The schematic diagram of the three-terminal attention mechanism.

The output feature xl of the l-th layer of the encoder and the output feature gl of the
corresponding layer of the decoder are added to perform feature fusion. Then this article
uses the SE module to calculate the channel attention coefficient Wc. The SE module [17]
is composed of global pooling (GP), fully connected layer (FC), ReLu and Sigmoid. xl
uses the same two convolutions as the decoder to obtain preliminary features, where the
number of channels is 32. We then use a convolution with the number of channels of 1 and
the convolution kernel of 3 × 3, and the sigmoid to obtain the spatial attention coefficient
Ws1. xl+1

′ from the output of the adjacent high-scale attention mechanism or the feature
of the convolutional layer is up-sampling to obtain the same size as xl . xl+1

′ obtains the
spatial attention coefficient Ws2 in the same way as xl . Ws1 and Ws2 are spliced by channel.
We then use a convolution with a convolution kernel size of 3 × 3 and channel number of
1, and sigmoid to perform feature fusion and obtain the final spatial attention coefficient
Ws. Finally, the fusion feature of xl and gl is multiplied by Wc and Ws to obtain the final
output xl

′.
The channel attention mechanism captures the interaction between channels in a very

light way, effectively increasing the channel’s attention. Wc performs adaptive channel
correction on the fusion feature of xl and gl by weighting the channels. The spatial attention
mechanism can modify features to highlight useful features and weaken useless features.
This paper uses xl+1

′ to enhance the spatial attention coefficient Ws1 of xl and improve
the model’s attention to space. The high-scale feature, xl+1

′, contains high-level semantic
information. xl+1

′ pays more attention to large-scale information such as target contour
and location, while ignoring detailed information such as noise. On the one hand, xl+1

′

strengthens the model’s attention to the target area. On the other hand, xl+1
′ guides the

model to suppress interference information such as background noise in xl .

3.3. Objective Function

For the segmentation task in this paper, we use focal loss (L f l) [36] and dice loss
(Ldice) [37] as the loss function. The loss function in this paper, combined with the segmen-
tation task and multi-scale latent space feature extraction task, is defined as:

Lseg = L f l + Ldice +
5

∑
i=1

KL[P(zi|xi )‖P(zi). ] (2)

3.4. Implementation Environment

After data enhancement, we train our model for 500 epochs. The equipment used in
all experiments is a PC with an NVIDIA GeForce GTX 2080Ti GPU and Intel Xeon E5 CPU
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@2.5 GHz. The following hyperparameters are used in the training process of this article
and the comparison algorithms: the number of epochs = 500, batch size = 3, nlaten = 32.
ADAM optimization is used with a learning rate of 0.001. All the implementation is done
in PyTorch 1.5.0 platform (https://pytorch.org/ (accessed on 20 January 2021)).

3.5. Evaluation Metrics

During the experiment, we selected the following six evaluation indicators to evaluate
the segmentation effect.

1. Accuracy [3]: accuracy reflects the model’s ability to distinguish all samples correctly.

Acc =
TP + TN

TP + FP + FN + TN
, (3)

where TP indicates the number of positive samples correctly classified as positive samples.
TN refers to the number of negative samples correctly classified. FN is the number of
negative samples that are incorrectly classified as positive samples. FP represents the
number of negative samples correctly classified as positive samples.

2. RECALL [3]: recall represents the percentage of correctly classified positive samples
to all positive samples.

R =
TP

TP + FN
. (4)

3. SPECIFICITY [3]: specificity indicates the proportion of negative samples that are
correctly classified

SP =
TN

TN + FP
. (5)

4. PRECISION [3]: precision describes the percentage of samples that are classified as
positive samples among the correctly classified samples

P=
TP

TP + FP
. (6)

5. F1-SCORE [3]: when precision is large, recall is small. Precision and recall contradict
each other. F1-Score is the arithmetic average of precision and recall and can better evaluate
the segmentation effect.

F1−Score =
2× P× R

P + R
, (7)

where P represents the precision. R presents the recall.
6. JACCARD [12]: Jaccard measures the similarity between two sets.

Jaccard =
TP

TP + FP + FN
. (8)

For the six evaluation indexes, a large value corresponds to a good segmentation effect.
At the same time, this article records and compares the running time.

4. Results and Discussion
4.1. Comparison with State-of-the-Art Algorithms

This article tests the model of this article on the SNIH dataset and the JRST dataset.
This paper compares the algorithm in this article with FCN [18], SegNet [19], U-Net [15],
AttU-Net [20], LF_Seg [24] and VAEUNet [29] to evaluate the effectiveness and advanced
nature of the proposed algorithm. All comparison algorithms adopt the network structure
and parameters of the corresponding paper. FCN uses the pre-trained VGG16 as the feature
extraction network.

https://pytorch.org/
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4.1.1. Statistical Results

The statistical results are shown in Tables 1 and 2. The maximum values of the
corresponding index in the tables are marked in bold. As can be seen from Table 1, the
ACC, R, SP, P, F1-Score and Jaccard of U-Net are 0.9673, 0.9062, 0.9861, 0.9479, 0.9244 and
0.8344, respectively. These indicators of U-Net are better than those of FCN, SegNet and
LF_Seg. Compared with U-Net, AttU-Net introduces the spatial attention mechanism to
U-Net. AttU-Net is better than U-Net. VAEU-Net integrates VAE and U-Net to improve
the segmentation effect of U-Net. Although VAEU-Net also introduced VAE, it only uses
VAE as a part of the last layer of the decoder. VAEU-NET is only higher in ACC than
U-Net. The ACC, R, SP, P, F1-Score and Jaccard of our algorithm are 0.9731, 0.9178, 0.9886,
0.9573,0.9358 and 0.8817, respectively. All indicators of our algorithm are better than those
of the comparison algorithms. In terms of average running time, our algorithm takes the
longest time. The longest time is caused by the complexity of our network structure. The
results show that our algorithm achieves the best segmentation effect on the SNIH dataset.

Table 1. Comparison with other state-of-the-art algorithms on the SNIH dataset.

METHOD ACC R SP P F1-Score Jaccard Time (ms)

FCN 0.9598 0.8296 0.9838 0.9306 0.8721 0.8344 25.11
SegNet 0.9676 0.8897 0.9906 0.9640 0.9214 0.8545 25.88
U-Net 0.9673 0.9062 0.9861 0.9479 0.9244 0.8618 33.01

AttU-Net 0.9698 0.9035 0.9882 0.9557 0.9260 0.8624 42.45
LF_Seg 0.9676 0.9047 0.9846 0.9411 0.9201 0.8605 29.68

VAEU-Net 0.9684 0.9060 0.9861 0.9460 0.9226 0.8615 37.14
OUR 0.9731 0.9178 0.9886 0.9573 0.9358 0.8817 44.36

Table 2 lists the statistical results of different algorithms on the JRST dataset. FCN has
the shortest average running time. Except for P, other indicators of FCN are lower than
that of other algorithms. For FCN, insufficient detail information in the decoding process
leads to poor segmentation results. Compared with FCN, SegNet records the max-pooling
indices computed in the max-pooling step and performs accurate upsampling during the
upsampling process. The operation makes the segmentation performance of SegNet better
than FCN. The SP of SegNet is the maximum value. The ACC, R, SP, P, F1-Score and
Jaccard of U-Net are 0.9658, 0.9325, 0.9802, 0.9534, 0.9397 and 0.8915, respectively. UNET’s
statistical results are overall better than FCN and SegNet. Compared with U-Net, the
indicators of AttU-Net, LF_Seg and VAEU-Net are improved. The P of AttU-Net is the
maximum value. The algorithm in this paper achieves the best on ACC R, F1-Score and
Jaccard. The SP of our algorithm is second only to the maximum. Although the P of our
algorithm is not the highest, F1-Score, a comprehensive indicator of P and R, achieves the
best. These indicate that the segmentation effect of our algorithm compared with other
algorithms on the JRST dataset is greatly improved.

Table 2. Comparison with other state-of-the-art algorithms on the JRST dataset.

METHOD ACC R SP P F1-Score Jaccard Time (ms)

FCN 0.9609 0.9121 0.9824 0.9513 0.9274 0.8727 25.21
SegNet 0.9692 0.9208 0.9897 0.9378 0.9292 0.8754 25.73
U-Net 0.9658 0.9325 0.9802 0.9534 0.9397 0.8915 33.05

AttU-Net 0.9734 0.9388 0.9867 0.9732 0.9545 0.9149 42.34
LF_Seg 0.9701 0.9321 0.9871 0.9689 0.9489 0.9046 29.71

VAEU-Net 0.9721 0.9488 0.9851 0.9651 0.9561 0.9172 37.13
OUR 0.9781 0.9504 0.9884 0.9693 0.9588 0.9201 44.38
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It can be seen from the above results that the ACC, R, F1-Score and Jaccard of our
algorithm achieve the maximum value on both datasets. It shows that our algorithm has
better robustness and stability. At the same time, the average running time of our algorithm
is also the largest. Adding modules will inevitably increase the amount of calculation. The
increase in average running time is expected. The average running time of our algorithm
are 44.36 ms and 44.38 ms on the SNIH dataset and the JRST dataset, respectively. The
average running time of our algorithm is acceptable in the application.

4.1.2. Segmentation Results

For further comparison, Figures 5–7 show the segmentation results. Figures 5 and 6
show the CXRS of patients. The red boxes in Figures 5 and 6 are the areas with opacities
for comparison. Figure 7 shows the CXRS of healthy people.

The segmentation results on the NIH dataset are shown in Figure 5. There are a lot of
opacities at the junction of lung and diaphragm. Opacities make the boundary between
the lung and the diaphragm difficult to identify. FCN and SegNet lose a multitude of the
details in the decoding process. The lack of detail makes the obtained contours smooth
and incorrectly divides the bottom area of the lungs. Since the jump connection makes
up for the detailed information in the decoding process, the segmentation accuracy of
U-Net is improved to a certain extent. Compared with U-Net, the segmentation results of
AttU-Net, LF_Seg and VAEU-Net improve the segmentation results of most regions of the
lung, except for the regions that are hard-to-separate. Our algorithm has a strong ability to
extract features and overcomes the problem of indistinguishability between the target and
the background caused by opacities. Our algorithm achieves the best segmentation effect.
For the segmentation results of the left lungs of two patients, the segmentation results
obtained by the algorithm in this paper are the most complete among all the algorithms.

The segmentation results of the patient’s CXRs in the JRST dataset are shown in Figure 6.
There is a severely blurred area in the left lung of the original image in the first row. The
opacity makes the heart and lung tissues indistinguishable. For the area, FCN, SegNet,
U-Net, AttU-Net and LFSeg misclassify most of the pixels in this area belonging to the
lungs. Except for the bottom of the left lung, the accuracy of VAEU-Net for lungs is very
high. Our algorithm not only overcomes the influence of the fuzzy region mentioned
before, but also accurately segments the boundary between lung and diaphragm. In the
original image on the third line, a large area of the left lung is covered by a large amount
of opacities. The boundary between the left lung and surrounding tissue is very blurred.
FCN, SegNet and U-Net have poor segmentation effects on the left lung, especially the
bottom of the left lung. Although the segmentation results are still incomplete, AttU-Net
and LF_Seg improve the the ability to segment the bottom of the lung. VAEU-Net and our
algorithm obtain the best segmentation results.

The segmentation results of CXRs for healthy people in the JRST dataset are shown
in Figure 7. In the two original images, the boundary between the lung and the sur-
rounding tissue is clearly visible and the contrast is high. The proposed algorithm and
other algorithms can achieve good segmentation results. The results are very close to the
ground truths. The above results shows that the proposed algorithm and the comparison
algorithms can segment the lungs of healthy people very well.
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Figure 5. The segmentation results in the SNIH dataset. (a,j) input images; (b,k) ground truth;
(c,l) FCN; (d,m) SegNet; (e,n) U-Net; (f,o) AttU-Net; (g,p) LF_Seg; (h,q) VAEU-Net; (i,r) OUR.

Figure 6. The segmentation results of patients in JRST dataset. (a,j) input images; (b,k) ground truth;
(c,l) FCN; (d,m) SegNet; (e,n) U-Net; (f,o) AttU-Net; (g,p) LF_Seg; (h,q) VAEU-Net; (i,r) OUR.
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Figure 7. The segmentation results of healthy people in JRST dataset. (a,j) input images; (b,k) ground
truth; (c,l) FCN; (d,m) SegNet; (e,n) U-Net; (f,o) AttU-Net; (g,p) LF_Seg; (h,q) VAEU-Net; (i,r) OUR

It can be seen from Figures 5–7 that our algorithm’s segmentation results in different
cases are better than those of the comparison algorithms. The results once again show that
our algorithm is feasible, effective and advanced.

4.1.3. Limitation

Although our algorithm achieves the best segmentation effect, our algorithm still has
some limitations. As shown in Figure 8, the extremely large number of opacities makes
it difficult to distinguish between the lung and the diaphragm. Although our algorithm
correctly segments most lung regions, our algorithm fails to correctly segment the lung
area in the red box. It can be seen that, when there are very many opacities in the lung area,
our algorithm fails to correctly identify the local lung area and mistakenly divides part of
the lung area into the background. The defect is a problem that we need to work hard to
solve in the future.

Figure 8. The shortcoming of the algorithm in this paper. (a) input image; (b) ground truth; (c) OUR.
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4.2. Ablation Study

In order to further illustrate that the FVAE and three-terminal attention mechanism
proposed in this article have the ability to improve the segmentation effect of U-Net,
this article conducts the following comparative experiments. This article compares U-
Net, U-Net+FVAE and the algorithm of this article on the NIH dataset and JRST dataset.
U-Net+FVAE indicates that FVAE is used to replace the convolutional layer of U-Net.

As shown in Table 3, all indicators of U-Net + FVAE on the two data sets have been
significantly improved. Compared with U-Net, the R, P, F1-Score and Jaccard of U-NET
+ FVAE are improved by about 1% and 2% on the SNIH dataset and the JRST dataset,
respectively. These indicate that the introduction of VAE into the convolutional layer in
this paper is effective, and the proposed FVAE improves the segmentation performance of
the U-Net network.

Compared with U-Net + FVAE, the algorithm of this paper, which combines FVAE and
the three-terminal attention mechanism, gets a certain improvement in statistical results.
The improvement of segmentation performance illustrates the effectiveness and reliability
of the three-terminal attention mechanism proposed in this paper.

As FVAE and the three-terminal attention mechanism are gradually added to the
U-Net network, the average running time is gradually increasing. It is due to the increase
in the number of network parameters. The performance improvement of our algorithm
comes at the cost of an increase in average running time. The average running time is still
within the acceptable range.

At the same time, this article computes t-test between U-Net and two other algorithms.
The results of the t-test show that the p-value is less than 0.05, which is statistically sig-
nificant. The above results show that the FVAE and three-terminal attention mechanism
proposed in this paper can effectively improve the effect of U-Net on lung segmentation
in CXRs.

Table 3. Comparison with other state-of-the-art algorithms on the SNIH and JRST dataset.

DATASET METHOD ACC R SP P F1-Score Jaccard Time (ms)

U-Net 0.9673 0.9062 0.9861 0.9479 0.9244 0.8618 33.01
NIH U-Net + FVAE 0.9701 0.9135 0.9885 0.9567 0.9334 0.8777 39.27

OUR 0.9731 0.9178 0.9886 0.9573 0.9358 0.8817 44.36

U-Net 0.9658 0.9325 0.9802 0.9534 0.9397 0.8915 33.05
JRST U-Net + FVAE 0.9750 0.9497 0.9861 0.9673 0.9578 0.9176 39.25

OUR 0.9781 0.9504 0.9884 0.9693 0.9588 0.9201 44.38

5. Conclusions

Automatic lung segmentation is critical for many subsequent tasks. CXRs of patients
with opacities makes it challenging to segment the lungs. To overcome the influence of
opacities, this paper proposes a new segmentation algorithm based on U-Net. In order to
solve the insufficient feature extraction ability of U-Net when segmenting lungs in CXRs
with opacities, this paper introduces VAE into the convolution layer and proposes FVAE. By
combining the features of the convolutional layer with the features of the VAE, FVAE can
simultaneously obtain detailed local information and global information, thereby improv-
ing the ability of the model to extract features. Because opacities weaken U-Net’s ability to
locate and recognize the edges of the lungs, this paper proposes a three-terminal attention
mechanism. Through the channel attention mechanism and the spatial attention mecha-
nism modified by high-scale features, the three-terminal attention mechanism enhances
the ability of the network to locate and recognize targets, and improves the segmentation
performance of the model. By testing on the SNIH and JRST datasets, the ACC, R and
F1-Score values of our algorithm are the best. The algorithm in this paper can completely
segment the lungs in CXRs of healthy people. Our algorithm can still achieve the best
segmentation effect for CXRs with varying degrees of opacities. Simultaneously, through
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the ablation study, it is verified that FVAE and the three-terminal attention mechanism can
improve the segmentation performance of U-Net. Our future work will further improve
the algorithm of this paper and solve the problem that local areas are difficult to segment
when there is a large number of opacities.
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