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Abstract: In decision-making process, decision-makers may make different decisions because of
their different experiences and knowledge. The abnormal preference value given by the biased
decision-maker (the value that is too large or too small in the original data) may affect the decision
result. To make the decision fair and objective, this paper combines the advantages of the power
average (PA) operator and the Bonferroni mean (BM) operator to define the generalized fuzzy
soft power Bonferroni mean (GFSPBM) operator and the generalized fuzzy soft weighted power
Bonferroni mean (GFSWPBM) operator. The new operator not only considers the overall balance
between data and information but also considers the possible interrelationships between attributes.
The excellent properties and special cases of these ensemble operators are studied. On this basis, the
idea of the bidirectional projection method based on the GFSWPBM operator is introduced, and a
multi-attribute decision-making method, with a correlation between attributes, is proposed. The
decision method proposed in this paper is applied to a software selection problem and compared to
the existing methods to verify the effectiveness and feasibility of the proposed method.

Keywords: generalized fuzzy soft sets; power average operator; Bonferroni mean operator; bidirec-
tional projection; multi-attribute decision making

1. Introduction
1.1. Research Background

Since the decision-making problem exists in every field of life, it has always been paid
close attention by the majority of scholars. As the social environment becomes increasingly
complex, more and more factors are involved in the decision-making problems, which
leads to the uncertainty, hesitation and fuzziness of decision makers (DMs) when they
give evaluation opinions. Therefore, fuzzy set theory, which is used to fit people’s fuzzy
opinions, has become one of the most commonly used tools to solve decision-making
problems [1–3]. At the same time, as a more general form of fuzzy sets, soft sets have also
been paid close attention by many scholars, and have been applied to uncertain decision-
making problems in various fields [4–8]. The concepts of fuzzy soft sets (FSS) [9] and
generalized fuzzy soft sets (GFSS) [10] are also proposed. In recent years, an increasing
number of scholars have used generalized fuzzy soft sets to express people’s fuzzy views
in order to solve decision-making problems [5–8,11,12]. Considering the complexity of
practical problems, DMs with different backgrounds, and different levels of professional
knowledge and experience, are often required to participate in the decision-making process,
and different DMs often give different decision-making opinions. Therefore, in order to
obtain a comprehensive opinion that is accepted by everyone, it is necessary to aggregate
different opinions or carry out corresponding operation. At present, scholars have studied
various forms of operator (such as the power average (PA) [13] operator, the Bonferroni
mean (BM) [14] operator and the power Bonferroni mean (PBM) [15] operator) to carry out
corresponding operations on different opinions in order to obtain as accurate a decision
scheme as possible. These operators effectively integrate the information of individual DMs
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into the overall information, and better consider the possible correlation between different
attribute variables.The existing literature on GFSS integration methods is mostly proposed
under the condition that the attributes are independent of each other. In fact, there may
be different degrees of correlation between different attributes. The PA operator and BM
operator can solve these problems. Among them, the PA operator can determine the
attribute weights according to the support relationship between the attributes to reduce the
influence of the biased decision-maker’s abnormal preference value on the decision results,
and the BM operator can fully consider the correlation between the attributes. However,
there is no research on integrating GFSS using PBM operators. This paper proposes the
generalized fuzzy soft power Bonferroni mean (GFSPBM) operator and the generalized
fuzzy soft weighted power Bonferroni mean (GFSWPBM) operator by combining the
advantages of the PA operator and BM operator. The new operator proposed in this
paper can enrich the integration method of GFSS, expand the application field of PBM
operator, and provide a new method for multi-attribute decision-making problems. The
decision-making method proposed in this paper can be applied to fields such as supplier
selection evaluation, product program selection evaluation, and recommendation of talent
introduction in the human resources department.

1.2. Literature Review

In 1965, Zadeh [16] proposed the fuzzy set theory. This theory regards the object to be
investigated and the fuzzy concept reflecting the object as a certain fuzzy set, establishes
an appropriate membership function for this, and analyzes the fuzzy object through the
related operations and transformations of the fuzzy set. In 1999, Molodtsov [4] introduced
soft set theory, which is a mathematical tool for solving uncertain problems which can be
widely used in economics, engineering, physics and other fields. Maji et al. further studied
the theory of soft sets. They defined the operation of soft sets [17], applied the theory of soft
sets to the solution of mathematical decision-making problems [18], and combined fuzzy
sets with soft sets to introduce FSS [9]. In order to understand the influence of decision mak-
ers’ cognition on the effectiveness of information provided by them, Majumdar [10] further
proposed GFSS on the basis of fuzzy soft sets. In recent years, the theoretical research and
application exploration of generalized fuzzy soft sets have attracted the attention of many
scholars. Among them, Chen et al. [5] applied the Bonferroni mean operator to GFSS and
proposed the generalized fuzzy soft set Bonferroni mean (GFSSBM) operator, which solved
the problem of group decision-making under limited cognition by decision-makers. Dey
and Pal [11] introduced the concept of generalized multi-fuzzy soft sets and applied it to
decision-making problems. Agarwal et al. [12] extended the intuitionistic soft set (IFSS)
to the intuitionistic fuzzy set (IFS) and defined the generalized intuitionistic fuzzy soft
set (GIFSS), which can provide a given standard evaluation and the host’s evaluation of
the data. Xu et al. [6,7] combined the extreme learning machine and GFSS to establish an
ensemble credit scoring model. Li et al. [8] combined GFSS with hesitant fuzzy sets and
proposed a generalized hesitant fuzzy soft set (GHFSS). Due to the dynamic development
of multi-criteria assessment methods, fuzzy criteria are being increasingly considered by
scholars. Bazzocchi et al. [19] proposed a method to prioritize space debris by using
multi-criteria decision-making (MCDM) methods and fuzzy logic. Dong et al. [20] propose
a new fuzzy best–worst method (BWM) based on triangular fuzzy numbers for MCDM;
this method is very useful in solving multi-attribute decision-making problems in a fuzzy
environment. Thakur et al. [21] depict an MCDM issue and offer the means of the VIKOR
approach inside the pythagorean fuzzy system. The information fusion operator of fuzzy
numbers is a useful tool to integrate all input-independent variables into the composite
total value. The existing literature on the integration methods and applications of GFSS
are mostly proposed when the attributes are independent of each other. In many actual
decision-making problems, the degree of correlation between different attributes may be
different, such as complementarity, redundancy, and preference relationships. The BM
operator, proposed by Bonferroni [14] in 1950, is a mean-type ensemble operator, which can
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effectively find the interrelationship between the variables we entered and aggregate multi-
ple input variables into one variable, is a bounded ensemble operator. In recent years, the
BM operator has been widely used in different multi-attribute decision-making problems.
For example, Wei et al. [22] studied uncertain linguistic BM operators. The generalized BM
operator was proposed by Yager [23]. Intuitionistic fuzzy BM operator is defined by Xu
and Yager [24]. Liu and Zhang [8] defined four kinds of intuitionistic uncertain linguistic
arithmetic Bonferroni mean (IULABM) operators. In addition, the PA [13] operator is
also an integrated operator that can capture the correlation between existing data and
cognitive information. It considers the support relationship between the input data to
calculate the weight of the attribute, which can effectively reduce anomalies. The impact
of data on decision-making results makes the processing of decision-making information
more objective and fair and, therefore, has received widespread attention. For example,
Liu et al. [25] proposed the generalized neutrosophic number weighted power average
(GNNWPA) operator to solve the multi-attribute decision-making (MAGDM) problem. A
PA integration operator is applied to an intuitionistic fuzzy number (IFN) environment by
Xu [26]. To comprehensively utilize the advantages of the BM operator and the PA operator,
He et al. [15] combined the PA operator with the BM operator and proposed the PBM
operator. Now, PBM operators are used in various fuzzy environments, such as hesitant
fuzzy sets [15], intuitionistic fuzzy sets [27,28], interval-value intuitionistic fuzzy sets [29],
and linguistic intuitionistic fuzzy sets [30]. However, to the best of our knowledge, there
is no research on how to use the PBM operator to integrate GFSS. Therefore, to enrich
the GFSS integration method and expand the application field of the PBM operator, this
paper will study the GFSS integration method based on the PBM operator and propose two
new GFSS integration operators, namely, the GFSPBM Operator and GFSWPBM operator.
In this paper, we discuss and study the excellent properties of operators carefully. On
this basis, the idea of the bidirectional projection method is introduced, and a new GFSS
multi-attribute decision-making method is given. The combination of different operators
and different environments will form new environment operators. The environmental
operator has the advantages of its component operator. We classify the environmental
operator according to the difference in the component operator as follows

(1) PA operator class [25,26]: This can reduce the influence of biased decision-makers’
abnormal preference values on decision-making results;

(2) BM operator class [22,24,31]: This can fully consider the interrelationship between attributes;
(3) PBM operator class [15,27–30]: This can effectively reduce the influence of abnormal

data on decision-making results and fully consider the correlation between attributes.

In decision-making problems, when we need to eliminate the influence of abnormal
data on the decision-making results, we can use operators of the PA operator class. When
we need to consider the correlation between attributes, we can use operators of the BM
operator class. When we need to eliminate the influence of abnormal data on decision
results, but also consider the correlation between attributes, we can use operators of
the PBM operator class. When we need to consider the uncertainty of fuzzy evaluation
information, and we also want to reduce the influence of abnormal preference values on
decision results, and consider the correlation between attributes. At this time, the GFSPBM
operator proposed in this paper can be used. Our arrangement for the rest of this paper
is as follows. To make our discussion easier, we first introduce the definitions of GFSS,
PA operator, BM operator and PBM operator in Section 2. In Section 3, we proposed the
GFSPBM operator and the GFSWPBM operator and carefully analyze and discuss the
excellent properties of these operators. In Section 4, we introduce the idea of a bidirectional
projection method and provide a multi-attribute decision-making method based on the
GFSWPBM operator. In Section 5, we provide a practical application example of software
selection, which shows the feasibility of our decision-making method. We compare and
analyze different operators to verify the applicability of our proposed method, and analyze
the sensitivity of the decision-making process. In the end, the conclusion is given in Section 6.
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2. Preliminaries

Definition 1. (Ref. [10]) Suppose U = {x1, x2, . . . , xm} is the universal collection of elements,
E = {e1, e2, . . . , en} is the universal set of parameters, F̃(U) is the set of all fuzzy soft sets over U.
The pair (F̃, E) is called soft universe. Let F : E → IU . Suppose γ is the fuzzy subset of E, that
is γ : E → I = [0, 1], where IU is the set of all fuzzy subsets of U. Suppose Fγ is the mapping
Fγ : E→ IU × I. Define mapping as Fγ(e) = (F(e), γ(e)), where F(e) ∈ IU . Then, we call Fγ a
generalized fuzzy soft set over the soft universe (F̃, E).

At this point, every parameter ej, Fγ

(
ej
)
=
(

F
(
ej
)
, γ
(
ej
))

can not only express the
attribution degree of the elements of U in F

(
ej
)
, but also the degree of possibility of this

attribution degree, which is represented by γ
(
ej
)
. So, Fγ

(
ej
)

can be expressed as

Fγ

(
ej
)
=

({
x1

F
(
ej
)
(x1)

,
x2

F
(
ej
)
(x2)

, . . . ,
xm

F
(
ej
)
(xm)

}
, γ
(
ej
))

(1)

where F
(
ej
)
(x1), F

(
ej
)
(x2), . . . , F

(
ej
)
(xm) express the degrees of belongingness and γ

(
ej
)

indicate the degree of possibility of such belongingness.

Example 1. We assume U = {x1, x2, x3} is a collection of three car under consideration. Let E =
{e1, e2, e3} be a collection of qualities: e1 = good appearance, e2 = cheap, e3 = good per f ormance.
Let γ : E→ I = [0, 1] be defined as follows: γ(e1) = 0.1, γ(e2) = 0.4, γ(e3) = 0.6.

We defined a function Fγ : E → IU × I as follows: Fγ(e1) =
({ x1

0.7 , x2
0.4 , x3

0.2
}

, 0.6
)
,

Fγ(e2) =
({ x1

0.1 , x2
0.2 , x3

0.9
}

, 0.4
)
, Fγ(e3) =

({ x1
0.8 , x2

0.5 , x3
0.2
}

, 0.6
)
.

Then, Fγ is a GFSS above (U, E). This membership matrix of Fγ can be written as

Fγ =

 0.7 0.4 0.3 0.1
0.1 0.2 0.9 0.4
0.8 0.5 0.2 0.6

. The j th row vector of the matrix indicate Fγ

(
ej
)
, the j th

column vector of the matrix indicate xj, the last column of the matrix indicate the values
of γ.

Combined with the operation defined by Chen [5], we have made the following
concise definition of the GFSS operation

Definition 2. Let Fγ

(
ej
)
=

({
x1

F(ej)(x1)
, x2

F(ej)(x2)
, . . . , xm

F(ej)(xm)

}
, γ
(
ej
))

, (j = 1, 2) be two

GFSSs over (U, E), their operations are defined as follows:

(1) Fγ(e1)⊕ Fγ(e2)

=

({
x1

F(e1)(x1) + F(e2)(x1)
, . . . ,

xm

F(e1)(xm) + F(e2)(xm)

}
, γ(e1) + γ(e2)

)
(2) Fγ(e1)⊗ Fγ(e2)

=

({
x1

F(e1)(x1)× F(e2)(x1)
, . . . ,

xm

F(e1)(xm)× F(e2)(xm)

}
, γ(e1)× γ(e2)

)
(3) λFγ(e1) =

({
x1

λF(e1)(x1)
,

x2

λF(e1)(x2)
, . . . ,

xm

λF(e1)(xm)

}
, λγ

(
ej
))

(4) Fγ(e1)
λ =

({
x1

F(e1)(x1)
λ

,
x2

F(e1)(x2)
λ

, . . . ,
xm

F(e1)(xm)
λ

}
,
(
γ
(
ej
))λ

)

Definition 3. (Ref. [32]) Let Fγ

(
ej
)
, (j = 1, 2) be two GFSSs over (U, E), the degree of support

between them is defined as

Sup(Fγ(e1), Fγ(e2)) = 1− d(Fγ(e1), Fγ(e2)) (2)
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where

d(Fγ(e1), Fγ(e2)) =
1

m + 1

[(
m

∑
i=1
|F(e1)(xi)− F(e2)(xi)|

)
+ |γ(e1)− γ(e2)|

]
(3)

Definition 4. (Ref. [13]) Suppose X = (x1, x2, . . . , xn) is a group of nonnegative real numbers,
xi ∈ [0, 1], i = 1, 2, . . . , n. Then, the power average operator can be indicated by the following
aggregation function

PA(X) =
n

∑
i=1

1 + T(xi)

∑n
i=1(1 + T(xi))

xi (4)

where T(xi) = ∑n
j=1,j 6=i Sup

(
xi, xj

)
(i = 1, 2, . . . , n), Sup

(
xi, xj

)
represents the degree of support

between xi and xj, and meets the following conditions

(1) Sup
(

xi, xj
)
∈ [0, 1]

(2) Sup
(

xi, xj
)
= Sup

(
xi, xj

)
(3) If d

(
xi, xj

)
≤ d(xl , xk), then Sup

(
xi, xj

)
≥ Sup(xl , xk).

Definition 5. (Ref. [23]) Let p, q ≥ 0, and X = (x1, x2, . . . , xn) be a group of nonnegative real
numbers, xi ∈ [0, 1], i = 1, 2, . . . , n. Then, the Bonferroni mean operator can be indicated by the
following equation

Bp,q(X) =

(
1

n(n− 1)

n

∑
i,j=1,i 6=j

xp
i xq

j

) 1
p+q

(5)

When n = 2 and p = q, the Bonferroni mean and the geometric mean are equal.

Definition 6. (Ref. [15]) Let p, q ≥ 0, and X = (x1, x2, . . . , xn) be a group of nonnegative real
numbers, xi ∈ [0, 1], i = 1, 2, . . . , n. Then, the power Bonferroni mean operator can be indicated by
the following equation

PBMp,q(x1, x2, . . . , xn)

=

 1
n(n− 1)

n⊕
i,j=1;i 6=j

((
n(1 + T(xi))

∑n
t=1(1 + T(xt))

xi

)p
⊗
(

n
(
1 + T

(
xj
))

∑n
t=1(1 + T(xt))

xj

)q) 1
p+q (6)

3. Generalized Fuzzy Soft Power Bonferroni Mean Operator

Considering that the PA operator can determine attribute weights according to the
support relationship between attributes, thereby reducing the influence of biased decision
makers’ abnormal preference values on the decision results, while the BM operator can
consider the degree of correlation between different attributes; therefore, according to the
characteristics of PA operator and BM operator, this chapter combines the two operators
and extends it to the generalized fuzzy soft set environment, and proposes a PBM operator
based on generalized fuzzy variables.

Definition 7. Let p, q > 0, Fγ

(
ej
)
(j = 1, 2, . . . , n) be a collection of generalized fuzzy variables.

GFSPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

=

(
1

n(n− 1)

) 1
p+q

·

 n⊕
i,j=1;i 6=j


 n(1 + T(Fγ(ei)))

n
∑

t=1
(1 + T(Fγ(et)))

Fγ(ei)


p

⊗

 n
(
1 + T

(
Fγ

(
ej
)))

n
∑

t=1
(1 + T(Fγ(et)))

Fγ

(
ej
)

q


1
p+q

(7)
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We call GFSPBMp,q the generalized fuzzy soft power Bonferroni mean operators, where
T(Fγ(ei)) = ∑n

j=1,j 6=i Sup
(

Fγ(ei), Fγ

(
ej
))
(i = 1, 2, . . . , n), Sup

(
Fγ(ei), Fγ

(
ej
))

represents the
degree of support between the generalized fuzzy variables Fγ(ei) and Fγ

(
ej
)
, and meets the condi-

tions in Definition 2.6.

Theorem 1. Let p, q > 0, Fγ

(
ej
)
(j = 1, 2, . . . , n) be a collection of generalized fuzzy variables,

then the aggregate value obtained by the GFSPBM operator is still a generalized fuzzy variable.

Proof. This theorem is easy to prove, and we omit this process.

Note 1. If one define ω̃k as follows

ω̃k =

(
1 + T

(
F
(
ej
)))

∑n
k=1(1 + T(F(ek)))

(8)

then ω̃k ≥ 0, ∑n
k=1 ω̃k = 1, and Equation (7) can be transformed into Equation (9):

GFSPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

=

 1
n(n− 1)

n⊕
i,j=1;i 6=j

(
(nω̃iFγ(ei))

p ⊗
(
nω̃jFγ

(
ej
))q
) 1

p+q (9)

The GFSPBM operator has excellent properties such as idempotence and commutativity.

Theorem 2. (Idempotence). Let p, q > 0, Fγ

(
ej
)
(j = 1, 2, . . . , n) be a set of generalized fuzzy

variables. If Fγ

(
ej
)
(j = 1, 2, . . . , n) are all equal, i.e., Fγ

(
ej
)
= Fγ

(
ej
)
(j = 1, 2, . . . , n), then

GFSPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en)) = Fγ(e). (10)

Proof. Since Fγ

(
ej
)
(j = 1, 2, . . . , n) is equal, their weights are also equal. Let ω̃1 = ω̃2 =

· · · = ω̃n = ω̃, then

GFSPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

= GFSPBMp,q(Fγ(e), Fγ(e), . . . , Fγ(e))

=

 1
n(n− 1)

n⊕
i,j=1;i 6=j

(
(nω̃iFγ(e))

p ⊗
(
nω̃jFγ(e)

)q
) 1

p+q

= nω̃Fγ(e)

= Fγ(e)

Theorem 3. (Commutativity). Let p, q > 0, Fγ

(
ej
)
(j = 1, 2, . . . , n) be a collection of general-

ized fuzzy variables, in the same time
(

F′γ(e1), . . . , F′γ(en)
)

are any permutation of
(Fγ(e1), . . . , Fγ(en)) , then

GFSPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

= GFSPBMp,q
(

F′γ(e1), F′γ(e2), . . . , F′γ(en)
) (11)

Proof. Since
(

F′γ(e1), . . . , F′γ(en)
)

is any permutation of (Fγ(e1), . . . , Fγ(en)), then
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GFSPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

=

 1
n(n− 1)

n⊕
i,j=1;i 6=j

(
(nω̃iFγ(ei))

p ⊗
(
nω̃jFγ

(
ej
))q
) 1

p+q

=

 1
n(n− 1)

n⊕
i,j=1;i 6=j

((
nω̃iF′γ(ei)

)p
⊗
(

nω̃jF′γ
(
ej
))q) 1

p+q

= GFSPBMp,q
(

F′γ(e1), F′γ(e2), . . . , F′γ(en)
)

The GFSPBMp,q(Fγ(e1), . . . , Fγ(en)) operator only considers the correlation between
the weight vector based on the power operator and the generalized fuzzy variable to
be integrated, and does not consider the importance of the data; that is, the integrated
operator is gathering defined when variables are equally important. However, in many
actual decision-making processes, the importance of different attributes may be different, so
their weights are not equal. To consider the importance of the index weight, the generalized
fuzzy soft weighted power Bonferroni mean(GFSWPBM) operator will be defined next.

Definition 8. Let p, q > 0, Fγ

(
ej
)
(j = 1, 2, . . . , n) be a set of generalized fuzzy variables.

Suppose ω = (ω1, ω2, . . . , ωn)
T(0 ≤ ωj ≤ 1, ∑n

j=1 ωj = 1) is the weight vector of attribute
ej(j = 1, 2, . . . , n). Then, the GFSWPBM operator can be defined as follows

GFSWPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

=

(
1

n(n− 1)

) 1
p+q

·

 n⊕
i,j=1;i 6=j


 nωi(1 + T(Fγ(ei)))

n
∑

t=1
ωt(1 + T(Fγ(et)))

Fγ(ei)


p

⊗

 nωj
(
1 + T

(
Fγ

(
ej
)))

n
∑

t=1
ωt(1 + T(Fγ(et)))

Fγ

(
ej
)

q


1
p+q

(12)

where T(Fγ(ei)) = ∑n
j=1,j 6=i ωj Sup

(
Fγ(ei), Fγ

(
ej
))
(i = 1, 2, . . . , n), Sup

(
Fγ(ei), Fγ

(
ej
))

repre-
sents the degree of support between the generalized fuzzy variables Fγ(ei) and Fγ

(
ej
)
, and satisfies

the conditions in Definition 2.4.

Theorem 4. Let p, q > 0, Fγ

(
ej
)
(j = 1, 2, . . . , n) be a collection of generalized fuzzy variables,

then the aggregate value obtained by the GFSWPBM operator is still a generalized fuzzy variable.

Proof. This theorem is easy to prove, and we omit this process.

Similar to the GFSPBM operator, GFSWPBM also has permutation invariance.
Several special cases about GFSWPBM operators will be discussed below. It can be

found that many existing operators are special cases of GFSWPBM operators mentioned in
this article.
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Note 2. If (1+T(Fγ(ei)))

∑n
k=1 ωt(1+T(Fγ(ei)))

= 1(i = 1, 2, . . . , n), then

GFSWPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

=

(
1

n(n− 1)

) 1
p+q

·

 n⊕
i,j=1;i 6=j


 nωi(1 + T(Fγ(ei)))

n
∑

t=1
ωt(1 + T(Fγ(et)))

Fγ(ei)


p

⊗

 nωj
(
1 + T

(
Fγ

(
ej
)))

n
∑

t=1
ωt(1 + T(Fγ(et)))

Fγ

(
ej
)

q


1
p+q

=

 1
n(n− 1)

n⊕
i,j=1;i 6=j

(
(nωiFγ(ei))

p ⊗
(
nωjFγ

(
ej
))q
) 1

p+q

= GFSSWBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

Note 3. If ω =
(

1
n , 1

n , . . . , 1
n

)T
, then

GFSWPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

=

(
1

n(n− 1)

) 1
p+q

·

 n⊕
i,j=1;i 6=j


 nωi(1 + T(Fγ(ei)))

n
∑

t=1
ωt(1 + T(Fγ(et)))

Fγ(ei)


p

⊗

 nωj
(
1 + T

(
Fγ

(
ej
)))

n
∑

t=1
ωt(1 + T(Fγ(et)))

Fγ

(
ej
)

q


1
p+q

=

(
1

n(n− 1)

) 1
p+q

·

 n⊕
i,j=1;i 6=j


 n(1 + T(Fγ(ei)))

n
∑

t=1
(1 + T(Fγ(et)))

Fγ(ei)


p

⊗

 n
(
1 + T

(
Fγ

(
ej
)))

n
∑

t=1
(1 + T(Fγ(et)))

Fγ

(
ej
)

q


1
p+q

= GFSPBMp,q(Fγ(e1), Fγ(e2), . . . , Fγ(en))

At this time, the GFSWPBM operator degenerates into the GFSPBM operator. Obvi-
ously, the GFSPBM operator is a special case of the GFSWPBM operator.

4. Solving Multi-Attribute Decision-Making Problem with GFSWPBM Operator
4.1. Similarity Measure between GFSSs

To correct the shortcomings of similarity measures defined in the existing literature,
Chen [5] defined a new GFSS similarity in 2020, as shown in Definition 4.3.

Definition 9. (Ref. [5]) Let U = {x1, x2, · · · , xm} be the universal collection of elements, and
E = {e1, e2, · · · , en} be the universal collection of parameters. Suppose Fγ and Gδ are two GFSS
over the parameterized universe (U, E), Fγ =

{(
F
(
ej
)
, γ
(
ej
))

, j = 1, 2, · · · , n
}

and
Gδ =

{(
G
(
ej
)
, δ
(
ej
))

, j = 1, 2, · · · , n
}

. The similarity measure between the GFSS Fγ and Gδ is
is given by the following equation:

S
(

F̃γ, G̃δ

)
=

∑n
j=1

(
∑m

i=1

[
1−

∣∣∣F̃ij − G̃ij

∣∣∣]) · [1− ∣∣γ(ej
)
− δ
(
ej
)∣∣]]

mn
(13)

where F̃ij = γF(ej)
(xi) and G̃ij = δG̃(ej)

(xi).
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4.2. Bidirectional Projection

Definition 10. (Ref. [33]) Let alternative Ai(i = 1, 2, · · · , m) be denoted as Ai = (ai1, ai2, · · · , ain),
where aij is a fuzzy number, which indicates the degree to which alternative Ai conforms to attribute
ej. Then, the modulus length of the vector corresponding to alternative Ai is

|Ai| =

√√√√ n

∑
j=1

∣∣aij
∣∣2 (14)

Definition 11. (Ref. [33]) Suppose DM =
(
aij
)

m×n isthedecisionmatrix,and A+ =
(
a+1 , a+2 , · · · , a+n

)
and A− =

(
a−1 , a−2 , · · · , a−n

)
are the vectors formed by positive ideal alternatives and negative

ideal alternatives, where r+j = max1≤i≤n
{

rij
}

, r−j = min1≤i≤n
{

rij
}

, j = 1, 2, · · · , n.

Definition 12. (Ref. [33]) For twoalternatives Ai = (ai1, ai2, · · · , ain) and Aj =
(
aj1, aj2, · · · , ajn

)
,

i, j = 1, 2, · · · , m, we defined

Ai Aj =
(
aj1 − ai1, aj2 − ai2, · · · , ajn − ain

)
(15)

It is the vector formed by alternative Ai and alternative Aj.

Definition 13. (Ref. [33]) Let the alternatives be Ai = (ai1, ai2, · · · , ain). A+ =
(
a+1 , a+2 , · · · , a+n

)
and A− =

(
a−1 , a−2 , · · · , a−n

)
are positive ideal alternatives and negative ideal alternatives, re-

spectively. Then, the vectors formed by positive ideal alternatives and negative ideal alternatives,
negative ideal alternatives and alternatives are

A−A+ =
{

a+1 − a−1 , a+2 − a−2 , · · · , a+n − a−n
}

(16)

A−Ai =
{

ai1 − a−1 , ai2 − a−2 , · · · , ain − a−n
}

(17)

The corresponding vector modulus lengths are

∣∣A−A+
∣∣ =

√√√√ n

∑
j=1

∣∣∣a+j − a−j
∣∣∣2 (18)

∣∣A−Ai
∣∣ =

√√√√ n

∑
j=1

∣∣∣aij − a−j
∣∣∣2 (19)

Then we defined

cos
(

A−Ai, A−A+
)
=

∑n
j=1

(
a+j − a−j

)(
aij − a−j

)
|A−Ai‖A−A+| (20)

it is the cosine of the angle between A−A+ and A−Ai.

Note 4. Ref. [33] The bidirectional projection has the following properties

(1) Symmetry: cos(A−Ai, A−A+) = cos(A−A+, A−Ai).
(2) Boundedness: 0 ≤ cos(A−Ai, A−A+) ≤ 1. cos(A−Ai, A−A+) = 1, if and only if the

A−Ai and A−A+ directions are the same.
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Definition 14. (Ref. [33]) Let the alternatives, alternatives with positive ideals, and alternatives
with negative ideals be Ai, A+, and A−, respectively, we defined

Pr jA−A+

(
A−Ai

)
=
∣∣A−Ai

∣∣ cos
(

A−Ai, A−A+
)
=

∑n
j=1

(
a+j − a−j

)(
aij − a−j

)
|A−A+| (21)

Pr jAi A+

(
A−A+

)
=
∣∣A−A+

∣∣ cos
(

A−A+, Ai A+
)
=

∑n
j=1

(
a+j − a−j

)(
a+j − aij

)
|Ai A+| (22)

These are, respectively, called the projection of the vector formed by the negative ideal
alternative and the alternative on the vector formed by the positive ideal alternative and
the negative ideal alternative, and the vector formed by the positive ideal alternative and
the negative ideal alternative on the alternative and the projection on the vector formed by
the positive ideal alternative.

Note 5. Ref. [33] The bigger PrjA−A+(A−Ai) is, the closer alternative Ai is to the ideal
alternative A+. The smaller PrjA−A+(A−Ai) is, the farther away alternative Ai is from the
ideal alternative A+. The bigger PrjAi A+(A−A+) is, the closer alternative Ai is to negative
ideal alternative A−. The smaller PrjAi A+(A−A+) is, the farther away alternative Ai is
from negative ideal alternative A−.

Definition 15. (Ref. [33]) To obtain the optimal alternative, the closeness C(Ai) is construed
as follows

C(Ai) =
Pr jA−A+(A−Ai)

Pr jA−A+(A−Ai) + Pr jAi A+(A−A+)
(23)

The above formula actually refers to the closeness formula of TOPSIS and other
methods. Obviously, the larger the C(Ai), the better the alternative Ai. The opposite is true.
The above decision-making methods are defined when the importance of every attribute is
the same. In the practical decision-making process, the importance of different attributes
may be different, so they have different weights. Next, define the weighted bidirectional
projection method of GFSS.

Definition 16. (Ref. [33]) Suppose the attribute weight is w = (w1, w2, · · · , wn); then, the
vector formed by the i-th alternative and the negative ideal alternative is a weighted projection on
the vector formed by the positive ideal alternative and the negative ideal alternative, and the positive
ideal alternative and the negative ideal alternative are formed The weighted projections of the vector
formed by the alternative and the positive ideal alternative are, respectively,

Pr jA−A+

(
A−Ai

)
w

=
∣∣A−Ai

∣∣
w cos

(
A−Ai, A−A+

)
w =

∑n
j=1 w2

j

(
a+j − a−j

)(
aij − a−j

)
|A−A+|w

(24)

Pr jAi A+

(
A−A+

)
w

=
∣∣A−A+

∣∣
w cos

(
A−A+, Ai A+

)
w =

∑n
j=1 w2

j

(
a+j − a−j

)(
a+j − aij

)
|Ai A+|w

(25)

where ∣∣A−A+
∣∣
w =

√√√√ n

∑
j=1

(
wj

∣∣∣a+j − a−j
∣∣∣)2

(26)
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∣∣A−Ai
∣∣
w =

√√√√ n

∑
j=1

(
wj

∣∣∣aij − a−j
∣∣∣)2

(27)

cos
(

A−Ai, A−A+
)

w =
∑n

j=1 w2
j

(
a+j − a−j

)(
aij − a−j

)
|A−Ai|w|A−A+|w

(28)

cos
(

A−A+, Ai A+
)

w =
∑n

j=1 w2
j

(
a+j − a−j

)(
a+j − aij

)
|Ai A+|w|A−A+|w

(29)

Refer to Equation (23) to define the closeness formula considering the attribute weight:

C(Ai)w =
Pr jA−A+(A−Ai)w

Pr jA−A+(A−Ai)w + Pr jAi A+(A−A+)w
(30)

4.3. Algorithm

In this section, we will introduce a multi-attribute decision-making method based on
the GFSS environment that considers the cognition of the decision maker. The algorithm
steps are as follows.

Step 1: Suppose experts use generalized fuzzy soft sets to express their opinions,
which contain decision information about attribute alternatives. Therefore, DM l(l = 1, 2, · · · , L)
expresses the judgment for attribute ej(j = 1, 2, · · · , n), which can be indicated as F̃l(ej

)
.

F̃l(ej
)
=

({
A1

F̃l
(
ej
)
(A1)

,
A2

F̃l
(
ej
)
(A2)

, · · · ,
Am

F̃l
(
ej
)
(Am)

}
, γl(ej

))
(31)

Step 2: Calculate the similarity measure between DMs, get the weight of DMs, and
use Equation (13) to find the similarity coefficient S

(
F̃l

γ, F̃k
γ

)
between DMs. In this way, a

consensus matrix of preferences of all DMs is obtained.

S =


S11 S12 · · · S1n
S21 S22 · · · S2n

...
... · · ·

...
Sm1 Sm2 · · · Smn

 (32)

Next, we define the weight coefficient ωl of DM l as follows

ωl =
∑n

j=1 Sl j

∑m
i=1 ∑n

j=1 Sij
(33)

Step 3: Utilize the GFSWPBM operator, to aggregate all of the individual GFSSs
F̃l

γ

(
ej
)
(l = 1, 2, · · · , L) into a comprehensive GFSS F̃γ

(
ej
)
, then derive the comprehensive

overall assessed value for attribute ej(j = 1, 2, · · · , n) of alternative Ai(i = 1, 2, · · · , m).

GFSWPBMp,q
(

ω1 F̃1
γ

(
ej
)
, ω2 F̃2

γ

(
ej
)
, . . . , ωL F̃L

γ

(
ej
))

=

(
1

L(L− 1)

) 1
p+q

·

 L⊕
i,j=1;i 6=j


 Lωi

(
1 + T

(
F̃k

γ

(
ej
)))

L
∑

t=1
ωt

(
1 + T

(
F̃t

γ

(
ej
))) F̃k

γ

(
ej
)


p

⊗

 Lωj

(
1 + T

(
F̃l

γ

(
ej
)))

L
∑

t=1
ωt

(
1 + T

(
F̃t

γ

(
ej
))) F̃l

γ

(
ej
)


q


1
p+q
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Step 4: Determine the positive ideal alternative A+ and negative ideal alternative A−

in the decision matrix GFSS F̃γ

(
ej
)
. Take the adjustment factor γj as the attribute weight

vector, w = (w1, w2, · · · , wn), according to the Equation (30) to find C(Ai)w(i = 1, 2, · · · , m)
and rank the alternatives.

5. Illustrative Example
5.1. Case

We take the group decision-making problem proposed by Wang and Lee and Zhang [34,35]
as an example. To improve work efficiency, the administrators of the university com-
puter center need to consider a choice of computer software. There are four alternatives
U = {A1, A2, A3, A4} remaining on the alternative list. The expert evaluation team in-
cludes three DMs D = {d1, d2, d3}. The DMs evaluate the four alternatives using a group
of attributes: hardware/software is cheap (e1), benefits the organization (e2), easy migra-
tion from current system (e3), and Outsourcing software developers have high reliability
(e4). Next, we use the decision-making method proposed in this paper to evaluate these
four alternatives.

Step 1: Three evaluation experts DMs evaluated four alternatives Ai(i = 1, 2, 3, 4) by
using the information provided by the generalized fuzzy soft set. Table 1 shows the results
of alternative Ai evaluated by each DM under criteria ej(j = 1, 2, 3, 4).

Step 2: We calculate the similarity between DM and use it to calculate the weight of
each DM.

Table 1. Tabular representation of GFSS of each DM.

DM U e1 e2 e3 e4

DM1

A1 0.7 0.4 0.5 0.6
A2 0.6 0.4 0.8 0.7
A3 0.8 0.2 0.6 0.8
A4 0.9 0.9 0.7 0.8
γ 0.33 0.62 0.31 0.23

DM2

A1 0.8 0.9 0.3 0.6
A2 0.3 0.6 0.7 0.4
A3 0.7 0.4 0.9 0.5
A4 0.9 0.5 0.5 0.8
γ 0.36 0.48 0.44 0.38

DM3

A1 0.5 0.4 0.7 0.7
A2 0.6 0.8 0.5 0.5
A3 0.8 0.5 0.9 0.9
A4 0.9 0.7 0.6 0.8
γ 0.36 0.33 0.41 0.34

By Equation (13), We calculate the similarity measure between DM1 and DM2.

S12 = S(DM1, DM2)

=
∑n

j=1
(
∑m

i=1
[
1−

∣∣DM1ij − DM2ij
∣∣]) · [1− ∣∣γ(ej

)
− δ
(
ej
)∣∣]]

mn

=
(0.9 + 0.7 + 0.9 + 1)× 0.97 + (0.5 + 0.8 + 0.8 + 0.6)× 0.86

16

+
(0.8 + 0.9 + 0.7 + 0.8)× 0.87 + (1 + 0.7 + 0.7 + 1)× 0.85

16
= 0.7119

In the same way, we can calculate the similarity measure between DM1 and DM3 and
the similarity measure between DM2 and DM3: S13 = 0.7426, S23 = 0.7697.
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Using Equation (33), we get the weights of the DMs. The calculation process of
ω1 = 0.3295 is as follows

ω1 =
∑3

j=1 S1j

∑3
i=1 ∑3

j=1 Sij

=
1 + 0.7119 + 0.7426

3× 1 + 0.7119× 2 + 0.7426× 2 + 0.7697× 2
= 0.3295

We use the same calculation method to get the values of ω2 and ω3: ω2 = 0.3332,
ω3 = 0.3373.

Step 3: GFSWPBM operators combine the evaluation information of each DM to
calculate the comprehensive decision-making GFSS. To facilitate the calculation, we choose
the parameter p = 1, q = 1 , as shown in Table 2.

Table 2. Tabular representation of the collective decision GFSS F̃γ

(
ej

)
.

U e1 e2 e3 e4

A1 0.6599 0.5412 0.4864 0.6327
A2 0.4910 0.5902 0.6599 0.5259
A3 0.7662 0.3571 0.7950 0.7242
A4 0.9000 0.6901 0.5967 0.8000
γ 0.3498 0.4680 0.3851 0.3137

Step 4: Calculate the score C(Ai)w(i = 1, 2, 3, 4) by Equation (30). The calculation
process of C(A1)w is as follows:

Take out the positive ideal alternative, the negative ideal alternative and the weight
vector:A+ = (0.9000, 0.6901, 0.7950, 0.8000), A− = (0.4910, 0.3571, 0.4864, 0.5259),
w = (0.3498, 0.4680, 0.3851, 0.3137). Calculate the vector formed by the positive ideal alter-
native and the negative ideal alternative, and the vector formed by the alternative and the
positive ideal alternative. ∣∣A−A+

∣∣
w = 0.2574∣∣∣A1 A+

∣∣∣
w
= 0.1697

Calculate the value of Pr jA−A+(A−A1)w and Pr jA1 A+(A−A+)w

Pr jA−A+

(
A−A1

)
w

=
∑4

j=1 w2
j

(
a+j − a−j

)(
a1j − a−j

)
|A−A+|w

=
0.34982 × 0.4090× 0.1689 + 0.46802 × 0.3339× 0.1841

0.2574

+
0.38512 × 0.3086× 0 + 0.31372 × 0.2741× 0.1068

0.2574
= 0.0962
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Pr jA1 A+

(
A−A+

)
w

=
∑4

j=1 w2
j

(
a+j − a−j

)(
a+j − a1j

)
|A1 A+|w

=
0.34982 × 0.4090× 0.2410 + 0.46802 × 0.3339× 0.1489

0.1697

+
0.38512 × 0.3086× 0.3086 + 0.31372 × 0.2741× 0.1673

0.1697
= 0.2447

Calculate the score of alternative A1.

C(A1)w =
Pr jA−A+(A−A1)w

Pr jA−A+(A−A1)w + Pr jA1 A+(A−A+)w

=
0.0962

0.0962 + 0.2447
= 0.2822

The same calculation method can get the scores of A2, A3, and A4: C(A2)w = 0.2980,
C(A3)w = 0.3914, and C(A4)w = 0.6515. According to the score, the alternatives are sorted:
A4 > A3 > A2 > A1. The best alternative is A4.

5.2. Sensitivity Analysis

In decision-making process, the decision makers can choose appropriate parameters
p, q according to their own risk preferences. The calculated sorting result may change with
the change of parameter selection. For the convenience of calculation, the above analysis is
calculated when the parameters are selected as p = 1, q = 1.

To reflect the influence of different parameters on the ranking order, we conducted
a sensitivity analysis. From Table 3, we can find that, as the parameters p and q change,
the score values of each scheme have changed accordingly. The best solution is always
A4. When the gap between p and q is large enough, the worst solution changes from A1 to
A2. From the structure of the operator, we can easily see that the calculation results of the
operator are symmetrical at about the values of p and q (for example, the calculation result
of parameter p = 1, q = 2 is the same as the calculation result of parameter p = 2, q = 1).

Table 3. Sorting results of GFSWPBM operator under different parameter values.

Parameter Value Score Value Ranking Results

p = q = 0.5 C = (0.2817, 0.2961, 0.3923, 0.6531) A4 > A3 > A2 > A1
p = q = 1 C = (0.2822, 0.2980, 0.3914, 0.6515) A4 > A3 > A2 > A1
p = q = 2 C = (0.2809, 0.3018, 0.3902, 0.6473) A4 > A3 > A2 > A1
p = q = 5 C = (0.2700, 0.3154, 0.3894, 0.6332) A4 > A3 > A2 > A1
p = q = 10 C = (0.2576, 0.3307, 0.3897, 0.6144) A4 > A3 > A2 > A1
p = 1, q = 2 C = (0.2886, 0.3024, 0.3885, 0.6498) A4 > A3 > A2 > A1
p = 1, q = 5 C = (0.3501, 0.3295, 0.3678, 0.6523) A4 > A3 > A1 > A2
p = 2, q = 1 C = (0.2886, 0.3024, 0.3885, 0.6498) A4 > A3 > A2 > A1
p = 5, q = 1 C = (0.3501, 0.3295, 0.3678, 0.6523) A4 > A3 > A1 > A2

5.3. Comparative Analysis with Existing Methods

To better show the advantages of the method proposed in this paper, the following
further compares and analyzes with the existing methods, and selects the GFSSWBM
operator and the FSSWBM operator in the literature [5] (To facilitate the calculation, we
choose the parameter p = 1, q = 1). The comparison results are shown in Table 4.
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Table 4. Comparative analysis results.

Integration Method Score Value Ranking Results

GFSSWBM S = (−0.0735,−0.0825,−0.0339, 0.1899) A4 > A3 > A1 > A2
FSSWBM S = (−0.1987,−0.2663,−0.0242, 0.4891) A4 > A3 > A1 > A2

GFSWPBM C = (0.2822, 0.2980, 0.3914, 0.6515) A4 > A3 > A2 > A1

From the above integration results, It can be seen that the optimal alternative by the
GFSWPBM operator in this article and the optimal alternative calculated by the GFSSWBM
operator and the FSSWBM operator [5] are both A4. The ranking results calculated by the
three operators are roughly similar. It is further discovered that the score value of this
method is also different from other methods. The main factor that causes the difference in
the sorting results is that the operators of the above models all adopt different information
integration methods. Although they are all based on the idea of arithmetic average, the
focus of the operators in the assembly process is different. The GFSSWBM operator and
the FSSWBM operator do not consider the relationship between data information. The
GFSWPBM operator given in this paper combines the advantages of the PA operator and
the BM operator. It not only considers the possible relationships between attributes, but
also reflects the overall balance between the data, thereby preventing biased decision
makers from giving anomalies. The preference value (the value that is too large or too
small in the original data) affects the result of the decision, making the decision more fair
and objective. At the same time, this article has different opinions on the ranking results of
A1 and A2, which can provide a new reference angle for judging the quality of alternatives.
The main reason for the difference in the score value is that this paper uses the weighted
bidirectional projection method to calculate the score value, while the GFSSWBM operator
and the FSSWBM operator use the weighted method to calculate the score value. Observing
the calculation results, we can see that the weighted bidirectional projection method in this
paper has better discrimination.

6. Conclusions

Aiming at the problem of group decision-making, the cognition of decision mak-
ers is considered. In this paper, generalized fuzzy soft sets are used to solve the in-
fluence of decision makers’ cognition on the effectiveness of information provided and
introduces two new integrated methods for GFSS, namely generalized fuzzy soft Bon-
ferroni mean(GFSPBM) operator and generalized fuzzy soft weighted power Bonferroni
mean(GFSWPBM) operator. The new operator combines the excellent characteristics of
the power average operator and the Bonferroni operator. It not only considers the overall
balance between existing data and information, but also considers the possible correla-
tion between attributes. Furthermore, some excellent properties and special situations
of the new operator are also discussed. On this basis, a multi-attribute decision-making
method based on the generalized fuzzy soft weighted power Bonferroni mean (GFSWPBM)
operator and detailed steps are given. The weighted bidirectional projection method is
introduced to calculate the score value of the alternative, and the calculation is carried
out in an example. The practicability of this method is explained, and its advantages are
illustrated by comparing with existing methods.

The decision-making methods provided in this article can also be further applied to
such fields as supplier selection evaluation, product program selection evaluation, human
resources department talent introduction recommendation, etc., with certain theoretical
and application value.
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