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Abstract: In recent years, the use of Genetic Algorithms (GAs) in symmetric cryptography, in
particular in the cryptanalysis of block ciphers, has increased. In this work, the study of certain
parameters that intervene in GAs was carried out, such as the time it takes to execute a certain
number of iterations, so that a number of generations to be carried out in an available time can be
estimated. Accordingly, the size of the set of individuals that constitute admissible solutions for GAs
can be chosen. On the other hand, several fitness functions were introduced, and which ones led
to better results was analyzed. The experiments were performed with the block ciphers AES(t), for
t ∈ {3, 4, 7}.

Keywords: genetic algorithm; cryptanalysis; AES(t); optimization; heuristics

1. Introduction

There are several methods and tools that are used as optimization methods and
predictive tools. Several heuristic algorithms have been used in the context of cryptography;
in [1], the Ant Colony Optimization (ACO) heuristic method was used, and a methodology
with S-AES block encryption was tested, using two pairs of plain encrypted texts. In [2],
a combination of GA and ACO methods was used for cryptanalysis of stream ciphers.
In [3–5], the possibilities of combining and designing these analyzes using machine learning
and deep learning tools were shown. In [6–8], the methods of the Artificial Neural Network
(ANN), Support Vector Machine (SVM), and Gene-Expression Programming (GEP) were
used as predictive tools in other contexts.

The Genetic Algorithm (GA) is an optimization method used in recent years in
cryptography for various purposes, mainly to carry out attacks on various encryption types.
Some of the research conducted in this direction is mentioned next. In [9], the authors
presented a combination of the GA with particle swarm optimization (another heuristic
method based on evolutionary techniques); they called their method genetic swarm
optimization and applied it to attack the block cipher Data Encryption Standard (DES).
Their experimental results showed that better results were obtained by applying their
combined method than by using both methods separately. The proposal presented in [10]
provided a preliminary exploration of GA’s use over a Permutation Substitution Network
(SPN) cipher. The purpose of the scan was to determine how to find weak keys. Both
works [9,10] used a known plaintext attack, i.e., given a plaintext T and the corresponding
ciphertext C, one is interested in finding the key K. In [10], the fitness function evaluates
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the bitwise difference (Hamming distance) between C and the ciphertext of T, using a
candidate for the key, whereas, on the contrary, in [9] the Hamming distance between T
and the decryption of the ciphertext of C is measured. In [11], a ciphertext-only attack on
simplified DES was shown, obtaining better results than by brute force. The authors used a
fitness function that combined the relative frequency of monograms, digrams, and trigrams
(for a particular language). Since the key length was very small, they were able to use this
kind of function. The approach in [12] was similar to [11]; it used essentially the same
fitness function, but with different parameters. It was also more detailed regarding the
experiments and compared them concerning brute force and random search. For more
details on the area of cryptanalysis using GAs, see [13–15].

As in all evolutionary algorithms, it is always a difficulty in the GA that, as the
number of individuals in the space of admissible solutions grows, in this case, the set of
keys, it is necessary to perform a greater number of generations in order to obtain the best
results. It is clear that the greater the number of generations, the more time the algorithm
consumes, so it is important to be able to estimate the time that may be necessary to execute
a certain number of desired generations. On the other hand, it is necessary to analyze
fitness functions that allow obtaining better results with the fittest individuals obtained.

Symmetry is omnipresent in the universe; in particular, it is present in symmetric
cryptography, where the secret key is known for both authorized parts in the
communication channel essentially by symmetry. We worked with block ciphers, an
important primitive of symmetric cryptographic, where the key space (the population of
admissible solutions for the GA in this case) is exponentially big, making it impossible in
many cases to fully move in that space.

In the present work, the ideas to divide the key space that were started in [16,17] were
followed. Both methodologies for dividing the key space allow the GA search space to
be reduced over a subset of individuals. For this case, we studied the behavior of time
and the introduction of various fitness functions. The structure of the work is as follows.
In Section 2, the general ideas of the GA and two methodologies for partitioning the key
space are presented; in Section 3, several parameters of the cryptanalysis for block ciphers
using the GA are studied; in Section 3.1, the time it takes to execute a certain number of
iterations is analyzed, so that a number of generations to be carried out in an available time
can be estimated; and in Section 3.2, other fitness functions are proposed. Finally, Section 4
gives the conclusions.

2. Preliminaries
2.1. The Genetic Algorithm

The GA is a heuristic optimization method. We assume that the reader knows the
general ideas of how the GA works; see Algorithm 1. In this section, we briefly describe
the GA scheme used in this work.

Algorithm 1 Genetic algorithm.

Input: m (quantity of individuals in the population), F (fitness function), g (number of
generations).

Output: the individual with the highest fitness function as the best solution.
1: Randomly generate an initial population Pi with m individuals (possible solutions).
2: Compute the fitness of each individual from Pi with F.
3: while the solution is not found, or the g generations are not reached do
4: Select parent pairs in Pi.
5: Perform the crossover of the selected parents, and generate a pair of offspring.
6: Mutate each of the resulting descendants.
7: Compute the fitness of each of the descendants with F and their mutations.
8: By the tournament method between two, based on the fitness of the parents and

descendants, decide what is the new population Pi for the next generation (selecting
two individuals at random each time and choosing the one with the highest fitness).

9: end while
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The individuals from the populations are elements of the key space taken as binary
blocks. For Crossover, the crossing by two points was used, and the crossover probability
was fixed to 0.6. The Mutate operation consisted of interchanging the values of the bits of at
most three random components of the binary block with a mutation rate of 0.2. The values
of 0.6 and 0.2 were fixed for all experiments, and the study of the incidence of the variation
of these values in the behavior of the GA was not addressed in this paper. An individual
x is better adapted than another y, if it has greater fitness, i.e., if F(x) > F(y). Fitness
functions are studied in more detail in Section 3.2. For the specification of the GA to block
ciphers, see Section 3 of [16].

2.2. Key Space Partition Methodologies

The methodologies introduced in [16,17] allow GAs to work on a certain subset of
the set of admissible solutions as if it were the complete set. The importance of this fact is
that it reduces the size of the search space and gives the heuristic method a greater chance
of success, assuming that the most suitable individuals are found in the selected subset.
Let Fk1

2 be the key space of length k1 ∈ Z>0. It is known that Fk1
2 has cardinality 2k1 , and

therefore, there is a one-to-one correspondence between Fk1
2 and the range

[
0, 2k1 − 1

]
.

If an integer k2 is set, (1 < k2 ≤ k1), then the key space can be represented by the numbers,

q2k2 + r, (1)

where q ∈
[
0, 2k1−k2 − 1

]
and r ∈

[
0, 2k2 − 1

]
. In this way, the key space is divided into

2k1−k2 blocks (determined by the quotient in the division algorithm dividing by 2k2), and
within each block, the corresponding key is determined by its position, which is given by
the remainder r. The main idea is to stay in a block (given by q) and move within this block
through the elements (given by r) using the GA. Note in this methodology that first q is
set to choose a block, and then, r varies to be able to move through the elements of the
block; however, the complete key in Fk1

2 is obtained from Expression (1). We refer to this
methodology as BBM. For more details on the connection with GAs, see [16].

The following methodology is based on the definition of the quotient group of the
keys GK whose objective is to make a partition of Fk1

2 in equivalence classes. It is known
that Fk1

2 , as an additive group, is isomorphic to Z2k1 . Let h be the homomorphism defined
as follows:

h : Z2k1 −→ Z2k2 (2)

n −→ n (mod 2k2),

where k2 ∈ Z>0 and 0 < k2 < k1. We denote by N the kernel of h, i.e.,

N = {x ∈ Z2k1 |h(x) = 0 ∈ Z2k2 }. (3)

Then, by the definition of h, we have that N is composed by the elements of Z2k1 ,
which are multiples of 2k2 . It is known that N is an invariant subgroup; therefore, the main
objective is to calculate the quotient group of Z2k1 by N, and in this way, the key space
will be divided into 2k2 equivalence classes. We denote by GK the quotient group of
Z2k1 by N (GK = Z2k1 /N). By Lagrange’s theorem, we have that o(GK) = o(Z2k1 )/o(N),
but o(GK) = o(Z2k2 ) = 2k2 , then,

o(N) = o(Z2k1 )/o(Z2k2 ) = 2k1−k2 . (4)
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Now, N can be described, taking into account that its elements are multiples of 2k2 .
For this, we take Q = {0, 1, 2, . . . , 2k1−k2 − 1}, then:

N = < 2k2 > = {x ∈ Z2k1 | ∃ q ∈ Q, x = q 2k2} (5)

= {0, 2k2 , 2 ∗ 2k2 , 3 ∗ 2k2 , . . . , (2k1−k2 − 1) ∗ 2k2}.

On the other hand,

GK = {N, 1 + N, 2 + N, . . . , (2k2 − 2) + N, (2k2 − 1) + N}. (6)

In this way, Z2k1 is divided into a partition of 2k2 classes given by N. GK is called the
quotient group of keys. Let,

E : {0, 1}m × {0, 1}n → {0, 1}n, m, n ∈ N, m ≥ n, (7)

be a block cipher, T a plaintext, K a key, and C the corresponding ciphertext, i.e., C =
E(K, T); K′ is said to be a consistent key with E, T, and C, if C = E(K′, T) (see [16]).
The idea here is also to go through, from the total space, the elements that are in a class
and then find one (or several) consisting of the keys of that class. To be able to go through
the elements of each class, note that Z2k2 is isomorphic with GK, and the isomorphism
corresponds to each r ∈ Z2k2 its equivalence class r + N in GK; thus, selecting a class is
setting an element r ∈ Z2k2 . On the other hand, the elements of N are of the form q 2k2

(q ∈ Q); therefore, the elements of the class r + N are of the form,

q 2k2 + r, q ∈ Q. (8)

Then, the problem of looping through each element of each equivalence class consists
of first setting an element of Z2k2 and then looping through each element of the set Q, to find
a key of GK using Equation (8). The elements of the set Q have block length kd = k1 − k2,
and each class has 2kd elements. We refer to this methodology as TBB. Note that the TBB
methodology is a kind of dual idea with respect to the BBM methodology, i.e., one first
stays in the same class (given by r) and then moves within this class through the elements
(given by q) using the GA. In this case, the length of the blocks is 2kd instead of 2k2 .

The main difficulty in these methodologies is the choice of k2, since it is the parameter
that determines the number of equivalence classes and, therefore, the number of elements
within them. If in GK, k2 increases, the classes have fewer elements, but there are more
classes; on the contrary, if it decreases, so does the number of classes, but the number
of elements of each increases. Something similar happens in the first methodology. The
operations of the space partitioning and going through the elements of each class are done
with the decimal representation and the specific operations of the GA with the binary
representation. For more details, see [16,17].

In Figure 1, the relationship of the content by subsections and the attack on block
ciphers are shown in a flowchart.

S0

S1 S2 · · · Se

I1 I2 · · · Ie

Key space partition

Genetic Algorithm

Consistent keysSolutions

2.2

2.1

3.1

3.2

Figure 1. Flowchart of the relationship between content by subsections and the attack on block ciphers.
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3. Study of Parameters in the GA
3.1. Time Estimation

In GAs, less complex operations such as mutation and crossing are performed within
each class, where the elements have block length k2 ≤ k1 or kd ≤ k1 depending on the
way of partitioning the space. However, despite the variation of these two parameters,
the calculation of the fitness function, being the function of greater complexity within the
GA, is carried out using (8), i.e., with the complete key of length k1, and not with the part
of it found in the class. This means that a variation in the number of elements in a class
does not affect the fitness function’s cost. Moreover, if all the parameters remain the same,
the GA’s time in each generation must be quite similar, even if k2 varies. To check this,
experiments were done with a PC with an Intel(R) Core (TM) i3-4160 CPU @ 3.60GHz
(four CPUs), and 4GB of RAM. AES(t) encryption was used, a parametric version of AES,
where t ∈ {3, 4, 5, 6, 7, 8} and also AES(8) = AES (see [18,19]). The experiment consisted
of executing the GA with the BBM methodology and measuring the time (in minutes)
that it took in a generation for different values of k2 (keeping the other parameters fixed),
then verifying if these data were used to forecast the time it would take in n generations.
The size of the population was m = 100 in all cases.

Tables 1–3 summarize the results corresponding to AES(3), AES(4), and AES(7),
respectively. The first column has the different values that were given to k2. The second
column is the average time tk2 that was obtained for a generation in 10 executions of each k2.
The general mean for all the k2 values is tm = 0.0435571 minutes approximately in Table 1,
tm = 0.0519393 in Table 2, and tm = 0.1900297 in Table 3. The third column represents the
number of generations (ng). The real-time that the algorithm takes, tr, appears in the fourth
column. The fifth column is the estimated time, te, that should be delayed, the calculation
of which is based on:

te = tmng. (9)

Finally, the last column is the error of the prediction, Ep = |tr − te|. With these
experiments, we wanted to check for the procedure whether if for a specific value of k2 and
having ng generations, then the approximate time (t) that the GA would take to complete
those generations was t ≈ te.

With a generation, or very few, the average time it took for the GA was slightly slower,
decreasing and tending to stabilize at a limit as it performed more iterations. This was due
to probabilistic functions that intervened in the GA and a set of operations to randomly
create an initial population. Therefore, the criterion for calculating the average time tk2 was
to let the GA finish executing in a certain number of generations, either because it found
the key or because it reached the last iteration without finding it, and then calculate the
average. Therefore, calculating tk2 in a few generations or setting the amount to one, would
get longer times; however, doing so would be valid if the intention were to go over the top
in estimating the time that the algorithm consumed.

Table 1. Time estimation in AES(3).

k2 1 Gen n Gen tr te Ep

10 0.0355 2 0.0962 0.0871 0.0091
11 0.0518 20 0.7134 0.8711 0.1577
12 0.0429 27 1.0491 1.1760 0.1269
13 0.042 81 3.3475 3.5281 0.1806
14 0.0429 49 2.0863 2.1343 0.0481
15 0.0454 71 3.1606 3.0926 0.0680
16 0.0444 655 28.9312 28.5299 0.4012
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Table 2. Time estimation in AES(4).

k2 1 Gen n Gen tr te Ep

10 0.0519 9 0.3739 0.4675 0.0936
11 0.0553 8 0.3838 0.4155 0.0318
12 0.0465 5 0.2756 0.2597 0.0159
13 0.0564 2 0.1303 0.1039 0.0264
14 0.0506 81 4.1554 4.2071 0.0517
15 0.0510 98 4.9621 5.0900 0.1279
16 0.0519 655 34.1330 34.0202 0.1128

In the case of AES(7) (Table 3), we only experimented with the values 17 and 18 of k2,
since considering all the previous (or higher) values would take a considerably longer time
(given the greater strength of AES(7)).

Table 3. Time estimation in AES(7).

k2 1 Gen n Gen tr te Ep

17 0.1895 373 69.1909 70.8811 1.6902
18 0.1905 932 178.069 177.108 0.9610

Similar results were obtained if more values of k2 were chosen to calculate tm.
For example, using a PC Laptop with a processor: Intel (R) Celeron (R) CPU N3050 @
1.60GHz (two CPUs), ∼1.6 GHz, and 4 GB of RAM and going through all the values of k2
from 10 to 48 (AES(3) key length), tm = 0.2340212 was obtained. Now, for ng = 215, we
had tr = 48.14715 and te = tmng ≈ 50.3145. In another test: ng = 150, tr = 34.9565, then
te ≈ 35.1032. Note that the PC used in this case had different characteristics and less
computational capacity than the experiments in Tables 1–3. The interesting thing is that
under these conditions, the results were as expected as well.

In a similar way, the GA was executed with the TBB methodology for the search in GK,
for values of kd equal to those of k2 and different generations (ng). It was observed that the
time estimates behaved in a similar way to the results presented previously for the BBM
methodology. Note that in the AES(t) family of ciphers, the length of the key increases from
48 for AES(3) to 128 for AES(8); however, regardless of the key length, the same behavior
was seen in all of them.

Now, we showed with these experiments another application of this study on time
estimation. In the GA scheme with the BBM methodology, the total number of generations
(iterations) to perform for a given value of k2 is:

g =

⌊
2k2

m

⌋
. (10)

Taking ng = g, by using te, then we can do an a priori estimation for a given value of
k2, of the total time it will take the GA to perform all the generations or a certain desired
percent of them. For example, in AES(3), for k2 = 16, in Expression (10), we have g = 655;
now, since tm = 0.0435571 in Table 1, then the approximate time that the GA will consume
to perform 655 generations is te ≈ 655 · 0.0435571 ≈ 28.5299, as can be seen in the table.
Another example can be seen in Table 2, also for k2 = 16.

On the other hand, supposing we have an available time te, to carry out the attack
with this model, thus we may use (9) and (10), to compute an approximated value of k2,
which implies doing the corresponding partition of the space and computing the number
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of generations to perform for this time te and the value of k2. In this sense, doing ng = g in
(9), we have:

k2 ≈
⌊

log2
mte

tm

⌋
. (11)

We remark that the above is valid in the TBB methodology, only that kd is used instead
of k2.

As can be observed, the results on the estimation of time were favorable. In this sense,
the following points can be summarized:

1. Taking into account the estimation of time te and its observed closeness to the real
value tr, a number of generations to be carried out in an available or desired time can
be estimated (using Expression (9)), which can be taken as a starting point for the
proper choice of k2, or kd in GK (see Section 2). In this way, it is possible to adapt the
size of the search space (to choose a proper value of k2 using (11)) to the number of
generations that it is estimated can be executed in a given time.

2. The time tk2 could be used to perform the time estimation of its own k2, but as can
be seen in the tables, sometimes, it makes predictions with minor errors and other
times greater than with tm. Another drawback is that it cannot be used for other
k2. On the contrary, the main advantage of using tm is that it can be calculated for
some sparse values of k2 and be used to estimate the time even with values of this
parameter whose tk2 has not been calculated.

3.2. Proposal of Other Fitness Functions

In the context of the BBM and TBB methodologies used in this work with the GA, we
studied in this section which fitness functions provided a better response, in the sense that
consistent keys were obtained as solutions in a greater percentage of occasions. Let E be
a block cipher with length n of plaintext and ciphertext, defined as in Expression (7), T a
plaintext, K a key, and C the corresponding ciphertext, that is C = E(K, T). Let:

D : {0.1}m × {0.1}n → {0.1}n, (12)

be the function of decryption of E, such that T = D(K, C). Then, the fitness function
with which we have been working and based on the Hamming distance dH , for a certain
individual X of the population, is:

F1(X) =
n− dH(C, E(X, T))

n
, (13)

which measures the closeness between the encrypted texts C and the text obtained from
encrypting T with the probable key X (see [16]). A similar function is the one that measures
the closeness between plaintexts:

F2(X) =
n− dH(T, D(X, C))

n
. (14)

Another function that follows the idea of comparing texts in binary with dH is the
weighting of F1 and F2. Let α, β ∈ [0, 1] ⊂ R, such that α + β = 1, then this function would
be defined as follows:

F3(X) = αF1(X) + βF2(X). (15)

It is interesting to note that F3 is more time consuming than each function separately,
but the idea is to be more efficient in searching for the key.
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The fitness functions proposed at this point are based on measuring the closeness of
the plaintext and ciphertext, but in decimals. Let Yd be the corresponding conversion to
decimals of the binary block Y. The first function is defined as follows,

F4(X) =
2n − 1− |Cd − E(X, T)d|

2n − 1
. (16)

Note that if the encrypted texts are equal, Cd = E(X, T)d, then |Cd − E(X, T)d| = 0,
which implies that F4(X) = 1, i.e., if they are equal, then the fitness function takes the
highest value. On the contrary, the greatest difference is the farthest they can be, i.e., Cd =
2n − 1 and E(X, T)d = 0, and therefore, F4(X) = 0. The following is a weighting of the
functions F1 and F4,

F5(X) = αF1(X) + βF4(X). (17)

Both functions have in common that they measure the closeness between ciphertexts.
This is not ambiguous since, for example, if C and E(X, T) differ by two bits, the function
F1 will always have the same value no matter what these two bits are. On the contrary, it is
not the same in F4 if the bits are both more or less significant since the numbers are not the
same in their decimal representation. The following function measures the closeness in
decimals of plaintexts:

F6(X) =
2n − 1− |Td − D(X, C)d|

2n − 1
. (18)

Finally, the functions F7, F8, and F9 are defined with respect to the previous ones
as follows,

F7(X) = αF2(X) + βF6(X), (19)

F8(X) = αF4(X) + βF6(X), (20)

F9(X) = α1F1(X) + α2F2(X) + α3F4(X) + α4F6(X), (21)

where αi ∈ [0, 1] ⊂ R, i ∈ {1, 2, 3, 4} and
4
∑

i=1
αi = 1. This guarantees that in general, each

Fj(X) ∈ [0, 1] ⊂ R, j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}.
The idea behind the introduction of these functions lies mainly in the fact that there

are changes that the Hamming distance does not detect, as opposed to the decimal distance.
For example, suppose the key is a = (1, 1, 1, 1, 1, 1)2, and b = (0, 0, 0, 0, 0, 1)2 is the possible
key, both in binary. It is clear that the Hamming distance is five, and the distance in decimals
is 62 since a = 63 and b = 1; the fitness functions take the values 1− 5/6 = 0.17 for the
binary version and 1− 62/63 = 0.016 for the decimal version. Now, if b = (0, 0, 1, 0, 0, 0)2,
the binary fitness function would still be 0.17 since there are still five different bits; on the
other hand, b = 8, so the decimal fitness function takes the value 1− 55/63 = 0.13. Finally,
if we take b = (1, 0, 0, 0, 0, 0)2 = 32, then the distance in binary remains the same value,
but the decimal continues to change, therefore, the fitness function as well, and takes the
value 0.49. Therefore, this shows that the change of b, the decimal distance, is always
detected, unlike the binary distance, which remains the same for certain changes.

AES(3) encryption attack experiments were carried out for the two methodologies for
partitioning the key space to compare these functions. The main idea is to find the key and
not do a component percent match analysis between them, where the fitness functions with
the Hamming distance would be more useful. A PC with an Inter (R) Core (TM) i3-4160
CPU @ 3.60GHz (four CPUs), and 4 GB of RAM was used. For the results, we took into
account the average time it took to find the key, the average number of generations in which
it was found, the percentage of failures (in many attacks carried out), and a parameter
called efficiency, EFi , which resulted in a weighting of the three previous criteria.

Definition 1 (Fitness functions’ efficiency). Let µ1, µ2, µ3 ∈ [0, 1] ⊂ R, µ1 + µ2 + µ3 = 1,
tFi , i = 1, · · · , k, the time it takes the GA to find the key with Fi, on an average for gFi generations,
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and pFi the percent of attempts in that the GA did not find the key with Fi. Then, the efficiency, EFi ,
of the fitness function Fi with respect to the other k− 1 functions, Fj, j 6= i, is defined as,

EFi = 1−

µ1
tFi

k
∑

γ=1
tFγ

+ µ2
gFi

k
∑

γ=1
gFγ

+ µ3
pFi

k
∑

γ=1
pFγ

. (22)

Note that the number of generations and the failure percentage are inversely
proportional to the efficiency EFi as the higher these parameters, the lower its efficiency
fitness function. Table 4 presents the results of the comparison of the different fitness
functions for the BBM space partitioning methodology, in this case k = 9. We took
α = β = 0.5 and each αi = 0.25. To calculate EFi the values µ1 = 0.33, µ2 = 0.33 and
µ3 = 0.34 were taken for tFi , gFi , and pFi , respectively. Sorting Fi with respect to efficiency,
the first five would be F6, F8, F4, F5, and F2. It is noteworthy that of the first three that use
only the Hamming distance, only F2 appears.

Table 4. Comparison of fitness functions, with BBM.

Fi Times Generations Failures (%) EFi

F1 5.233 121.2 60 0.8731
F2 5.402 108.4 50 0.8870
F3 11.101 117.4 50 0.8584
F4 4.764 109.2 40 0.8995
F5 9.451 109.8 30 0.8885
F6 3.126 63.4 20 0.9433
F7 12.424 121.3 50 0.8511
F8 7.054 77.1 10 0.9309
F9 15.811 87.7 30 0.8682

In the comparison of these functions for the TBB methodology of partitioning the key
space and searching in GK, the experiment results are presented in Table 5. In this case,
ordering the functions by their efficiency, the first five would be F1, F4, F5, F8, and F6. Again,
a single function appears from the first three, in this case F1, and the others repeat. Note in
particular that F8 (the weight of the functions in decimals) is better than F3 (the weight of
the functions in binary) in each of the parameters measured in both methodologies.

Table 5. Comparison of fitness functions, with TBB.

Fi Times Generations Failures (%) EFi

F1 3.688 83.1 20 0.9278
F2 5.353 109.1 60 0.8633
F3 11.403 122.9 40 0.8536
F4 3.226 67.8 30 0.9240
F5 7.147 83.4 10 0.9235
F6 4.871 96.2 40 0.8939
F7 10.694 113.1 20 0.8840
F8 8.354 92 20 0.9029
F9 16.876 95.7 50 0.8270

It is interesting to see what happens if the values of the weights are changed in the
functions F5, F7, and F9, which combine the functions with distance in decimals and binary,
keeping fixed µ1, µ2, and µ3 for the calculation of EFi . In this sense, in the following group
of experiments, the weights were assigned as follows for each methodology: the values
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were 0.2 and 0.8; first, in each of these three functions, the subfunctions in binary were
favored, from which α = 0.8, β = 0.2 (in F5, F7), α1 = α2 = 0.4, and α3 = α4 = 0.1
(in F9; note that this function has two subfunctions with the distance in binary and two in
decimals); in this case, we identified the functions as F5b, F7b, and F9b; then, we changed the
order of these same weights, and the largest were given to the subfunctions whose distance
was in decimals; and we identified the functions for this case as F5d, F7d, and F9d.

For the BBM methodology, the results are presented in Table 6. Note that according to
EFi , the first is F7d, followed by F5d and F9d.

Table 6. Comparison of functions F5, F7, and F9, with BBM.

Fi Times Generations Failures (%) EFi

F5b 10.247 115 50 0.772
F7b 9.131 90.6 40 0.814
F9b 20.053 107.4 50 0.728
F5d 7.276 83.3 10 0.891
F7d 5.921 61.3 0 0.933
F9d 13.799 77.5 10 0.862

In Figure 2, these results are compared, according to EFi , with those of Table 4, also
including the values of F5, F7, and F9. Sorting the functions according to their efficiency,
the first five are F7d, F6, F8, F5d, and F9d.
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nc
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0.86

0.88

0.90

0.92

0.94

0.96

0.98

Fitness Functions
F5b F7b F9b F5d F7d F9d F1 F2 F3 F4 F5 F6 F7 F8 F9

Figure 2. Efficiency of all fitness functions in the BBM methodology.

Notice how the best results prevail in the functions with the distance in decimals.
In this sense, F7 and F9 (now as F7d and F9d) are incorporated into the first ones and three
of those that already were in this group in the above experiments, F5 (as F5d), F6, and F8

In the case of the TBB methodology, the results are presented in Table 7. According to
efficiency, the first is F7b, followed by F5d and F5b.

Table 7. Comparison of functions F5, F7, and F9, with TBB.

Fi Times Generations Failures (%) EFi

F5b 9.987 111.5 40 0.845
F7b 8.578 86.7 10 0.909
F9b 22.500 119.1 50 0.777
F5d 8.341 96.9 10 0.905
F7d 13.623 141.8 80 0.754
F9d 22.183 114.8 30 0.811
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In Figure 3, these results are compared with those of all the functions of Table 5.
The first five are now F1, F5, F4, F7b, and F5d; notice how the functions that contain the
distance prevail in decimals and this combined with binary. In the experiments, the best
global behavior of the functions with the decimal distance is verified, and specifically in the
BBM methodology, where the keys are grouped into intervals according to their decimal
position in space, contrary to the other methodology, where the keys of each class are
positioned throughout the space.
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0.96

0.98

Fitness Functions
F5b F7b F9b F5d F7d F9d F1 F2 F3 F4 F5 F6 F7 F8 F9

Figure 3. Efficiency of all fitness functions in the TBB methodology.

Note that when comparing Figures 2 and 3, the values of EFi that are in the tables are
not directly compared, but rather, it is necessary to recalculate EFi taking into account that
there are 15 functions. We mean,

EFδi
= 1−

µ1
tFδi

k
∑

γ=1
tFδγ

+ µ2
gFδi

k
∑

γ=1
gFδγ

+ µ3
pFδi

k
∑

γ=1
pFδγ

, (23)

where δi ∈ {1, · · · , 9, 5b, 5d, 7b, 7d, 9b, 9d}, i = 1, · · · , k, and, k = 15.

4. Conclusions

In this article, various aspects of some parameters of the GA for the attack on block
ciphers were studied. In the first place, a way of estimating the time that the GA takes
in a given number of generations was proposed, having an average of the time that this
algorithm takes in one generation. This study is important to jointly evaluate different
parameters and make the best decisions according to the computational capacity, available
time, and an adequate selection of the size of the search space when using the BBM and TBB
methodologies. On the other hand, several fitness functions were proposed with favorable
results in the experiments with respect to the fitness functions using only the Hamming
distance. In this sense, it was found that the fitness functions that use the decimal distance,
in general, are more efficient than those that use only the Hamming distance, especially in
the methodology BBM.

As future work, several directions are possible. Similar studies can be carried out
with the GA working with other parameters, such as varying the crossover probability and
mutation rate and making comparisons regarding the percentage of success of the method.
It is also recommended to explore other heuristic techniques and to evaluate the use of
whole space partitioning methods so that the methods work closed on the subsets. In the
same way, it is also recommended to investigate the combined use with some other tools
such as machine learning, deep learning, ANN, SVM, and GEP.
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