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Abstract: We explore a superconducting charge qubit interacting with a dissipative microwave cavity
field. Wigner distribution and its non-classicality are investigated analytically under the effects of the
qubit–cavity interaction, the qubit–cavity detuning, and the dissipation. As the microwave cavity
field is initially in an even coherent state, we investigate the non-classicality of the Wigner distribu-
tions. Partially and maximally frozen entanglement are produced by the qubit–cavity interaction,
depending on detuning and cavity dissipation. It is found that the amplitudes and frequency of the
Wigner distribution can be controlled by the phase space parameters, the qubit–cavity interaction
and the detuning, as well as by the dissipation. The cavity dissipation reduces the non-classicality;
this process can be accelerated by the detuning.

Keywords: charge–qubit system; quasi-probability wigner function; entanglement

1. Introduction

The decoherence and dissipation issues taint the dynamics of every quantum system.
These effects reduce, distort or destroy the quantum phenomena, [1,2] such as: quan-
tum coherence, squeezing, and quantum correlation. Moreover, decoherence is the most
significant characteristic of an open quantum system. This quantum effect destroys the
nonclassical correlations. Decoherence affects the entangled states and transforms them to
mixed states [3]. Decoherence usually occurs as the system’s constituents interact with the
environment [4,5]. The effects of decoherence and dissipations on the dynamical features
have been investigated in various quantum systems [6–9]. The interaction between the
quantum systems and the environment usually leads to a decoherence/dissipation process,
which reduces the quantum phenomena [10].

The decoherence and the dissipation effects might lead to spontaneous symmetry
breaking or phase transition phenomena [11–15], which may occur in several dissipative
quantum systems [16–19]. These effects erase the quantum information resources. In
general, the decoherence and the dissipation effects can be investigated by various types
of master equation [20–24] which can be employed to analyze the quantum dynamics of
the systems.

To characterize quantum states and present valuable quantum information about
the system states, quasi-probability distributions were introduced [25]. Wigner distribu-
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tion (WD) is the first quasi-probability distribution that was introduced to determine the
quantum corrections [26]. WD is an important tool to explore the non-classicality via
its negative values [27–32]. There is a link between the WD negativity and the entan-
glement [33–36]; however, the negativity of the Wigner distribution is not sufficient to
guaranty the non-classicality [37]. The negativity of the generalized Wigner function was
used as an entanglement witness for hybrid bipartite states [38]. The non-Gaussinity of the
Wigner function could be detected by its representation in the phase space. Based on the
link between the WD negativity and the entanglement entropy, the non-gaussian nature
and entanglement of spontaneous parametric nondegenerate triple-photon generation
were investigated [39,40]. Experimentally, the Wigner function of a single photon is used
to demonstrate non-classicality properties specific to non-Gaussian states [41]. It is found
that a negative value of the Wigner function is a sufficient condition for non-Gaussinity of
two-photon states [42].

Superconducting (SC) qubits or two-level systems of Josephson junctions are promis-
ing candidates for realizing quantum computation [43–46]. Recently, researchers have
achieved significant progress in conceiving the quantum regime in these systems. It was
reported that these qubits can be strongly coupled to a single-microwave photon [47,48].
Superconducting circuits present several potential applications, such as: realizing Fock
states [49], implementing quantum algorithms [50], encoding [51], and realizing entangle-
ment [52].

The decoherence and the dissipation effects on the WD nonclassicality were investi-
gated in [53,54]. These studies were limited [55–57]. The WD non-classicality was explored
for a cavity QED containing a high optical nonlinear medium and a quantum well [55],
for weak dissipation rates. In [56], the effect of intrinsic decoherence on the WD dynamics
of a cavity interacting resonantly with two coupled qubits was investigated. Under the
phase-cavity-damping effect, the WD nonclassicality of a cavity field interacting with a
qubit with a specific value of applied magnetic flux (half of the applied flux quantum) was
studied [57].

In this paper, we explore the Wigner distribution non-classicality for a microwave
cavity field interacting with a superconducting charge qubit. The consider system is an
open quantum system interacting with the environment through cavity dissipation (the
system energy is not conserved). The method used in this paper can be used to investigate
the dynamics of quantum information resources of the Wigner distribution or a quasi-
probability distribution in other qubit-cavity systems.

The paper is organized as follows: In Section 2, we present the physical scheme for a
qubit–cavity system with cavity-damping effect. The dynamics and properties of the WD
will be investigated in Section 3. Finally, in Section 4, we conclude our results.

2. Dissipative Qubit-Cavity System

We consider a charged qubit system that is described by a Cooper-pair box, containing
two identical Josephson junctions, and placed into a microwave cavity. The general
Hamiltonian for this system is given by [48,58,59]

Ĥ = ωψ̂†ψ̂ + Ezσ̂z − EJ σ̂x cos[φ Î +
π

Φ0
(ηψ̂ + η∗ψ̂†)]. (1)

where φ = πΦc
Φ0

and ω represent the frequency cavity field that has the creation operators
to which ψ̂†, and Ez denote the qubit charging energy. EJ is the coupling-energy Josephson
junctions. Φc represents the applied classical magnetic field and Φ0 is the applied flux
quantum. σ̂z and σ̂x are the Pauli matrix operators, which are represented in the basis
formed by the excited |e〉 and ground |g〉 states. The constant η has units of the magnetic
flux and depends on the geometrical design of the SC cavity.

Here, the Cooper-pair box works as a qubit in the microwave region where (1) the
Cooper-pair box is in the middle of the microwave cavity. (2) The microwave cavity field is
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not too strong, such that all higher orders of πη
Φ0

are neglected except the first order. (3) We
use the following operators:

Λ̂x = σ̂x cos φ + σ̂y sin φ, Λ̂y = (σ̂x sin φ− σ̂y cos φ), Λ̂z = σ̂z. (2)

Consequently, the Hamiltonian of Equation (2) can be written as

Ĥ = ωψ̂†ψ̂ + EzΛ̂z − EJΛ̂x +
πEJη

Φ0
Λ̂y(ψ̂ + ψ̂†). (3)

The operators Λ̂k(k = x, y, z) satisfy the following properties

[Λ̂x, Λ̂y] = 2iΛ̂z, [Λ̂y, Λ̂z] = 2iΛ̂x, [Λ̂z, Λ̂x] = 2i Λ̂y. (4)

If the charge qubit–cavity system is interacting with the surrounding environment,
different types of decoherence and dissipation affect the qubit–cavity system. To study the
effect of the cavity dissipation on the time-dependent density matrix of the system, we
consider the master equation,

dρ̂(t)
dt

= −i[Ĥ, ρ̂(t)] + γ([ψ̂ρ̂(t), ψ̂†] + [ψ̂, ρ̂(t)ψ̂†]), (5)

where γ represent dissipation. To solve Equation (5), we used two canonical transformations.
We transform the states |e〉 and |g〉 to the states |1〉 and |0〉, respectively, [60] as:

|1〉 = cos θ|e〉+ sin θ|g〉, |0〉 = cos θ|g〉 − sin θ|e〉, (6)

where θ = 1
2 tan−1( Ez

EJ
). With the rotating operators χ̂+ = |1〉〈0|, χ̂− = |0〉〈1|, and χ̂z =

|1〉〈1| − |0〉〈0|, which satisfy the following properties

[χ̂+, χ̂−] = χ̂z, [χ̂z, χ̂±] = ±2χ̂±. (7)

By using the above transforms and the rotating wave approximation (Ĥ and ρ̂(t) changes
to Ĥχ and R̂(t), respectively), Equation (5) is rewritten as master equation,

dR̂(t)
dt

= −i
[

Ĥχ, R̂(t)
]
+ γ([ψ̂R̂(t), ψ̂†] + [ψ̂, R̂(t)ψ̂†]), (8)

with

Ĥχ = ωψ̂†ψ̂ + ω0χ̂z − λ(ψ̂χ̂+ + χ̂−ψ̂†), (9)

where λ =
πEJ
Φ0

cos2 ξ. ω0 =
√

E2
z + E2

J represents the qubit frequency, which shifts the

atomic energy levels to ± 1
2

√
E2

z + E2
J . The operators σ̂′s in terms the rotating operators χ̂′s

are given by

σ̂x = cos φ(χ̂x cos 2θ − χ̂z sin 2θ)− χ̂y sin φ,

σ̂y = sin φ(χ̂x cos 2θ − χ̂z sin 2θ) + χ̂y cos φ,

σ̂z = χ̂z cos 2θ + χ̂x sin 2θ. (10)

After that, the second canonical transformation Z(t) = ei ˆ̃HtR(t)e−i ˆ̃Ht (that changes R̂(t)
to Z(t)) is used with the secular approximation and the dressed-states (DS) method [61,62]
for the case of a high−Q cavity. In the DS method, the microwave cavity field operators
are rewritten in terms of the eigenstates’ complete set of the Hamiltonian Ĥχ, and the
oscillatory terms will be neglected. The eigenstates and eigenvalue of Hamiltonian: Ĥχ
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are given by |ϕ±n 〉 = a±n |1, n〉 ± a∓n |0, n + 1〉(n = 0, 1, 2, ...), with a±n = 1√
2

√
1∓ δ

ηn
, ηn =√

δ2 + λ2(n + 1). The dynamics of the density matrix Z(t) is given by

Ż(t) = ei ˆ̃Htγ([ψR̂(t), ψ̂†] + [ψ̂, R̂(t)ψ̂†])e−i ˆ̃Ht. (11)

The off-diagonal elements (m 6= n) of the matrix Z(t) are given by

xmn = 〈ϕ+
m |z(t)|ϕ+

n 〉 = xmn(0)e−γ(m+n+a−2
m +a−2

n )t,

ymn = 〈ϕ−m |z(t)|ϕ−n 〉 = ymn(0)e−γ(m+n+a+2
m +a+2

n )t, (12)

wmn = 〈ϕ+
m |z(t)|ϕ−n 〉 = wmn(0)e−γ(m+n+a−2

m +a+2
n )t,

umn = 〈ϕ−m |z(t)|ϕ+
n 〉 = umn(0)e−γ(m+n+a+2

m +a−2
n )t.

while the diagonal elements of the Z(t) satisfy the differential equations

ẋn(t) = 2γ[ f+2
n+1xn+1(t) + g+2

n+1yn+1(t)− (n + a2
n)xn(t)]. (13)

ẏn(t) = 2γ[ f−2
n+1yn+1(t) + g−2

n+1xn+1(t)− (n + a+2
n )yn(t)]. (14)

where f±n =
√

n a±n−1a±n +
√

n + 1a∓n−1a∓n , and g±n =
√

n a±n−1a∓n −
√

n + 1a∓n−1a±n . Here,
we assumed that the SC-qubit initial density matrix is the density matrix |1〉〈1|, while the
cavity is considered initially in an even, coherent state,

|ψ(0)〉C =
1√
A
[|α〉+ | − α〉] =

∞

∑
n=0

pn |n〉, (15)

with the photon distribution function pn,

pn =
[1 + (−1)n]αne−

1
2 |α|

2

2(1 + 〈α| − α〉)
√

n!
. (16)

Therefore, in the space staes {|1〉, |0〉}, the density matrix R = [∑mn Rmn
ij ], Rmn

ij are given by

R11 =


[a+m a+n e−iπ+

1 txmn + a−m a−n e−iπ−1 tymn + a+m a−n e−iπ+
2 twmn

+a−m a+n e−iπ−2 tumn]|m〉〈n|, m 6= n;

[a+2
n xn + a−2

n yn + 2p∗n pna+2
n a+2

n e−γ(2n+1)t cos(2ηnt)]|m〉〈n|, m = n.

(17)

R00 =



[a−m a−n e−iπ+
1 txmn + a+m a+n e−iπ−1 tymn − a−m a+n e−iπ+

2 twmn

−a+m a−n e−iπ−2 tumn]|m〉〈n|, m 6= n;

[a−2
n xn + a+2

n yn − 2p∗n pna+2
n a+2

n e−γ(2n+1)t cos(2ηnt)]|m〉〈n|, m = n;

[γ
∫ t

0 [x0 + y0]dτ]|0〉〈0|, m=n=0.

(18)

R10 = R†
01 = [a−m a+n e−iπ+

1 txmn − a+m a−n e−iπ−1 tymn + a−m a−n e−iπ+
2 twmn

−a+m a+n e−iπ−2 tumn]|m〉〈n|, (19)
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where π±1 = ω(m− n)± ηm ∓ ηn and π±2 = ω(m− n)± ηm −±ηn. By using the inverse of
the considered canonical transformations, the tim-dependent qubit-cavity system is given by

ρ(t) = ∑
m,n

[R11 cos2 θ + R00 sin2 θ − 1
2
(R10 + R01) sin 2θ]|m, e〉〈n, e|

+[R00 cos2 θ + R11 sin2 θ − 1
2
(R10 + R01) sin 2θ]|m, g〉〈n, g|

+[R10 cos2 θ − R01 sin2 θ +
1
2
(R11 − R00) sin 2θ]|m, e〉〈n, g|

+[R01 cos2 θ − R10 sin2 θ +
1
2
(R11 − R00) sin 2θ]|m, g〉〈n, e|. (20)

3. Wigner Distribution (WD)

The phase space Wigner distribution for the quantum state ρ̂(t) is defined by [25,63,64]:

W(p, q) =
2
π

∞

∑
n=0

(−1)n〈µ, n|ρ̂(t)|µ, n〉, (21)

µ = p+ iq is the parameter of the intensity of the coherent field |µ, n〉 = ep(ψ̂+−ψ̂)+iq(ψ̂++ψ̂)|n〉.
WD is a good indicator of the phase space information and non-classicality of a quantum state,
based on its density matrix. For the reduced density matrix of the cavity field, ρ f = ∑mn ρ

f
mn,

the WD is given by [25,63,64]

W(p + iq) =
2
π

∞

∑
k=0

(−1)k
∞

∑
m,n=0

k!|p + iq|−2ke−(p2+q2)

√
m!n!

(p + iq)∗m(p + iq)n

× Lm−k
m (p2 + q2)ρ

f
mnLn−k

n (p2 + q2), (22)

Lm−n
n (p2 + q2) is the associated Laguerre formula. The WD positivity is an indicator of the

classicality and the minimization uncertainty, while the WD negativity indicates the non-
classicality [56,57]. In Figures 1–6, the WD W(p + iq) and its partial distributions (as: W(p),
W(q) and W(t)) are plotted to display the effects of the qubit–cavity interaction and the
dissipation in the resonance and off-resonance cases. Figure 1a, displays the behavior of
W(p+ iq) when the microwave field cavity is initially in an even coherent state, 1

A [|α〉+ | − α〉],
in the phase space: p ∈ [−2π, 2π] and q ∈ [0, π]. The WD has symmetrical interference peaks
and bottoms around the two original peaks, which their heights and depths represent the
positive and negative values of the WD. The interference peaks and bottoms in the behavior of
the WD is due to the superposition of the even coherent state. The classicality of the positive
parts, and the non-classicality of the negative parts of the WD are clearly distinguishable and
are a natural signature of the properties of the initial, even coherent state.
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Figure 1. The Wigner distribution of the initial even coherent state with α = 4 in (a). In (b) the negativity entanglement
N(t) for α = 4 and different cases: (γ, δ) = (0, 0), (γ, δ) = (0, 6)λ and (γ, δ) = (0.01, 0).
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To investigate the time evolution of the WD, we illustrate it at different times. Based
on the negativity entanglement between the SC–qubit and the coherent cavity field, the WD
will be shown at the times of a partial and maximal qubit–cavity entanglement. The sim-
plest definition of the negativity entanglement N(t) is the sum of negative eigenvalues of
the partial transposition matrix for the qubit–cavity density matrix [65]. The qubit–cavity
system has a maximally entangled state when N(t) = 0.5, and is in a disentangled state
for N(t) = 0. Otherwise, the system has a partial entanglement. Figure 1b, shows the
dynamics of the negativity entanglement N(t) under the effect of the unitary qubit–cavity
interaction (solid curve), the detuning (dashed curve) and the dissipation (dash–dot curve).
By starting the qubit–cavity interaction, the negativity grows and oscillates to show the
generated partial and maximal entanglement between the charge-qubit and the coherent
cavity field. In some time intervals, the negativity stabilizes into maximal entanglement,
i.e., the qubit–cavity entanglement, which may be frozen in these intervals (referring to
the phenomenon of frozen maximal entanglement). The dashed curve shows that the
non-zero detuning leads to the reduction in the amplitudes and minima of the negativity
as well as to the increase in the frozen negativity entanglement time windows. Dash–dot
curve illustrates the effect of the dissipation that deteriorates the generated qubit–cavity
entanglement, which completely vanishes after a particular time. The charge–qubit and
the coherent cavity field are then in a disentangled state.
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Figure 2. The WD at λt = π in (a) and at λt = 2.069π in (b) for α = 4, γ = 0 and the resonance case δ = 0.

In Figure 2, the Wigner distribution W(p + iq) is shown in the region p ∈ [0, 2π] and
q ∈ [0, 1.5π] for two different normalized times, λt = π in (a), at which the qubit–cavity
state is in a maximally entangled state, and λt = 2.069π in (b), which corresponds to a
partial entanglement. We note that the qubit–cavity interaction leads to notable changes in the
distribution of the positive and the negative regions of the WD. The distribution amplitudes
of the symmetrical interference peaks and bottoms depend on the considered time λt. For the
case λt = π, the main interference peaks and bottoms are around p = ±π. While for the case
λt = 2.069π, the centers of the main interference peaks and bottoms are at the axis p = 0.

−2

−1

0

1

2

0

0.5

1

1.5

−0.6

−0.4

−0.2

0

0.2

0.4

p/πq/π

(a)

W
D

−2

−1

0

1

2

0

0.5

1

1.5

−0.6

−0.4

−0.2

0

0.2

0.4

p/πq/π

(b)

W
D

Figure 3. The WD at the scaled times λt = π in (a) and at λt = 2.069π in (b) for α = 4, γ = 0 and the off-resonant case
δ = 6λ.
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Figure 3, exhibits the effect of the detuning between the SC-qubit and the coherent
cavity field on the WD W(p + iq) for δ = 6λ. For this off-resonance case, the symmetric
distribution of the interference peaks and bottoms disappears. The dependence of the peak
and bottom distribution (their amplitudes, places, interference and frequency) and on the
phase space parameters p and q is affected by the detuning. By comparing the resonance
and off-resonance cases, we find that the increase in the detuning leads to the reduction
in the amplitudes, interference and frequency of the peaks as well as the bottoms of the
Wigner distribution.

−2

−1

0

1

2

0

0.5

1

1.5
−0.6

−0.4

−0.2

0

0.2

0.4

p/πq/π

(a)

W
D

−2

−1

0

1

2

0

0.5

1

1.5

−0.6

−0.4

−0.2

0

0.2

0.4

p/πq/π

(b)

W
D

Figure 4. The WD is plotted at λt = 2.069π for α = 4, δ = 0 and the different values γ = 0.01 in (a) and γ = 0.05 in (b).

The effect of the coupling of the surrounding environment is shown in Figure 4 for the
same parameter set of Figure 2b, but with non-zero damping values γ. We note that the
increase in the dissipation leads to the reduction in the heights and depths of the peaks and
bottoms of the symmetric WD. For large value of the dissipation γ = 0.05, the classicality
(positive parts) and the non-classicality (negative parts) of the WD are approximately
disappeared. We can deduce that the dissipation reduces the positive and the negative
regions of the Wigner distribution.
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Figure 5. WD at the fixed value µmax = 0.009296π − 0.06127πi for α = 4 and the different values γ = 0.0, 0.005λ, 0.05λ

with δ = 0 in (a) and δ = 6λ in (b).

Figures 5 and 6 illustrates the effects of the dissipation and the qubit-field detuning on
the dynamics of the non-classicality of the W(t) for the fixed point in the (p, q)-phase space,
µmax = (p, q) = (0.009296π,−0.06127π), which corresponds to the largest positive value
of the initial WD (see Figure 1a). For the resonance case δ = 0 without the dissipation effect
γ = 0.0, the Wigner distribution oscillates between its positive and negative values, show-
ing that the qubit–cavity interaction generates classicality and non-classicality information.
The Wigner distribution oscillates. It also illustrates collapses and revival phenomena.
In the collapse intervals (W(t) = 0), the WD has no classical or quantum information.
By comparing the results of the negativity entanglement N(t) and the time evolution of
the negativity of W(t), we observe that they have similar dynamical behavior, where:
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(1) The frozen maximal entanglement intervals N(t) = 0.5 corresponds to the collapse
intervals of the WD W(t) = 0. (2) The minima of the oscillatory behaviors of the N(t) and
W(t) occur at the same times. The relationship between the negativity entanglement and
the negativity of the WD confirms that the WD can be an indicator of the entanglement.
Dashed and dash–dot curves show the effect of the dissipation on the dynamics of the
WD W(t). The amplitudes of the oscillations are reduced by the enhancement of the dis-
sipation; therefore, the classical and quantum information of the Wigner distribution is
completely erased.
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Figure 6. WD at the fixed value µmin = 0.009296π − 0.06127πi for α = 4 and the different values γ = 0.0, 0.005λ, 0.05λ

with δ = 0 in (a) and δ = 6λ in (b).

In Figure 5b, the dynamics of the largest positive value of the WD is shown for the
off-resonance case δ = 6λ. We note that the detuning between the charge–qubit and the
coherent cavity field enhances the oscillation frequency and the non-classicality of the
WD. We also observe collapse intervals of the WD (W(t) = 0). In addition, the detuning
accelerates the effect of the dissipation, i.e., it accelerates the erasing of the classical and
quantum information of the WD. The non-classicality dynamics of the W(t) for the fixed
point in the phase space µmin = 0, which corresponds to the largest negative-value for
the initial WD is displayed in Figure 6a. For the resonance case δ = 0, we have the same
behavior as the previous case of Figure 5a. While for the off-resonance case δ = 6λ, we
observe that the detuning leads to a downshift in the average of the Wigner distribution,
from W(t) = 0 to W(t) = −0.2. This means that the detuning increases the non-classicality
of the Wigner distribution, and accelerates the erasing of the its classical and quantum
information due to the dissipation.

4. Conclusions

In this contribution, we have analytically analyzed the entanglement and the non-
classicality for a superconducting Cooper-pair box that contains two identical Josephson
junctions, interacting with an open microwave cavity field. Our investigation is based on
the effects of the qubit–cavity interaction, the resonance/off-resonance case and the cou-
pling to the external environment. When the microwave cavity field is initially in an even
coherent state, the link between the negativity entanglement and the non-classicality of the
Wigner function is investigated. Without the dissipation effect, the negativity oscillates and
presents frozen maximal entanglement phenomenon, which are affected by the detuning
and reduced by the dissipation. The dependence of the amplitudes, interference and fre-
quency of the Wigner distribution on the phase space parameters present notable changes
due to the qubit–cavity interaction, the detuning and the cavity damping. The amplitudes,
interference and frequency of the Wigner distribution crucially depend on the increase in
the detuning. The detuning reshapes the non-classicality dynamics. Furthermore, it speeds
up the erasure of the classical and quantum correlation of the Wigner distribution.
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38. Arkhipov, I.I.; Barasiński, A.; Svozilík, J. Negativity volume of the generalized Wigner function as an entanglement witness for

hybrid bipartite states. Sci. Rep. 2018, 8, 16955. [CrossRef]
39. Albarelli, F.; Genoni, M.G.; Paris, M.G.A. Resource theory of quantum non-Gaussianity and Wigner negativity. Phys. Rev. A 2018,

98, 052350. [CrossRef]
40. Zhang, D.; Cai, Y.; Zheng, Z.; Barral, D.; Zhang, Y.g.; Xiao, M.; Bencheikh, K. Non-Gaussian nature and entanglement of

spontaneous parametric nondegenerate triple-photon generation. Phys. Rev. A 2021, 103, 013704. [CrossRef]
41. Walschaers, M.; Fabre, C.; Parigi, V.; Treps, N. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.

PRL 2017, 119, 183601. [CrossRef]
42. Douce, T.; Eckstein, A.; Walborn, S.P.; Khoury, A.Z.; Ducci, S.; Keller, A.; Coudreau1, T.; Milman, P. Direct measurement of the

biphoton Wigner function through two-photon interference. Sci. Rep. 2013, 3, 3530. [CrossRef]
43. You, J.Q.; Nori, F. Superconducting Circuits and Quantum Information. Phys. Today 2005, 58, 42. [CrossRef]
44. Clarke, J.; Wilhelm, F.K. Superconducting quantum bits. Nature 2008, 453, 1031. [CrossRef]
45. Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A.; Homid, A.H. Efficient protocol of N-bit discrete quantum Fourier transform

via transmon qubits coupled to a resonator. Quantum Inf. Process. 2014, 13, 475. [CrossRef]
46. Abovyan, G.A.; Kryuchkyan, Y.G. Quasienergies and dynamics of a superconducting qubit in a time-modulated field. Phys. Rev.

A 2013, 88, 033811. [CrossRef]
47. Wallraff, A.; Schuster, D.I.; Blais, A.; Frunzio, L.; Huang, R.; Majer, J.; Kumar, S.; Girvin, S.M.; Schoelkopf, R.J. Strong coupling of

a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 2004, 431, 162. [CrossRef] [PubMed]
48. Liu, Y.-X.; Wei, L.F.; Nori, F. Generation of nonclassical photon states using a superconducting qubit in a microcavity. Europhys.

Lett. 2004, 67, 941. [CrossRef]
49. Hofheinz, M.; Weig, E.M.; Ansmann, M.; Bialczak, R.C.; Lucero, E.; Neeley, M.; O’Connell, A.D.; Wang, H.; Martinis, J.M.; Cleland,

A.N. Generation of Fock states in a superconducting quantum circuit. Nature 2008, 454, 310. [CrossRef]
50. DiCarlo, L.; Chow, J.M.; Gambetta, J.M.; Bishop, L.S.; Johnson, B.; Schuster, D.I.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S.M.; et al.

Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 2009, 460, 240. [CrossRef]
51. Vlastakis, B.; Kirchmair, G.; Leghtas, Z.; Nigg, S.E.; Frunzio, L.; Girvin, S.M.; Mirrahimi, M.; Devoret, M.H.; Schoelkopf, R.J.

Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States. Science 2013, 342, 607. [CrossRef]
52. Riste, D.; Dukalski, M.; Watson, C.A.; de Lange, G.; Tiggelman, M.J.; Blanter, Y.M.; Lehnert, K.W.; Schouten, R.N.; DiCarlo, L.

Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature 2013, 502, 350. [CrossRef]
53. Teh, R.Y.; Sun, F.-X.; Polkinghorne, R.E.S.; He, Q.Y.; Gong, Q.; Drummond, P.D.; Reid, M.D. Dynamics of transient cat states in

degenerate parametric oscillation with and without nonlinear Kerr interactions. Phys. Rev. A 2020, 101, 043807. [CrossRef]
54. Meng, X.-G.; Goan, H.-S.; Wang, J.-S.; Zhang, R. Nonclassical thermal-state superpositions: Analytical evolution law and

decoherence behavior. Opt. Commun. 2018, 411, 15. [CrossRef]
55. Mohamed, A.-B.; Eleuch, H. Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well:

Entanglement and non-Gaussanity. Eur. Phys. J. D 2015, 69, 191.
56. Mohamed, A.-B.A.; Eleuch, H.; Obada, A.-S.F. Obada: Influence of the Coupling between Two Qubits in an Open Coherent

Cavity: Nonclassical Information via Quasi-Probability Distributions. Entropy 2019, 21, 1137. [CrossRef]
57. Mohamed, A.-B.A. Long-time death of nonclassicality of a cavity field interacting with a charge qubit and its own reservoir. Phys.

Lett. A 2010, 374, 4115.
58. Liu, Y.-X.; Wei, L.F.; Nori, F. Preparation of macroscopic quantum superposition states of a cavity field via coupling to a

superconducting charge qubit. Phys. Lett. A 2005, 71, 063820. [CrossRef]

http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1038/s41598-020-70209-5
http://www.ncbi.nlm.nih.gov/pubmed/32764648
http://dx.doi.org/10.1364/JOSAB.34.001884
http://dx.doi.org/10.1016/j.ijleo.2018.12.078
http://dx.doi.org/10.1103/PhysRevLett.116.133601
http://dx.doi.org/10.1103/PhysRevA.100.043812
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1016/S0375-9601(97)00416-7
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1016/j.optcom.2014.05.035
http://dx.doi.org/10.1038/s41598-018-35330-6
http://dx.doi.org/10.1103/PhysRevA.98.052350
http://dx.doi.org/10.1103/PhysRevA.103.013704
http://dx.doi.org/10.1103/PhysRevLett.119.183601
http://dx.doi.org/10.1038/srep03530
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1007/s11128-013-0664-z
http://dx.doi.org/10.1103/PhysRevA.88.033811
http://dx.doi.org/10.1038/nature02851
http://www.ncbi.nlm.nih.gov/pubmed/15356625
http://dx.doi.org/10.1209/epl/i2004-10144-3
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1126/science.1243289
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1103/PhysRevA.101.043807
http://dx.doi.org/10.1016/j.optcom.2017.11.005
http://dx.doi.org/10.3390/e21121137
http://dx.doi.org/10.1103/PhysRevA.71.063820


Symmetry 2021, 13, 802 11 of 11

59. Pashkin, Y.A.; Yamamoto, T.; Astafiev, O.; Nakamura, Y.; Averin, D.V.; Tsai, J.S. Quantum oscillations in two coupled charge
qubits. Nature 2003, 421, 823.

60. Abdalla, M.S.; Khalil, E.M.; Obada, A.-S.F. Obada: Exact treatment of the Jaynes-Cummings model under the action of an external
classical field. Ann. Phys. 2011, 326, 2486. [CrossRef]

61. Barnett, S.M.; Knight, P.L. Dissipation in a fundamental model of quantum optical resonance. Phys. Rev. A 1986, 33, 2444.
[CrossRef]

62. Puri, R.R.; Agarwal, G.S. Finite-Q cavity electrodynamics: Dynamical and statistical aspects. Phys. Rev. A 1987, 35, 3433.
63. Moya-Cessa, H.; Knight, P.L. Series representation of quantum-field quasiprobabilities. Phys. Rev. A 1993, 48, 2479. [CrossRef]
64. Hessian, H.A.; Mohamed, A.-B.A. Quasi-Probability Distribution Functions for a Single Trapped Ion Interacting with a Mixed

Laser Field. Laser Phys. 2008, 18, 1217. [CrossRef]
65. Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [CrossRef]

http://dx.doi.org/10.1016/j.aop.2011.05.005
http://dx.doi.org/10.1103/PhysRevA.33.2444
http://dx.doi.org/10.1103/PhysRevA.48.2479
http://dx.doi.org/10.1134/S1054660X08100204
http://dx.doi.org/10.1103/PhysRevA.65.032314

	Introduction
	Dissipative Qubit-Cavity System
	Wigner Distribution (WD)
	Conclusions
	References

