
symmetryS S

Article

The Existence, Uniqueness, and Stability Analysis of the
Discrete Fractional Three-Point Boundary Value Problem for
the Elastic Beam Equation

Jehad Alzabut 1,2,*,† , A. George Maria Selvam 3,† , R. Dhineshbabu 4,† and Mohammed K. A. Kaabar 5,6,*,†

����������
�������

Citation: Alzabut, J.; Selvam, A.G.;

Dhineshbabu, R.; Kaabar, M.K.A. The

Existence, Uniqueness, and Stability

Analysis of the Discrete Fractional

Three-Point Boundary Value Problem

for the Elastic Beam Equation.

Symmetry 2021, 13, 789.

https://doi.org/10.3390/sym13050789

Academic Editor: Clemente Cesarano

Received: 27 February 2021

Accepted: 29 April 2021

Published: 2 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
2 Group of mathematics, Faculty of Engineering, Ostim Technical University, 06374 Ankara, Turkey
3 Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu, India;

agms@shctpt.edu
4 Department of Mathematics, Sri Venkateswara College of Engineering and Technology (Autonomous),

Chittoor 517 127, Andhra Pradesh, India; dhineshbabur@svcetedu.org
5 Department of Mathematics and Statistics, Washington State University, Pullman, WA 99163, USA
6 Institute of Mathematical Sciences, Faculty of Science, University of Malaya,

Kuala Lumpur 50603, Malaysia
* Correspondence: jalzabut@psu.edu.sa (J.A.); mohammed.kaabar@wsu.edu (M.K.A.K.);

Tel.: +966-114948547 (J.A.)
† These authors contributed equally to this work.

Abstract: An elastic beam equation (EBEq) described by a fourth-order fractional difference equation
is proposed in this work with three-point boundary conditions involving the Riemann–Liouville
fractional difference operator. New sufficient conditions ensuring the solutions’ existence and unique-
ness of the proposed problem are established. The findings are obtained by employing properties
of discrete fractional equations, Banach contraction, and Brouwer fixed-point theorems. Further,
we discuss our problem’s results concerningHyers–U lam (HU ), generalizedHyers–U lam (GHU ),
Hyers–U lam–Rassias (HUR), and generalized Hyers–U lam–Rassias (GHUR) stability. Specific
examples with graphs and numerical experiment are presented to demonstrate the effectiveness of
our results.

Keywords: Riemann–Liouville fractional difference operator; boundary value problem; discrete
fractional calculus; existence and uniqueness; Ulam stability; elastic beam problem

MSC: 34A12; 34B10; 34B15; 39A12; 47H10; 74B20

1. Introduction

Elastic beam (EB) deflections are commonly known phenomena in science and engi-
neering. Based on the significance of their applications such as for aircraft design, chemical
sensors, micro-electromechanical systems, material mechanics, medical diagnostics, and
physics, two-point boundary value problems (BVPs) for EBEqs have received considerable
attention. Recently, many researchers have investigated EBEqs with various boundary con-
ditions (BCs) (refer to [1–6]). Gupta in [6] studied a fourth-order EBEq with two-point BCs:{

w(4)(κ) = G(κ, w(κ)), κ ∈ (0, 1),
w(0) = 0, w′′(0) = 0, w′(1) = 0, w′′′(1) = 0.

(1)

Equation (1) describes an elastic beam model of length 1, which is clamped with a
displacement and a bending moment that are equal to zero at the left end, and this model
is free to travel with disappearing angular attitude and shear force at the right end.
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In addition, Cianciaruso et al. [1] studied the model of the cantilever beam equation
with three-point BCs:{

w(4)(κ) = G(κ, w(κ)), κ ∈ (0, 1),
w(0) = w′(0) = w′′(1) = 0, w′′′(1) = h(w(ζ)),

where ζ ∈ (0, 1) is a real constant. The above is a feedback mechanism model where
the shearing force at the beam’s right end responds to the displacement experienced at a
point ζ.

Fractional calculus (FC) is a generalized form of classical integer-order calculus. Frac-
tional calculus examines the properties of fractional-order derivatives and integrals. Due to
its numerous applications in various scientific fields, this research area has gained consider-
able attention over the past few years. FC can be applicable in several fields of science and
engineering, along with aerodynamics, electrical circuits, fluid dynamics, heat conduction,
and physics. We refer to the comprehensive works in [7–10] for a detailed analysis of its
applications, and we refer to [11–15] for the latest trends in the area of FC.

Researchers have explored various aspects of fractional difference equations (FDEs).
Obviously, the solutions’ existence, uniqueness, and stability analysis are some important
features of FDEs. Various analytical approaches and fixed-point theory have been used
to examine the solutions’ existence and stability for FDEs. Several researchers have con-
tributed a number of books and papers in this regard [16]. However, finding the exact
solution of nonlinear FDEs is often too difficult; therefore, the stability analysis of solutions
plays a crucial role in such investigations. Various kinds of stabilities described in the past
are discussed in the literature, such as Lyapunov stability [17], Mittag–Leffler stability [18],
and exponential stability [19]. Presumably, the most dependable stabilities are calledHU
stability. The discussed stability was modified to GHU stability (refer to [20–22]). In 1970,
Rassias further generalized the aforesaid stability. For FDEs with different BCs concerning
Riemann–Liouville and Caputo operators, the addressed fields of existence and stability
analysis are well-equipped (see [23–28]).

A new interesting research field, named discrete fractional calculus (DFC), is attracting
the interest of mathematicians and researchers. With discrete fractional operators, several
real-world problems are being investigated [29–32]. The fractional difference equations
have recently become an interesting field for scientists because of their applications in
biology, ecology, and applied sciences [33]. However, a few research studies that have been
conducted on discrete fractional-order BVPs can be found in [34–47].

The above findings inspired us in this study concerning the solutions’ existence and
uniqueness with various types of Ulam stability results for the proposed discrete fractional
elastic beam equation (FEBE) that is subject to the three-point BCs as follows:{

∆β
β−4w(κ) = G(κ + β− 1, w(κ + β− 1)), κ ∈ Nn+3

0 ,

w(β− 4) = 0, ∆2w(β− 4) = 0, ∆w(β+ n) = 0, ∆3w(β+ n) + w(ζ) = 0,
(2)

where β ∈ (3, 4] is a fractional order and ζ ∈ Nβ+n+2
β−1 is constant. Here, we have that

G : Nβ+n+3
β−4 × R → R is continuous, w : Nβ+n+3

β−4 → R, ∆β
β−4 is the Riemann–Liouville

discrete fractional operator, and n ∈ N0.
The rest of this research work is structured as follows. Basic background knowledge

on DFC is stated in Section 2. The result for a linear version of the BVP Equation (2)
is discussed in Section 3. Further, by using this solution, the existence and uniqueness
conditions for the proposed discrete FEBE with three-point BCs (Equation (2)) are derived
with the help of contraction mapping and the Brouwer fixed-point theorems. Different
types of stability results are extensively obtained in Section 4 via the findings of nonlinear
analysis. Some illustrative examples with graphs and numerical experiment are presented
in Section 5 as applications to provide a better understanding of our findings. Finally,
Section 6 concludes our research work.
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2. Essential Preliminaries

Some important notions and preliminary lemmas are stated in this section, which are
needed for discussion of our results.

Definition 2.1 ([30]). For β > 0, the βth order fractional sum of G can be defined as

∆−βG(κ) =
1

Γ(β)

κ−β
∑
i=a

(κ − σ(i))(β−1)G(i),

for κ ∈ Na+β and σ(i) = i + 1 . Define the βth fractional difference for β > 0 by ∆βG(κ) :=
∆M∆β−MG(κ), for κ ∈ Na+M−β, M ∈ N satisfies 0 ≤ M − 1 < β ≤ M, and κ(β) :=

Γ(κ + 1)
Γ(κ + 1− β)

.

Lemma 2.2 ([30]). Assume that κ and β are any numbers such that κ(β) and κ(β−1) are defined.
Then we have ∆κ(β) = βκ(β−1).

Lemma 2.3 (see [34,44]). Let 0 ≤ M− 1 < β ≤ M. Then,

∆−β ∆βG(κ) = G(κ) + C1κ(β−1) + C2κ(β−2) + ... + CMκ(β−M),

for some Cj ∈ R, 1 ≤ j ≤ M.

Lemma 2.4 (see [42]). For κ and i, for which both (κ − σ(i))(β) and (κ − 1 − σ(i))(β) are
defined, we obtain that ∆i

[
(κ − σ(i))(β)

]
= −β(κ − 1− σ(i))(β−1).

Lemma 2.5 (see [43,46]). Let β, ν > 0. Then,

∆−βκ(ν) =
Γ(ν + 1)

Γ(ν + β+ 1)
κ(ν+β) and ∆βκ(ν) =

Γ(ν + 1)
Γ(ν− β+ 1)

κ(ν−β).

3. EB Existence and Uniqueness

The existence and uniqueness of EB is established in this section to the three-point
BCs for the proposed discrete FEBE Equation (2). We now introduce the following theorem
that deals with a linear variant solution of our proposed BVP Equation (2).

Theorem 3.1. Let H : Nβ+n+3
β−4 → R be given. Then, the linear discrete FEBE with three-point BCs:{

∆β
β−4w(κ) = H(κ + β− 1), κ ∈ Nn+3

0 ,

w(β− 4) = 0, ∆2w(β− 4) = 0, ∆w(β+ n) = 0, ∆3w(β+ n) + w(ζ) = 0,
(3)

has the unique solution, for κ ∈ Nβ+n+3
β−4 ,

w(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)H(i + β− 1)

+E1(κ)

[
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
H(i + β− 1)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1),

(4)
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where

E1(κ) =

[
κ(β−1)

e1
h1 + κ(β−2) f1 f4 − κ(β−3) f1

]
K

; E2(κ) =

[
κ(β−1)h2 − κ(β−2)e1 f4 + κ(β−3)e1

]
K

(5)

such that h1 = f1(e3 − e2 f4)− K, h2 = e2 f4 − e3, K = [e3 f1 − e1 f3]− f4[e2 f1 − e1 f2],
e1 = (β− 1)(3)(β+ n)(β−4) + ζ(β−1), e2 = (β− 2)(3)(β+ n)(β−5) + ζ(β−2),
e3 = (β− 3)(3)(β+ n)(β−6) + ζ(β−3), f1 = (β− 1)(β+ n)(β−2),

f2 = (β− 2)(β+ n)(β−3), f3 = (β− 3)(β+ n)(β−4) and f4 =
(β− 4)
(β− 2)

.

Proof. By applying the fractional sum ∆−β of order β ∈ (3, 4] along with Lemma 2.3 to
Equation (3), we have

w(κ) =
1

Γ(β) ∑κ−β
i=0 (κ − σ(i))(β−1)H(i + β− 1) + C1κ(β−1) + C2κ(β−2) + C3κ(β−3) + C4κ(β−4), (6)

for κ ∈ Nβ+n+3
β−4 and some constants Cj ∈ R, where j = 1, 2, 3, 4. By applying the first BC

w(β− 4) = 0 in Equation (6), we obtain

w(β− 4) = C1(β− 4)(β−1) + C2(β− 4)(β−2) + C3(β− 4)(β−3) + C4(β− 4)(β−4) = 0. (7)

By using Definition 2.1, we obtain

(β− 4)(β−1) = (β− 4)(β−2) = (β− 4)(β−3) = 0 and (β− 4)(β−4) = Γ(β− 3). (8)

Equations (7) and (8) imply C4 = 0. Using C4 in Equation (6) provides

w(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)H(i + β− 1) + C1κ(β−1) + C2κ(β−2) + C3κ(β−3). (9)

Using Lemma 2.2 and taking the operator ∆ on both sides of Equation (9), we obtain

∆w(κ) =
1

Γ(β− 1)

κ−β+1

∑
i=0

(κ − σ(i))(β−2)H(i + β− 1)

+C1(β− 1)κ(β−2) + C2(β− 2)κ(β−3) + C3(β− 3)κ(β−4). (10)

From the third BC ∆w(β+ n) = 0 in Equation (10), we obtain

1
Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1) + C1 f1 + C2 f2 + C3 f3 = 0. (11)

The operator ∆ is applied on both sides of Equation (10) with the aid of Lemma 2.2, and
we obtain

∆2w(κ) =
1

Γ(β− 2)

κ−β+2

∑
i=0

(κ − σ(i))(β−3)H(i + β− 1) + C1(β− 1)(2)κ(β−3)

+C2(β− 2)(2)κ(β−4) + C3(β− 3)(2)κ(β−5). (12)

The second BC of Equation (3) implies

C2(β− 2) + C3(β− 4) = 0. (13)
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Again, using Lemma 2.2 and taking the operator ∆ on both sides of Equation (12), we obtain

∆3w(κ) =
1

Γ(β− 3)

κ−β+3

∑
i=0

(κ − σ(i))(β−4)H(i + β− 1) + C1(β− 1)(3)κ(β−4)

+C2(β− 2)(3)κ(β−5) + C3(β− 3)(3)κ(β−6). (14)

Using the last BC ∆3w(β+ n) + w(ζ) = 0 in Equations (9) and (14) yields

w(ζ) =
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1)H(i + β− 1) + C1ζ(β−1) + C2ζ(β−2) + C3ζ(β−3) (15)

and

∆3w(β+ n) =
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)H(i + β− 1) + C1(β− 1)(3)(β+ n)(β−4)

+C2(β− 2)(3)(β+ n)(β−5) + C3(β− 3)(3)(β+ n)(β−6). (16)

From Equations (15) and (16), and by employing the last BC Equation (3), we obtain

1
Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)H(i + β− 1)

+
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1)H(i + β− 1) + C1e1 + C2e2 + C3e3 = 0. (17)

Solving Equations (11) and (17), we obtain

f1

(
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4) +
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1)

)
H(i + β− 1)

+ C2(e2 f1 − e1 f2) + C3(e3 f1 − e1 f3)−
e1

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1) = 0.

(18)

Now, a constant C3 is found by solving Equations (13) and (18) as follows:

C3 =
1
K

[
e1

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1)

− f1

(
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

)
H(i + β− 1)

]
.

Substituting C3 into Equation (13), we have

C2 =
f4

K

[
f1

(
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

)
H(i + β− 1)

− e1

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1)

]
.

By using the value of C2 and C3 in Equation (17), we arrive at

C1 =
1

e1K

{
e1h2

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1)

+h1

(
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

)
H(i + β− 1)

}
.
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By using the constants Cj for j = 1, 2, 3 in Equation (9), we obtain w(κ) in the form

w(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)H(i + β− 1)

+E1(κ)

[
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
H(i + β− 1)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1),

for κ ∈ Nβ+n+3
β−4 . Therefore, the theorem’s proof is complete.

Assume that B∗ : C
(
Nβ+n+3
β−4 ,R

)
is a Banach space with a norm defined by

‖w‖ = max
{
|w(κ)| : κ ∈ Nβ+n+3

β−4

}
.

To discuss the theorems’ existence and uniqueness, we need the following assumptions:

(A1) There exists a constant LG > 0, which satisfies |G(κ, w)− G(κ, ŵ)| ≤ LG|w− ŵ| for
all w, ŵ ∈ B∗ and each κ ∈ Nβ+n+3

β−4 .

(A2) There exists a bounded function χ : Nβ+n+3
β−4 → R with |G(κ, w)| ≤ χ(κ)|w| for all

w ∈ B∗.

Theorem 3.2. In view of assumption (A1), the discrete FEBE with the three-point BCs in Equation (2)
has a unique solution if

Λ :=

[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG < 1, (19)

where

E∗1 =

∣∣∣∣∣ 1
K

[
(β+ n + 3)(β−1)

e1
h1 + (β+ n + 3)(β−2) f1 f4 − (β+ n + 3)(β−3) f1

]∣∣∣∣∣,
E∗2 =

∣∣∣∣ 1
K

[
(β+ n + 3)(β−1)h2 − (β+ n + 3)(β−2)e1 f4 + (β+ n + 3)(β−3)e1

]∣∣∣∣,
(20)

such that K is defined in Theorem 3.1

Proof. Let the operator A : B∗ → B∗ be defined as

(Aw)(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)gw(κ)

+E1(κ)

[
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
gw(κ)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)gw(κ),

(21)
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where gw(κ) = G(κ + β− 1, w(κ + β− 1)). Obviously, the fixed point of A is a solution
to Equation (2). To show that A is a contraction, let w, ŵ ∈ B∗ and for each κ ∈ Nβ+n+3

β−4 ,
one has

|(Aw)(κ)− (Aŵ)(κ)| ≤ 1
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)|gw(i)− gŵ(i)|

+ |E1(κ)|
[

1
Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1)+

1
Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
|gw(i)− gŵ(i)|

+
|E2(κ)|

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)|gw(i)− gŵ(i)|,

where gw(κ), gŵ(κ) ∈ C
(
Nβ+n+3
β−4 ,R

)
satisfies the following functional equations:

gw(κ) = G(κ + β− 1, w(κ + β− 1)) and gŵ(κ) = G(κ + β− 1, ŵ(κ + β− 1)). (22)

By (A1), we have

|gw(κ)− gŵ(κ)| = |G(κ + β− 1, w(κ + β− 1))− G(κ + β− 1, ŵ(κ + β− 1))|
≤ LG|w(κ + β− 1)− ŵ(κ + β− 1)|

|gw(κ)− gŵ(κ)| ≤ LG‖w− ŵ‖. (23)

From which we obtain

‖Aw−Aŵ‖ ≤ LG‖w− ŵ‖
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)

+ |E1(κ)|LG‖w− ŵ‖
[

1
Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]

+
|E2(κ)|LG‖w− ŵ‖

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2).

(24)

By the application of Lemma 2.4, we have

1
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1) =
1

Γ(β)

[
(κ − i)(β)

−β

]κ−β+1

i=0

=
κ(β)

Γ(β+ 1)
≤ (β+ n + 3)(β)

Γ(β+ 1)
(25)

and

1
Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) =
1

Γ(β)

[
(ζ − i)(β)

−β

]ζ−β+1

i=0

=
ζ(β)

Γ(β+ 1)
. (26)

Similarly, by using Lemma 2.4, we also obtain

1
Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2) =
1

Γ(β− 1)

[
(β+ n− i)(β−1)

−(β− 1)

]n+2

i=0

=
(β+ n)(β−1)

Γ(β)
(27)

and

1
Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4) =
1

Γ(β− 3)

[
(β+ n− i)(β−3)

−(β− 3)

]n+4

i=0

=
(β+ n)(β−3)

Γ(β− 2)
. (28)
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By substituting the relations Equations (25)–(28) into Equation (24), we obtain

‖Aw−Aŵ‖ ≤
[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG‖w− ŵ‖.

By Equation (19), we obtain ‖Aw−Aŵ‖ < ‖w− ŵ‖. Hence, A is a contraction. As a
result, according to the Banach fixed-point theorem, the three-point BCs for the discrete
FEBE Equation (2) has a unique solution.

Theorem 3.3. If the assumption (A2) holds, then the discrete FEBE with three-point BCs in
Equation (2) has at least one solution provided that

χ∗ ≤ Γ(β+ 1)[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] , (29)

where χ∗ = max
{

χ(κ) : κ ∈ Nβ+n+3
β−4

}
.

Proof. Assume that D > 0 and consider the set V = {w ∈ B∗ : ‖w‖ ≤ D}. For proving
this theorem, let us claim that Amaps V in V. Now, for any w ∈ V, one has

|(Aw)(κ)| ≤ 1
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)|gw(i)|

+ |E1(κ)|
[

1
Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
|gw(i)|

+
|E2(κ)|

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)|gw(i)|,

where gw(κ) is given in Equation (22). Using (A2), we obtain

|gw(κ)| = |G(κ + β− 1, w(κ + β− 1))| ≤ χ(κ)|w(κ + β− 1)| ≤ χ∗‖w‖.

This further implies that

‖Aw‖ ≤ χ∗‖w‖
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)

+ |E1(κ)|χ∗‖w‖
[

1
Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]

+
|E2(κ)|χ∗‖w‖

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2).

(30)

Using the relations of Equations (25)–(28) in Equation (30), we obtain

‖Aw‖ ≤

 (β+ n + 3)(β) +E∗1
(

ζ(β) + β(3)(β+ n)(β−3)
)
+E∗2β(β+ n)(β−1)

Γ(β+ 1)

χ∗D.

By Equation (29), we have ‖Aw‖ ≤ D, which implies that A : V → V. By using the
Brouwer fixed-point theorem, let us conclude that three-point BCs for discrete FEBE
Equation (2) has at least one solution.
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4. EB Stability Analysis

The Ulam-type stability for the proposed problem Equation (2) is studied in this
section. Now, we present some definitions of Ulam stability, and we also assume that gŵ(κ) :
C
(
Nβ+n+3
β−4 ,R

)
is a continuous function that satisfies gŵ(κ) = G(κ + β− 1, ŵ(κ + β− 1)).

Definition 4.1 ([46]). If for every function ŵ ∈ B∗ of∣∣∣∆β
β−4ŵ(κ)− gŵ(κ)

∣∣∣ ≤ ε, κ ∈ Nn+3
0 , (31)

where ε > 0, there exists solution w ∈ B∗ of Equation (2) and positive number δ1 > 0 such that

|ŵ(κ)− w(κ)| ≤ δ1ε, κ ∈ Nβ+n+3
β−4 . (32)

Then, the discrete FEBE Equation (2) isHU stable. It will be GHU stable if we keep Φ(ε) = δ1ε
in inequality Equation (32), where Φ(ε) ∈ C(R+,R+) and Φ(0) = 0.

Definition 4.2 ([46]). If for every function ŵ ∈ B∗ of∣∣∣∆β
β−4ŵ(κ)− gŵ(κ)

∣∣∣ ≤ εφ(κ + β− 1), κ ∈ Nn+3
0 , (33)

where ε > 0, there are solutions w ∈ B∗ of Equation (2) and positive number δ2 > 0 such that

|ŵ(κ)− w(κ)| ≤ δ2εφ(κ + β− 1), κ ∈ Nβ+n+3
β−4 . (34)

Then, the discrete FEBE Equation (2) is HUR stable. It will be GHUR stable if
φ(κ + β− 1) = εφ(κ + β− 1) in inequality Equations (33) and (34).

Remark 4.3 ([46]). A function ŵ ∈ B∗ is a solution to Equation (31) iff there exists Ψ :
Nβ+n+3
β−4 → R that satisifies, for κ ∈ Nn+3

0 , the following:

(A3) |Ψ(κ + β− 1)| ≤ ε,
(A4) ∆β

β−4ŵ(κ) = gŵ(κ) + Ψ(κ + β− 1).

Similarly, a remark can be constructed for inequality Equation (33).

Lemma 4.4. According to Remark 4.3, a function ŵ ∈ B∗ that corresponds to the discrete FEBE
with three-point BCs is expressed as:{

∆β
β−4ŵ(κ) = gŵ(κ) + Ψ(κ + β− 1), κ ∈ Nn+3

0 ,

w(β− 4) = 0, ∆2w(β− 4) = 0, ∆w(β+ n) = 0, ∆3w(β+ n) + w(ζ) = 0,
(35)

satisfying the following inequality:

|ŵ(κ)− (Aŵ)(κ)| ≤ ε

Γ(β+ 1)
(β+ n + 3)(β),

where (Aŵ)(κ) is defined in Equation (21).
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Proof. By using Theorem 3.1, the corresponding BVP Equation (35) becomes

ŵ(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)gŵ(i)

+E1(κ)

[
1

Γ(β)

ζ−β

∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
gŵ(i)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)gŵ(i)

+
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)Ψ(i + β− 1).

Using an operator A and taking the modulus on both sides of the above solution along
with (A3), we obtain

|ŵ(κ)− (Aŵ)(κ)| ≤ ε

Γ(β+ 1)
(β+ n + 3)(β).

Theorem 4.5. Under the assumption (A1) with the inequality Equation (19), the discrete FEBE
Equation (2) isHU stable.

Proof. If ŵ(κ) is any solution of the inequality Equation (31), and w(κ) is a unique solution
to Equation (2), then

|ŵ(κ)− w(κ)| = |ŵ(κ)− (Aw)(κ)|
= |ŵ(κ)− (Aŵ)(κ) + (Aŵ)(κ)− (Aw)(κ)|
≤ |ŵ(κ)− (Aŵ)(κ)|+ |(Aŵ)(κ)− (Aw)(κ)|. (36)

By using Lemma 4.4 in Equation (36), we have

|ŵ(κ)− w(κ)| ≤ ε

Γ(β+ 1)
(β+ n + 3)(β)

+

[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG‖ŵ− w‖.

This further implies that

‖ŵ− w‖ ≤ δ1ε,

where

δ1 =
(β+ n + 3)(β)

Γ(β+ 1)−LG
[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] .

Hence, the solution of Equation (2) isHU stable.

Remark 4.6. If Φ(ε) = δ1ε such that Φ(0) = 0, then we have

‖ŵ− w‖ ≤ Φ(ε).

Hence, the solution of Equation (2) is GHU stable.

For our next result, the following hypotheses hold:
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(A5) For an increasing function φ ∈ Nβ+n+3
β−4 → R+, there exists λ > 0 such that, for

κ ∈ Nn+3
0

(i)
ε

Γ(β)

κ−β
∑

i=0
(κ − σ(i))(β−1)φ(i + β− 1) ≤ λεφ(κ + β− 1),

(ii)
1

Γ(β)

κ−β
∑

i=0
(κ − σ(i))(β−1)φ(i + β− 1) ≤ λφ(κ + β− 1).

Lemma 4.7. For the three-point BCs of discrete FEBE Equation (35), the following inequality
holds:

|ŵ(κ)− (Aŵ)(κ)| ≤ λεφ(κ + β− 1),

where (Aŵ)(κ) is defined in Equation (21).

Proof. From inequality Equation (33), for κ ∈ Nβ+n+3
β−4 , we obtain a function ∆β

β−4ŵ(κ) =

gŵ(κ) + Ψ(κ + β− 1), |Ψ(κ + β− 1)| ≤ εφ(κ + β− 1) and (A5)(i) such that

|ŵ(κ)− (Aŵ)(κ)| ≤ λεφ(κ + β− 1).

Theorem 4.8. Under the hypothesis (A1) with the inequality Equation (19), the discrete FEBE
Equation (2) isHUR stable.

Proof. By using a similar procedure of Theorem 4.5 together with Lemma 4.7 for κ ∈
Nβ+n+3
β−4 , we obtain

|ŵ(κ)− w(κ)| ≤λεφ(κ + β− 1)

+

[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG‖ŵ− w‖.

This further implies that
‖ŵ− w‖ ≤ δ2εφ(κ + β− 1),

where

δ2 =
λΓ(β+ 1)

Γ(β+ 1)−LG
[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] .

Thus, the solution of Equation (2) isHUR stable.

Remark 4.9. If φ(κ + β− 1) = εφ(κ + β− 1), then we have

‖ŵ− w‖ ≤ δ2φ(κ + β− 1).

Hence, the solution of Equation (2) is GHUR stable.

5. Applications

Some illustrative examples are provided in this section to demonstrate the applicability
of our results in this research work.

Example 5.1. Suppose that β = 3.7, n = 2, and H(κ) = κ(13) with different values of ζ. Then, a
linear discrete FEBE with the three-point BCs of Equation (3) becomes{

∆3.7
−0.3w(κ) = (κ + 2.7)(13), κ ∈ N5

0,
w(−0.3) = 0, ∆2w(−0.3) = 0, ∆w(5.7) = 0, ∆3w(5.7) + w(ζ) = 0.

(37)
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We shall apply Theorem 3.1 to find a solution w(κ) of Equation (37) that can be expressed as:

w(κ) =
1

Γ(3.7)

κ−3.7

∑
i=0

(κ − σ(i))(2.7)(i + 2.7)(13)

+E1(κ)

[
1

Γ(3.7)

ζ−3.7

∑
i=0

(ζ − σ(i))(2.7) +
1

Γ(0.7)

5

∑
i=0

(5.7− σ(i))(−0.3)

]
(i + 2.7)(13)

+
E2(κ)

Γ(2.7)

3

∑
i=0

(5.7− σ(i))(1.7)(i + 2.7)(13),

(38)

where κ ∈ N8.7
−0.3, E1(κ) and E2(κ) are defined in Theorem 3.1. With the help of both Definition 2.1

and Lemma 2.5, we obtain the expression on right-hand side of Equation (38) as follows:

1
Γ(3.7)

κ−3.7

∑
i=0

(κ − σ(i))(2.7)(i + 2.7)(13) = ∆−3.7(κ + 2.7)(13)

=
Γ(14)

Γ(17.7)
· Γ(κ + 3.7)

Γ(κ − 13)
. (39)

Similarly, we find

1
Γ(3.7)

ζ−3.7

∑
i=0

(ζ − σ(i))(2.7)(i + 2.7)(13) =
Γ(14)

Γ(17.7)
· Γ(ζ + 3.7)

Γ(ζ − 13)
. (40)

1
Γ(2.7)

3

∑
i=0

(5.7− σ(i))(1.7)(i + 2.7)(13) =
Γ(14)

Γ(16.7)
· Γ(9.4)

Γ(−6.3)
. (41)

1
Γ(0.7)

5

∑
i=0

(5.7− σ(i))(−0.3)(i + 2.7)(13) =
Γ(14)

Γ(14.7)
· Γ(9.4)

Γ(−4.3)
. (42)

By substituting the expressions Equations (39)–(42) into Equation (38), we obtain Equation (37)’s
solution for κ ∈ N8.7

−0.3, in the form

w(κ) =

[
Γ(14)

Γ(17.7)
· Γ(κ + 3.7)

Γ(κ − 13)

]
+E2(κ)

[
Γ(14)

Γ(16.7)
· Γ(9.4)

Γ(−6.3)

]
+E1(κ)

[(
Γ(14)

Γ(17.7)
· Γ(ζ + 3.7)

Γ(ζ − 13)

)
+

(
Γ(14)

Γ(14.7)
· Γ(9.4)

Γ(−4.3)

)]
. (43)

On one hand, by choosing different values of ζ = 2.7, 3.7, 4.7, 5.7 in Equation (43), we obtain
different solutions for this problem, as seen in Figure 1a. On the other hand, Figure 1b shows
three-dimensional solution surface plots for various values κ and ζ. In addition, a numerical
experiment for our obtained solutions in Example 5.1 with step size 1 is presented in Table 1.
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Figure 1. (a) Solution curves for various values of ζ of a discrete FEBE with the three-point BCs of
Equation (37); (b) surface plots for different values of κ and ζ corresponding to Figure 1a.

Table 1. Numerical values of w(κ) for Example 5.1 with step size 1.

w(κ)

κζ 2.7 3.7 4.7 5.7

−0.3 4.3158 × 105 4.3158 × 105 4.3158 × 105 4.3158 × 105

0.7 −0.5233 × 105 −0.7356 × 105 −0.7410 × 105 −0.8078× 105

1.7 1.5354 × 105 1.0872 × 105 1.0384 × 105 0.8468 × 105

2.7 1.4988 × 105 0.8076 × 105 0.6918 × 105 0.3413 × 105

3.7 2.3044 × 105 1.3849 × 105 1.1846 × 105 0.6559 × 105

4.7 2.5123 × 105 1.3991 × 105 1.1014 × 105 0.3865 × 105

5.7 3.0038 × 105 1.7498 × 105 1.3450 × 105 0.4457 × 105

6.7 2.9459 × 105 1.6211× 105 1.1023 × 105 0.0290× 105

7.7 3.2506 × 105 1.9406 × 105 1.3037 × 105 0.0745× 105

8.7 2.3972 × 105 1.2029 × 105 0.4457 × 105 −0.9137 × 105

Example 5.2. Consider a discrete FEBE subject to three-point BCs:∆π
π−4w(κ) =

1
(κ + π − 1) + 650

[
sin(w(κ + π − 1)) +

e−(κ+π−1) cos(κ + π − 1)
10
√

π(κ + π)

]
, κ ∈ N6

0,

w(π − 4) = 0, ∆2w(π − 4) = 0, ∆w(π + 3) = 0, ∆3w(π + 3) + w(2.1416) = 0.

(44)

Clearly, β = π, n = 3, ζ = 2.1416. Set G(κ, w(κ)) =
1

κ + 650

[
sin(w(κ)) +

e−t cos(κ)
10
√

π (1 + κ)

]
which is a continuous function for κ ∈ Nπ+6

π−4. Now, we show that Equation (44) has a unique
solution.

For any w, ŵ ∈ B∗, then

|G(κ, w(κ))− G(κ, ŵ(κ))| =
1

κ + 650

∣∣∣∣sin(w(κ)) +
e−t cos(κ)

10
√

π (1 + κ)
− sin(ŵ(κ))− e−t cos(κ)

10
√

π (1 + κ)

∣∣∣∣
=

1
κ + 650

|sin(w(κ))− sin(ŵ(κ))|

|G(κ, w(κ))− G(κ, ŵ(κ))| ≤ 0.0015|w(κ)− ŵ(κ)|.

So, we have LG = 0.0015, and G is Lipschitz continuous for for κ ∈ Nπ+6
π−4. Furthermore, the

inequality Equation (19) is satisfied with Λ ≈ 0.2944 < 1. Therefore, from Theorem 3.2, we
conclude that problem Equation (44) has a unique solution.
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Example 5.3. Assume that β = 3.6, n = 4, and ζ = 2.6 with G(κ, w(κ)) =
κ

100
e−

w2(κ)
100 . Then,

we obtain the following discrete FEBE Equation (2) with BCs:∆3.6
−0.4w(κ) =

1
100

(κ + 2.6)e−
1

100 w2(κ+2.6), κ ∈ N7
0,

w(−0.4) = 0, ∆2w(−0.4) = 0, ∆w(7.6) = 0, ∆3w(7.6) + w(2.6) = 0.
(45)

Let a Banach space be B∗ :=
{

w(κ)|N10.6
−0.4 → R

}
. Suppose that D = 1000. To verify that the

hypotheses of Theorem 3.3 hold, it is noticeable that

DΓ(β+ 1)[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] ≈ 2.1790.

Clearly, we have |G(κ, w(κ))| = 0.1060 ≤ 2.1790, whenever ‖w‖ ≤ 1000. Thus, the problem
Equation (45) has at least one solution.

Example 5.4. Consider the discrete FEBE with three-point BCs as follows:∆3.2
−0.8w(κ) =

1
700

cos(w(κ + 2.2)) +
1

((κ + 2.2) + 950)
(κ + 2.2)(3.2), κ ∈ N5

0,

w(−0.8) = 0, ∆2w(−0.8) = 0, ∆w(5.2) = 0, ∆3w(5.2) + w(4.2) = 0.
(46)

Here, we have β = 3.2, n = 2, ζ = 4.2 and G(κ, w(κ)) =
1

700
cos(w(κ)) +

1
(κ + 950)

κ(3.2) for

κ ∈ N8.2
−0.8. Now, we prove that Equation (46) isHU stable. Since (A1) holds for each κ ∈ N8.2

−0.8,
we obtain

|G(κ, ŵ(κ))− G(κ, w(κ))| =

∣∣∣∣ 1
700

cos(ŵ(κ)) +
1

(κ + 950)
κ(3.2) − 1

700
cos(w(κ))− 1

(κ + 950)
κ(3.2)

∣∣∣∣
=

1
700
|cos(ŵ(κ))− cos(w(κ))|

|G(κ, ŵ(κ))− G(κ, w(κ))| ≤ 0.0014|ŵ(κ)− w(κ)|,

so LG = 0.0014 and G is Lipschitz continuous for κ ∈ N8.2
−0.8. Since

1[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

] ≈ 0.0080,

if LG = 0.0014 < 0.0080. Furthermore, to verify the stability results, from Theorem 4.5, we see
that Λ = 0.1758 < 1 . Hence, the solution of Equation (46) isHU stable with δ1 = 80.8287. In

addition, it is GHU stable from Remark 4.6. For illustration, we take ε = 0.6017 and ŵ(κ) =
κ(4)

350
.

We prove that Equation (31) holds. Indeed,∣∣∣∆3.2
−0.8ŵ(κ)− G(κ + 2.2, ŵ(κ + 2.2))

∣∣∣
=

∣∣∣∣∣∆3.2
−0.8ŵ(κ)− cos(ŵ(κ + 2.2))

700
− (κ + 2.2)(3.2)

κ + 952.2

∣∣∣∣∣
=

∣∣∣∣∣∆3.2
−0.8

(
κ(4)

350

)
− 0.0014 cos

[
(κ + 2.2)(4)

350

]
− (κ + 2.2)(3.2)

κ + 952.2

∣∣∣∣∣. (47)
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By using Lemma 2.5, Equation (47) becomes∣∣∣∆3.2
−0.8ŵ(κ)− G(κ + 2.2, ŵ(κ + 2.2))

∣∣∣
=

∣∣∣∣0.0736κ(0.8) − 0.0014 cos
[

Γ(κ + 3.2)
350Γ(κ − 0.8)

]
− Γ(κ + 3.2)

(κ + 952.2)Γ(κ)

∣∣∣∣
≤ 0.0736

[
Γ(κ + 1)

Γ(κ + 0.2)

]
+ 0.0014 +

1
(κ + 952.2)

[
Γ(κ + 3.2)

Γ(κ)

]
≤ 0.6017 ≤ ε, for κ ∈ N5

0.

Example 5.5. Consider a discrete FEBE subject to the three-point BCs:∆π
π−4w(κ) =

1
700

sin(w(κ + π − 1)) +
1

310
(κ + π − 1)(π), κ ∈ N4

0,

w(π − 4) = 0, ∆2w(π − 4) = 0, ∆w(π + 1) = 0, ∆3w(π + 1) + w(2.1416) = 0.
(48)

In this example, β = π, n = 1, ζ = 2.1416. Set G(κ, w(κ)) =
1

700
sin(w(κ)) +

1
310

κ(π) for

κ ∈ Nπ+4
π−4. Now, we show that Equation (48) is HUR stable. For any ŵ, w ∈ B∗ and each

κ ∈ Nπ+4
π−4, we obtain

|G(κ, ŵ(κ))− G(κ, w(κ))| =

∣∣∣∣ 1
700

sin(ŵ(κ)) +
1

310
κ(π) − 1

700
sin(w(κ))− 1

310
κ(π)

∣∣∣∣
=

1
700
|sin(ŵ(κ))− sin(w(κ))|

|G(κ, ŵ(κ))− G(κ, w(κ))| ≤ 0.0014|ŵ(κ)− w(κ)|.

This satisfies (A1) with LG = 0.0014, and G is Lipschitz continuous for κ ∈ Nπ+4
π−4. Further, by

assuming ε = 0.6519 and φ(κ + π − 1) = 1, we have

0.6519
Γ(π)

κ−π

∑
i=0

(κ − σ(i))(π−1)(1) =
(0.6519)Γ(κ + 1)

Γ(π + 1)Γ(κ + 1− π)

≤ (0.6519)Γ(5)
Γ(π + 1)Γ(5− π)

0.6519
Γ(π)

κ−π

∑
i=0

(κ − σ(i))(π−1)(1) ≤ 2.2955, κ ∈ N4
0.

Thus, (A5)(i) holds with λ = 3.5213, ε = 0.6519, and φ(κ + π − 1) = 1. Since

1[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

] ≈ 0.0137,

if LG = 0.0014 < 0.0137, from Theorem 4.8, we see that Λ = 0.1023 < 1. Hence, the solution
to Equation (48) is HUR stable with δ2 = 3.9224. For illustration, we take ε = 0.6519 and

ŵ(κ) =
κ(3)

40
. We prove that Equation (33) holds. Indeed,∣∣∆π

π−4ŵ(κ)− G(κ + π − 1, ŵ(κ + π − 1))
∣∣

=

∣∣∣∣∆π
π−4ŵ(κ)− 1

700
sin(ŵ(κ + π − 1))− 1

310
(κ + π − 1)(π)

∣∣∣∣
=

∣∣∣∣∣∆π
π−4

(
κ(3)

40

)
− 0.0014 sin

[
(κ + π − 1)(3)

40

]
− (κ + π − 1)(π)

310

∣∣∣∣∣. (49)
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Using Lemma 2.5, Equation (49) becomes∣∣∆π
π−4ŵ(κ)− G(κ + π − 1, ŵ(κ + π − 1))

∣∣
=

∣∣∣∣0.1358κ(3−π) − 0.0014 sin
[

Γ(κ + π)

40Γ(κ + π − 3)

]
− Γ(κ + π)

310Γ(κ)

∣∣∣∣
≤ 0.1358

[
Γ(κ + 1)

Γ(κ − 2 + π)

]
+ 0.0014 +

Γ(κ + π)

310Γ(κ)

≤ 0.6519 ≤ εφ(κ + π − 1), for κ ∈ N4
0.

Furthermore, it is obviously GHUR stable from Remark 4.9.

6. Conclusions

Three-point BCs for a discrete FEBE have been investigated in this research work. For our
proposed problem involving a Riemann–Liouville discrete fractional operator, some important
conditions for the existence and stability theory have been developed. The required findings
have been obtained with the help of fixed-point techniques such as the contraction mapping
principle and Brouwer fixed-point theorem. Moreover, some new results for various types of
Ulam stability of the proposed three-point BCs for a discrete FEBE have been established with
the aid of nonlinear analysis. Some suitable examples have been provided and accompanied
with numerical experiment for our obtained solutions for various fractional-order values in a
graphical representation in order to study the effectiveness and applicability of our theoretical
results. All in all, our results are new and interesting for the elastic beam problem arising
from mathematical models of engineering and applied science applications.
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