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Abstract: The formalism of differ-integral calculus, initially developed to treat differential operators
of fractional order, realizes a complete symmetry between differential and integral operators. This
possibility has opened new and interesting scenarios, once extended to positive and negative order
derivatives. The associated rules offer an elegant, yet powerful, tool to deal with integral operators,
viewed as derivatives of order-1. Although it is well known that the integration is the inverse of the
derivative operation, the aforementioned rules offer a new mean to obtain either an explicit iteration
of the integration by parts or a general formula to obtain the primitive of any infinitely differentiable
function. We show that the method provides an unexpected link with generalized telescoping series,
yields new useful tools for the relevant treatment, and allows a practically unexhausted tool to derive
identities involving harmonic numbers and the associated generalized forms. It is eventually shown
that embedding the differ-integral point of view with techniques of umbral algebraic nature offers a
new insight into, and the possibility of, establishing a new and more powerful formalism.

Keywords: umbral methods 05A40; operators theory 44A99, 47B99, 47A62; special functions 33C52,
33C65, 33C99, 33B10, 33B15; integral calculus 97I50; harmonic numbers 05A99, 11B75; combinatorics
05A10, 11B75; gamma function 33B15; telescopic series 11B65, 11B75, 05A10

1. Introduction

New concepts and techniques emerged in the past within the framework of special
functions have had positive feedback in other and more abstract fields of Mathematics. The
techniques associated with umbral calculus have opened new and unexpected avenues
in analysis and simplified the technicalities of calculations, which are awkwardly tedious
when performed with conventional computational means. They, furthermore, have al-
lowed a general principle of symmetry between special functions, providing a method of
establishing a formal equivalence between different families of functions (e.g., Bessel and
Gaussian functions).

The Authors of this paper have largely benefitted from the techniques suggested by
umbral methods and have embedded them with other means associated, e.g., with algebraic
operational procedure, to obtain new results and to reformulate previous, apparently
extraneous topics, within a unifying point of view.

This paper follows the same stream. We embed umbral methods and formal inte-
gration techniques to explore the field of number series by getting a non-conventional
treatment of problems usually treated with completely different means. We will recover
new and old results. Yet, the merits of this paper may rely on the novelty and generality of
the method itself.

We develop a new framework to treat problems in Number Theory, Combinatorial
Analysis, Telescopic Series, Harmonic Numbers. . . .The method we foresee gathers together
integro-differential and umbral means. The paper consists of two parts, the first is devoted
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to the formalism of Negative Derivative Operator and to the relevant use for the previously
quoted fields of research. In the second part, we discuss the application of umbral methods
and how they interface with the integro-differential counterpart.

Elementary problems in calculus reveal unexpected new features if viewed from a
broader perspective which employs, e.g., operational methods. The use of the negative
derivative operator formalism [1,2] has provided an efficient tool to compute the primitive
of a given function, or of products of functions as well. The underlying formalism allows
the handling of integrals and derivatives on the same footing. Within this framework
the primitive of the product of two functions is nothing but a restatement of the Leibniz
formula [3,4] as it has been proved in ref. [5], namely

Definition 1. ∀x ∈ Dom{ f , g} we state

D̂−1
x (g(x) f (x)) =

∞

∑
s=0

(
−1
s

)
g(−1−s)(x) f (s)(x) (1)

where
D̂−1

x s(x) =
∫

s(x)dx (2)

is the negative derivative operator, f (±s)(x) denotes the sth—(positive/negative)—derivative of
the function, and (

−1
s

)
= (−1)s. (3)

For the operation of definite integration, we set

αD̂−1
x s(x) =

∫ x

α
s(ξ)dξ = S(x)− S(α). (4)

By exploiting Definition 1, we state what follows.

Proposition 1. The integral of a function f ∈ C∞ can be written in terms of the series

F(x) :=
∫

f (x)dx =
∞

∑
s=0

(−1)s xs+1

(s + 1)!
f (s)(x), ∀x ∈ Dom{ f }, (5)

where f (s)(x) denotes the sth-derivative of the integrand function.

Proof. We write Equation (5) according to Definition 1 as (to simplify the writing, we
will use D̂−1

x = 0D̂−1
x to treat integrals with lower extreme of integration α = 0)

D̂−1
x (g(x) f (x))=∑∞

s=0 (
−1
s )g(−1−s)(x) f (s)(x). By assuming g(x) = 1, we get

g(−1−s)(x) = D̂(−1−s)
x 1 =

xs+1

(s + 1)!
(6)

thus, eventually ending up with

∫
f (x)dx = D̂−1

x (1 · f (x)) =
∞

∑
s=0

(−1)s xs+1

(s + 1)!
f (s)(x).

For further comments, the reader is directed to refs. [1,2,5].

Example 1. Let us now consider the primitive of the unit function and write∫
1 dξ =

∫
ξ ξ−1dξ (7)
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The use of Equation (1) and of the identifications g(ξ) = ξ and f (ξ) = ξ−1 yields∫ x

0
ξ ξ−1dξ =

∞

∑
s=0

(−1)s xs+2

(s + 2)!

(
(−1)s s!

xs+1

)
= x

∞

∑
s=0

1
(s + 1)(s + 2)

(8)

and being
∫ x

0 1 dξ = x, we deduce the identity

∞

∑
s=0

1
(s + 1)(s + 2)

= 1 (9)

which is true, since its l.h.s., as shown below, reduces to the Telescopic series [6].

Example 2. The same procedure applied to g(ξ) = ξ2 and f (ξ) = ξ−1 provides the further
identity [7]

∞

∑
s=0

1
(s + 1)(s + 2)(s + 3)

=
1
4

. (10)

The extension of the procedure to the case g(ξ) = ξm, f (ξ) = ξ−1 leads to the following
series [7]

∞

∑
s=0

1
(s + 1)(s + 2) . . . (s + m + 1)

=
∞

∑
s=0

s!
(s + m + 1)!

=
1

m! m
(11)

which is a well known result (see, e.g., Formula 5.1.24.7 of ref. [8]).

Example 3. By using furthermore, in Equation (1), the identification g(x) = xα and f (x) = x−α,
∀α ∈ {RrZ}, the inverse derivative Leibniz rule yields

∞

∑
s=0

(−1)s

Γ(s + α + 2)Γ(1− s− α)
=

1
Γ(1 + α)Γ(1− α)

(12)

which, after using the properties of the Gamma function “Γ(α)Γ(1− α) =
π

sin(πα)
” , yields the

telescopic sum

n

∑
s=0

1
(s + α + 1)

1
(s + α)

=
1
α

. (13)

The previous results are quite surprising, they are associated with generalized forms
of telescopic series and can be embedded in an even wider context, as proved in the
forthcoming section.

2. Combinatorial Identities and Leibniz Formula

We exploit the formalism outlined in the previous section to foresee a systematic
procedure to obtain the identities of combinatorial type.

Example 4. We consider Equation (1) with g(x) = 1 and f (x) = xn, which yields

xn+1

n + 1
=
∫

xndx =
n

∑
s=0

(−1)s xs+1

(s + 1)!
n!

(n− s)!
xn−s = xn+1

n

∑
s=0

(
n
s

)
(−1)s

s + 1
(14)

which implies

n

∑
s=0

(
n
s

)
(−1)s

s + 1
=

1
n + 1

. (15)
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Example 5. If we otherwise assume that g(x) = x and f (x) = xn, the following identity is
straightforwardly obtained

n

∑
s=0

(
n
s

)
(−1)s

(s + 1)(s + 2)
=

1
n + 2

(16)

indeed

xn+2

n+2
= D̂−1

x (x · xn)=
n

∑
s=0

(−1)s xs+2

(s+2)!
n!

(n−s)!
xn−s = xn+2

n

∑
s=0

(
n
s

)
(−1)s

(s + 1)(s + 2)
. (17)

If we go on with g(x) = x2 and f (x) = xn, we end up with

xn+3

n + 3
=

n

∑
s=0

(−1)s 2
xs+3

(s + 3)!
n!

(n− s)!
xn−s =2 xn+3

n

∑
s=0

(
n
s

)
(−1)s

(s + 1)(s + 2)(s + 3)
(18)

then
n

∑
s=0

(
n
s

)
(−1)s

(s + 1)(s + 2)(s + 3)
=

1
2 (n + 3)

. (19)

Remark 1. We can now manipulate Equations (15) and (16) to get a further result useful for the
development of our discussion. It is evident that, by the use of the partial fractional expansion, we
can write Equation (17) as

1
n + 2

=
n

∑
s=0

(
n
s

)
(−1)s

(s + 1)(s + 2)
=

n

∑
s=0

(
n
s

)
(−1)s

(
1

s + 1
− 1

s + 2

)
=

=
1

n + 1
−

n

∑
s=0

(
n
s

)
(−1)s

s + 2

(20)

which easily yields the identity

n

∑
s=0

(
n
s

)
(−1)s

s + 2
=

1
(n + 1)(n + 2)

, ∀n ∈ N. (21)

The following expansion in terms of partial fractions

2
(s + 1)(s + 2)(s + 3)

=
1

s + 1
− 2

s + 2
+

1
s + 3

(22)

can be exploited to end up with

n

∑
n=0

(
n
s

)
(−1)s

s + 3
=

2
(n + 1)(n + 2)(n + 3)

. (23)

Finally, by iterating the procedure, we end up with the proof of the following Theorem
for two general formulae.

Theorem 1. ∀n, m ∈ N

n

∑
s=0

(
n
s

)
(−1)s s!

(s + m + 1)!
=

1
m! (n + m + 1)

. (24)

and (see also Equation (52) later)

n

∑
s=0

(
n
s

)
(−1)s

s + m + 1
=

m!
(n + 1)(n + 2) . . . (n + m + 1)

=
n!m!

(n + m + 1)!
(25)
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For a deeper discussion on Theorem 1 and 2 (see later) see Refs. [9–11] where the
results have already been derived in a different context.

The results of this section have indicated how methods of integro-differential nature
are suitable to derive combinatorial identities and make progress in the Theory of Telescopic
series. In the following sections, we will address these points in deeper detail and will
show how further interesting results in these directions can be obtained.

3. Inverse Derivatives and Generalized Telescopic Series

A systematic investigation of the series quoted in Equation (11) has been undertaken
in ref. [7]. Here, we adopt an analogous point of view and frame the results obtained so far
within a different context. We use the following notation to indicate Telescopic series (T
stands for telescopic).

Example 6.

2T2 :=
∞

∑
s=0

1
(s + 1)(s + 2)

=
∞

∑
s=0

(
1

s + 1
− 1

s + 2

)
, (26)

3T3 :=
∞

∑
s=0

1
(s + 1)(s + 2)(s + 3)

=
1
2

∞

∑
s=0

(
1

s + 1
− 2

s + 2
+

1
s + 3

)
, (27)

where we have used the convention

mT2 :=
∞

∑
s=0

1
(s + m− 1)(s + m)

, m > 1

mT3 :=
∞

∑
s=0

1
(s + m− 2)(s + m− 1)(s + m)

, m > 2.
(28)

Equation (27) can be eventually written as

3T3 =
1
2
(2T2 − 3T2) (29)

and being mT2 =
1

(m− 1)
, we end up with

2T2 = 1,

3T3 =
1
4

.
(30)

Remark 2. The T notation allows us to write the identity in Equation (11) as

m+1Tm+1 =
1

m! m
. (31)

Regarding the first of Equations (30), the relevant proof can also be achieved by the use of an
alternative and more general procedure.

Remark 3. We use the Laplace transform method to write

n

∑
s=0

(
n
s

)
(−1)s

s + 2
=
∫ ∞

0

(
1− e−σ

)ne−2σdσ, (32)

on account of Equation (21), after summing over n, we end up with

∞

∑
n=0

1
(n + 1)(n + 2)

=
∫ ∞

0
e−σdσ = 1 (33)



Symmetry 2021, 13, 781 6 of 18

which is a restatement of Equation (9) on the basis of a totally different mean. The same procedure
can be applied to get the proof for the other identities (see Section 5 for further comments).

Definition 2. ∀n, m ∈ N, we introduce the notation (see Equation (25))

mbn :=
n

∑
j=0

(
n
j

)
(−1)j

j + m + 1
, (34)

to define the mbn, which will be called Binomial Harmonic Numbers (BHN).

Remark 4. The iteration of the previous formalism yields (see also the forthcoming sections) the
following identities. The BHN 1bn and 2bn have been given in Equations (21)–(23) and the
generalized form mbn in Equation (25). The use of the integral representation yields

2bn =
∫ ∞

0

(
1− e−σ

)ne−3σdσ (35)

which can be exploited to find

∞

∑
n=0

2bn =
∫ ∞

0
e−2σdσ =

1
2

(36)

and, more in general,
∞

∑
n=0

mbn =
1
m

, (37)

namely, the derivation of Equation (11) from a different perspective.

4. Umbral Methods and Binomial Harmonic Numbers

The harmonic numbers are defined (in ref. [12,13], we used a slightly different defini-
tion which here corresponds, strictly speaking, to the upper limit of the sum equal to n−1)
as [14–17]

hn :=
n

∑
s=0

1
s + 1

, ∀n ∈ N, (38)

whose properties have been shown to be usefully studied using methods borrowed from
umbral formalism. This point of view has been developed in a number of previous
papers [12,13,18,19] in which the associated algebraic procedures have been shown to be
particularly effective. They have allowed the study of the relevant properties by straight-
forward means, paved the way to the introduction of generalized forms along with the
tools to develop the underlying theoretical background. The methods suggested in [19]
have given rise to a series of speculations and conjectures, and were then proved on a more
solid basis in subsequent research [20–23].

In this section, we will use the umbral formalism to go deeper into the properties of
the BHN. The use of the umbral notation adopted in [3,18,19] allows us to manipulate
complicated expressions and obtain remarkable results.

Definition 3. We impose that the umbral operator â, acting on the vacuum ϕ0, provides the position

âs ϕ0 :=
1

s + 1
, ∀s ∈ N. (39)

Property 1. The operator â satisfies the composition rule

âs âp = âs+p, ∀s, p ∈ N. (40)

Then, we can state the following identity.
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Proposition 2. ∀n ∈ N
0bn = (1− â)n ϕ0. (41)

Proof. ∀n ∈ N, by the use of the Newton binomial, of Definition 3 and of Property 1, we can
write

(1− â)n ϕ0 =
n

∑
s=0

(
n
s

)
(−1)s âs ϕ0 =

n

∑
s=0

(
n
s

)
(−1)s

s + 1
= 0bn .

Corollary 1. The use of Equation (15) allows us to write

(1− â)n ϕ0 = 0bn =
1

n + 1
. (42)

Remark 5. We note that the umbral operator â acting on the same vacuum ϕ0 yields the same
algebraic result

(1− â)n ϕ0 = ân ϕ0 (43)

Indeed, for Proposition 2, Corollary 1 and Definition 3, we get

(1− â)n ϕ0 =
1

n + 1
= ân ϕ0.

Even though unenecessary, we note that Equation (43) does not imply that (1− â) = â. It
is not indeed an identity between operators but between algebraic quantities after the action of the
umbral operators on the vacuum (as shown in [18], the differential realization of the umbral operator
â is a shift operator â = e∂z , and the corresponding vacuum is ϕ(z) = 1

z+1 . The action on the
vacuum of the operator ân, ∀n ∈ N, is accordingly expressed through
ân ϕ0 = en∂z 1

z+1

∣∣∣
z=0

= 1
n+1 and we also get

(1− â)n ϕ0 =
(

1− e∂z
)n

ϕ(z)
∣∣∣
z=0

=
n

∑
s=0

(
n
s

)
(−1)s âs ϕ(z)

∣∣∣∣∣
z=0

=
n

∑
s=0

(
n
s

)
(−1)s

s + 1
.

We can now clarify the remark after the identity (43), which in differenetial terms reads(
1− e∂z

)n
ϕ(z)

∣∣∣
z=0

= en∂z ϕ(z)
∣∣∣
z=0

, which is true for z = 0 but not in general; it is indeed easily

checked that
(

1− e∂z
)n

ϕ(z) 6= en∂z ϕ(z)).

We iterate the method in the following way.

Proposition 3. ∀n ∈ N

â(1− â)n ϕ0 = 1bn =
1

(n + 1)(n + 2)
. (44)

Proof. It is evident that
(1− â)n+1 ϕ0 =

1
(n + 1) + 1

. (45)

We split the power so that

(1− â)n+1 ϕ0 = (1− â)(1− â)n ϕ0 = [(1− â)n − â(1− â)n]ϕ0 (46)

and calculate the term â(1− â)n ϕ0, by using Definition 3 and Property 1,
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â(1− â)n ϕ0 = â
n

∑
s=0

(
n
s

)
(−1)s âs ϕ0 =

n

∑
s=0

(
n
s

)
(−1)s âs+1 ϕ0 =

=
n

∑
s=0

(
n
s

)
(−1)s

(s + 1) + 1
= 1bn.

(47)

Furthermore, from Equations (45) and (46), we can establish the recurrence

0bn − 1bn =
1

n + 2
(48)

which can be exploited to get the explicit form of 1bn, namely

1bn =
1

n + 1
− 1

n + 2
=

1
(n + 1)(n + 2)

.

Corollary 2. The extension of the procedure yields, for 2bn, the recurrence

0bn − 2 1bn + 2bn =
1

n + 3
(49)

indeed

1
(n + 2) + 1

= (1− â)n+2 ϕ0 = (1− â)(1− â)n+1 ϕ0 =

=
[
(1− â)n+1 − â(1− â)n+1

]
ϕ0 =

=
{
(1− â)n+1 − â[(1− â)n − â(1− â)n]

}
ϕ0 = 0bn − 1bn − 1bn + 2bn

which, once solved for 2bn, yields

2bn =
2

(n + 1)(n + 2)(n + 3)
(50)

which confirms the results in Equation (23). Equation (49) can be viewed as the umbral version of
the partial fraction expansion exploited in the previous sections.

Theorem 2. All the BHN can be defined as binomial convolution of the lower order case rbs

mbn =
n

∑
s=0

(
n
s

)
(−1)s

m

∑
r=0

(
m
r

)
(−1)r

rbs (51)

where

rbs = âr(1− â)s ϕ0 =
s!r!

(s + r + 1)!
. (52)

Proof. The proof is obtained by the iteration of the previous procedure by noting that

mbn =
n

∑
s=0

(
n
s

)
(−1)s

s + m + 1
=

n

∑
s=0

(
n
s

)
(−1)s (1− â)m(1− â)s ϕ0 =

=
n

∑
s=0

(
n
s

)
(−1)s

m

∑
r=0

(
m
r

)
(−1)r âr(1− â)s ϕ0.

As a further example, we consider the complementary forms of BHN.
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Definition 4. We introduce the Complementary Binomial Harmonic Number (CBHN) defined as

mb+n :=
n

∑
s=0

(
n
s

)
1

s + m + 1
, ∀m, n ∈ N. (53)

Example 7. The CBHN can be constructed recursively from the identity

0b+n =
2n+1 − 1

n + 1
, (54)

easily proved by induction and further derived in Equation (74).
According to the same procedure as before, we set

0b+n = (1 + â)n ϕ0 (55)

which yields
2n+2 − 1

n + 2
= 0b+n+1 = (1 + â)n+1 ϕ0 = 0b+n + 1b+n (56)

and, once solved for 1b+n , gets

1b+n =
2n+1n + 1

(n + 1)(n + 2)
. (57)

The same method provides for 2b+n

2n+3 − 1
n + 3

= 0b+n+2 = (1 + â)n+2 ϕ0 = 0b+n + 21b+n + 2b+n (58)

thus finding

2b+n =
2
(
2n(n2 + n + 2)− 1

)
(n + 1)(n + 2)(n + 3)

, (59)

3b+n =
2
(
2nn (n2 + 3n + 8) + 3

)
(n + 1)(n + 2)(n + 3)(n + 4)

, (60)

4b+n =
2
(
2n(n4 + 6n3 + 23n2 + 18n + 24)− 12

)
(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

(61)

and by iteration, we can obtain other expressions for mb+n (with m > 4), a synthetic expression
in terms of 2F1 hypergeometric function can also be obtained but is no more informative than
Equation (53), namely

mb+n = 2F1(−n, m + 1, m + 2,−1)
m + 1

(62)

and the associated convolution finite sum

m

∑
r=0

(
m
r

)
rb+n =

m

∑
r=0

(
m
r

) n

∑
s=0

(
n
s

)
1

s + r + 1
=

2n+m+1 − 1
n + m + 1

(63)

In the previous section, we derived the identity shown in the forthcoming section
which will be exploited to introduce an extension of the 2-order BHN.

Definition 5. We introduce the 2-order BHN

mb(2)n :=
n

∑
s=0

(
n
s

)
(−1)s

2s + m + 1
, ∀m, n ∈ N. (64)

Example 8. According to our umbral notation, the case m = 0 can be written as
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0b(2)n = (1− â2)n ϕ0 (65)

which, according to the algebraic Properties 1 of â and the coefficients (52), allows us to write

0b(2)n = (1 + â)n(1− â)n ϕ0 =
n

∑
s=0

(
n
s

)
âs (1− â)n ϕ0 =

n

∑
s=0

(
n
s

)
sbn. (66)

Along with Equation (52), the last identity yields the following further result

0b(2)n = n!2
n

∑
s=0

1
(n− s)!(n + s + 1)!

= n!2
22n

(2n + 1)!
(67)

easily generalized to

mb(2)n = âm(1− â2)n ϕ0 =
n

∑
s=0

(
n
s

)
s+mbn = n!2

n

∑
s=0

(s + m)!
(n− s)!s!(s + m + n + 1)!

. (68)

Equations (67) and (68) are not satisfactory, in the sense that we are looking for a result
not in the form of a series, albeit truncated.

The umbral technique can be used as a complementary procedure to frame the previ-
ous results within a different context.

5. Combinatorial Identities, Integral Representations and Special Functions
5.1. Combinatorial Identities and Integral Representations

The procedure we have just put forward has indicated that the formulae derived in
Section 1 are a fairly straightforward means to getting old and new identities appearing in
Combinatorics, Theory of Telescoping series and of the associated generalized forms. We
have been indeed able to recover the results of ref. [7], as well as other disseminated in the
mathematical literature, by following a unifying and straightforward procedure.

Before entering the discussion of a different topics, let us consider further examples.

Example 9. We start from the manipulation of the integral

(1 + x)n+1 − 1
n + 1

=
∫ x

0
(1 + ξ)ndξ =

n

∑
s=0

(−1)s ξs+1

(s + 1)!
n!

(n− s)!
(1 + ξ)n−s

∣∣∣∣∣
x

0

=

=
n

∑
s=0

(−1)s xs+1

s + 1

(
n
s

)
(1 + x)n−s

(69)

which, after keeping e.g., x = 1, yields

n

∑
s=0

(
n
s

)
(−1)s

s + 1
2n−s =

2n+1 − 1
n + 1

. (70)

The identity in Equation (69) can be further handled and generalized along the same lines we
discussed in the previous sections, thus getting, for example,

n

∑
s=0

(−1)s xs+2

(s + 1)(s + 2)

(
n
s

)
(1 + x)n−s =

(nx + x− 1)(1 + x)n+1 + 1
(n + 1)(n + 2)

. (71)

After breaking the l.h.s. in partial sums, we also find for x = 1,

n

∑
s=0

(
n
s

)
(−1)s

(s + 2)
2n−s =

2n+2 − (n + 3)
(n + 1)(n + 2)

. (72)

Example 10. The slightly generalized form of Equation (69)
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(a + bx)n+1 − an+1

b (n + 1)
=
∫ x

0
(a + bξ)ndξ =

n

∑
s=0

(−1)s xs+1

(s + 1)!
n!

(n− s)!
(a + bx)n−sbs (73)

can be exploited to derive further identities. By keeping, for example, a = 2, b = 1, x = −1, we find

n

∑
s=0

(
n
s

)
1

s + 1
=

2n+1 − 1
n + 1

. (74)

Example 11. A further identity of pivotal importance, for the present purposes, is provided by

n

∑
s=0

(
n
s

)
(−1)s

2s + 1
=
∫ 1

0
(1− ξ2)ndξ =

∫ 1

0
(1− ξ2)ndξ =

1
2

B
(

1
2

, n + 1
)
=

=

(
3
2
+ n

)
B
(

3
2

, n + 1
) (75)

where B(x, y) being the Euler Beta function and, by expoliting the B-function properties, we obtain

n

∑
s=0

(
n
s

)
(−1)s

2s + 1
=

22nn!2

(2n + 1)!
(76)

indeed

1
2

B
(

1
2

, n + 1
)
=

1
2

Γ
(

1
2

)
Γ(n + 1)

Γ
(
n + 3

2
) =

1
2
√

π n!
4n+1(n + 1)!
(2(n + 1)!)

√
π

=
22nn!2

(2n + 1)!
. (77)

Furthermore, by setting x = 1 and using the transformation ξ2 = t, the result in
Equation (75) is achieved. In more general terms, we also get

n

∑
s=0

(
n
s

)
(−1)s

αs + β
=
∫ 1

0
(1− ξα)n ξβ−1dξ =

1
α

B
(

β

α
, n + 1

)
. (78)

Example 12. Furthermore, by using the Laplace transform method, we get the integral representa-
tion of the two equivalent series

n

∑
s=0

(−1)s xs

(s + 2)

(
n
s

)
(1 + x)n−s =

n

∑
s=0

(
n
s

)
xs

(s + 1)(s + 2)
= φn(x),

φn(x) =
∫ ∞

0

[
1 + (1− e−σ)x

]ne−2σdσ,

(79)

whose sum is

n

∑
s=0

(−1)s xs

(s + 2)

(
n
s

)
(1 + x)n−s =

n

∑
s=0

(
n
s

)
xs

(s + 1)(s + 2)
=

=
(x + 1)n+2 − (nx + 2x + 1)

x2(n + 1)(n + 2)
.

(80)

The integral representation can also be exploited to show that the sum ∑∞
n=0 φn(x) is actually

converging for x < 0 et 0 <| x |< 1.
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Example 13. The umbral method developed in the section can be further exploited by noting that
the previous procedure allows the derivation of the identities

(1− â2)n ϕ0 = 0b(2)n = n!
Γ
( 3

2
)

Γ
(
n + 3

2
) . (81)

We can take advantage from them by applying the paradigm outlined in the introductory
section. Accordingly, we find

(1− â2)n+1 ϕ0 = (n + 1)!
Γ
( 3

2
)

Γ
(
n + 5

2
) . (82)

By following the technique of Equation (46) with Equation (52), we note that

(1− â2)n+1 ϕ0 = (1− â2)(1− â2)n ϕ0 = 0b(2)n − 2b(2)n , (83)

then we can obtain the identity

2b(2)n =
n

∑
s=0

(
n
s

)
(−1)s

2s + 3
= n!Γ

(
3
2

)
Γ
(
n + 5

2
)
− (n + 1)Γ

(
n + 3

2
)

Γ
(
n + 3

2
)
Γ
(
n + 5

2
) =

n!
2

Γ
( 3

2
)

Γ
(
n + 5

2
) . (84)

Example 14. We can generalize the method to any real power

mb(k)n =
n

∑
s=0

(
n
s

)
(−1)s

ks + m + 1
=

n!
k

Γ
(

m + 1
k

)
Γ
(

kn + m + k + 1
k

) , ∀k ∈ R. (85)

5.2. Leibniz Rule, Umbral Methods and Special Functions

By considering now the two variable Hermite polynomial Hn(x, y) [5]

Hn(x, y) = n!
b n

2 c

∑
r=0

xn−2ryr

(n− 2r)!r!
, ∀x, y ∈ R, ∀n ∈ N, (86)

we can provide the following example.

Example 15. By reminding the Hermite polynomials property

∂s
x Hn(x, y) =

n!
(n− s)!

Hn−s(x, y), (87)

It is worth considering the integral

Hn+1(x, y)−Hn+1(0, y)
n + 1

=
∫ x

0
Hn(ξ, y) dξ=

n

∑
s=0

(−1)s xs+1

(s+1)!
n!

(n− s)!
Hn−s(x, y)=

=
n

∑
s=0

(−1)s
(

n
s

)
xs+1

(s + 1)
Hn−s(x, y)

(88)

which is by no means surprising since the Hermite polynomials satisfy a monic type derivative [24].

Furthermore, the use of the umbral notation [18,25]
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Hn(x, y) = (x + y ĥ)nθ0, ∀x, y ∈ R, ∀n ∈ N,

y ĥrθ0 := θr =
y

r
2 r!

Γ
( r

2 + 1
) ∣∣∣cos

(
r

π

2

)∣∣∣ =
 0 r = 2s + 1

ys (2s)!
s!

r = 2s
∀s ∈ Z.

(89)

allows us to writes

n

∑
s=0

(−1)s xs+1

(s + 1)!
n!

(n− s)!
Hn−s(x, y) = x

n

∑
s=0

(−1)s
(

n
s

)
xs

s + 1
(x + y ĥ)n−sθ0 (90)

and also the identities

x
n

∑
s=0

(−1)s
(

n
s

)
xs

s + 1
(x + y ĥ)n−sθ0 = x

∫ ∞

0

[
x(1− e−σ) + y ĥ

]n
e−σdσ =

= x
∫ ∞

0
Hn
(

x (1− e−σ), y
)
e−σdσ

(91)

which lead to the unexpected integral representation∫ ∞

0
Hn
(
x (1− e−σ), y

)
e−σdσ =

Hn+1(x, y)− Hn+1(0, y)
(n + 1) x

. (92)

The identities we have discussed so far are just a few examples of the possibilities
offered by the negative derivative formalism. A forthcoming investigation will provide a
more carefully discussion in this respect.

In the final section, we will show how a formalism of umbral nature can be exploited
to provide a useful complement for the treatment outlined in the previous sections.

6. Final Comments

This paper has been aimed at developing a self-contained treatment of the Theory of
Combinatorial identities and of generalized harmonic numbers by embedding them within
the context of a twofold complementary formalism.

The results we have obtained have such wide implications and cannot be comprised
in the space of an article. We would like, however, to note that the negative derivative
formalism is essentially a reformulation of the Leibniz rule. The ordinary formula is also a
very useful tool to derive combinatorial identities.

Example 16. We note that, since ∂n
x x3n =

(3n)!
(2n)!

x2n, comparing with ∂n
x
(
xnx2n) and after using

the Leibniz rule, we get

n

∑
s=0

(
n
s

)(
2n
s

)
=

(3n)!
(2n)! n!

(93)

which is easily generalized to (a particular case of the Chu–Vandermonde identity)

n

∑
s=0

(
kn
s

)(
n
s

)
=

((k + 1) n)!
(kn)! n!

=

(
(k + 1)n

n

)
. (94)

The umbral formalism deserves further comments.

Definition 6. We introduce Binomial Convoluted Harmonic Number (BCHN) as
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mβn :=
n

∑
s=0

(
n
s

)
(−1)s hm+s, ∀m, n ∈ N, (95)

where hm+s are the harmonic numbers cited in Equation (38).

The relevant properties can be studied by the use of the methods outlined in Section 4.

Example 17. According to the umbral notation in [12,13], ĥrψ0 := hr, we can set

mβn := ĥm(1− ĥ)nψ0 (96)

by the way

ĥm(1− ĥ)nψ0 = ĥm
n

∑
r=0

(
n
r

)
(−1)r ĥrψ0 =

n

∑
r=0

(
n
r

)
(−1)r ĥm+rψ0 =

=
n

∑
r=0

(
n
r

)
(−1)r hm+r = mβn.

We prove that

0βn = − 1
n(n + 1)

(97)

indeed

0βn =
n

∑
s=0

(
n
s

)
(−1)s

s

∑
r=0

1
r + 1

=
n

∑
s=0

(
n
s

)
(−1)s

s

∑
r=0

∫ 1

0
xrdx =

=
n

∑
s=0

(
n
s

)
(−1)s

∫ 1

0

xs+1 − 1
x− 1

dx =

= −
∫ 1

0

x(1− x)n

x− 1
dx = − 1

n(n + 1)

(98)

and it is evident that, once we know 0βn, we can infer recursively all the mβn.

0βn+1 = − 1
(n + 1)(n + 2)

, (99)

from Equation (96), we find

0βn+1 = (1− ĥ)(1− ĥ)nψ0 (100)

which yields the recurrence

0βn+1 = 0βn − 1βn (101)

and which allows the computation of the BCHN for m = 1

1βn = − 2
n(n + 1)(n + 2)

. (102)

The extension of the procedure yields, for m = 2,

2βn = − 6
n(n + 1)(n + 2)(n + 3)

(103)

which eventually suggests that

mβn = − (m + 1)!
n(n + 1)(n + 2) . . . (n + m + 1)

= − (n− 1)!(m + 1)!
(n + m + 1)!

. (104)
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This last comment completes the paper, and the results of which are summarized in
the following Tables 1–3.

The article has addressed a number of points either in calculus or the Number Theory.
We believe that its most noticeable achievement is having established a clear link between
the formalism of negative derivatives and the properties of harmonic numbers. Albeit
some of the results we have discussed have been obtained in previous authoritative papers,
our efforts have been directed towards opening an alternative research avenue, eventually
connecting apparently separated fields. In a forthcoming publication, we will extend the
methodology to fractional integration and to the many variable cases.

Table 1. Combinatorial Identities.

Binomial Harmonic Numbers Umbral Images Complementary BHN

mbn =∑n
s=0 (

n
s)

(−1)s

s + m + 1
ân ϕ0 =

1
n+1 mb+n = ∑n

s=0 (
n
s)

1
s + m + 1

0bn =∑n
s=0 (

n
s)
(−1)s

s + 1
=

1
n + 1

(1∓ â)n ϕ0 0b+n =
2n+1 − 1

n + 1

1bn =∑n
s=0 (

n
s)
(−1)s

s + 2
=

1
(n + 1)(n + 2)

â(1∓ â)n ϕ0 1b+n =
2n+1n + 1

(n + 1)(n + 2)

2bn =
∑n

s=0 (
n
s)
(−1)s

s+3
=

=
2

(n + 1)(n + 2)(n + 3)

â2(1∓ â)n ϕ0 2b+n =
2
(
2n(n2 + n + 2)− 1

)
(n+1)(n+2)(n+3)

... ... ...

mbn =
n!m!

(n + m + 1)!
âm(1∓ â)n ϕ0 mb+n = 2F1(−n, m + 1, m + 2,−1)

m + 1

High Order BHN U.I. Recursivity

mb(k)n = ∑n
s=0 (

n
s)

(−1)s

ks + m + 1

0b(2)n =∑n
s=0 (

n
s)
(−1)s

2s+1
=

n!Γ
(

3
2

)
Γ
(

n+ 3
2

) (1− â2)n ϕ0 =∑n
s=0 (

n
s)sbn ⇒ ∑n

s=0
1

(n−s)!(s+n+1)!
=

22n

(2n+1)!

1b(2)n =∑n
s=0 (

n
s)
(−1)s

2s+2
=

1
2(n+1)

â(1− â2)n ϕ0 =∑n
s=0 (

n
s)s+1bn ⇒ ∑n

s=0
(s + 1)

(n−s)!(s+n+2)!
=

1
2n!(n+1)!

2b(2)n =∑n
s=0 (

n
s)
(−1)s

2s+3
=

n!Γ
(

3
2

)
2Γ
(

n+ 5
2

) â2(1− â2)n ϕ0 =∑n
s=0 (

n
s)s+2bn ⇒

∑n
s=0

(s + 1)(s + 2)
(n−s)!(s+n+3)!

=

=
22n

(2n+3)(2n+1)!

... ... ...

mb(2)n =

∑n
s=0 (

n
s)

(−1)s

2s+m+1
=

=
n!Γ
(

m+1
2

)
2Γ
(

2n+m+3
2

) âm(1− â2)n ϕ0 =∑n
s=0 (

n
s)s+mbn ⇒

∑n
s=0

(s + m)!
(n−s)!s!(s+m+n+1)!

=

=
Γ( m+1

2 )
2n!Γ( 2n+m+3

2 )

... ... ...

mb(k)n =
n!Γ
(

m+1
k

)
kΓ
(

kn+m+k+1
k

) âm(1− âk)n ϕ0 =∑n
s=0 (

n
s) k

2 s+mb(
k
2 )

n ⇒

∑n
s=0

Γ
(

s + 2 m+1
k

)
(n−s)!s! k

2 Γ
(

n+s+1 +2 m+1
k

) =

=
Γ
(

m+1
k

)
kn!Γ

(
kn+m+k+1

k

)
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Table 2. Combinatorial Identities.

BHN Combinatorics Integral Representations Sum

1
n + 1

= 0bn 0bn =
∫ ∞

0 (1− e−σ)ne−σdσ=
1

n + 1 ∑∞
n=0 0bn = ∞

1
n + 2

= 0bn − 1bn 1bn =

∫ ∞
0 (1− e−σ)ne−2σdσ=

=
1

(n + 1)(n + 2)
∑∞

n=0 1bn = 1

1
n + 3

= 0bn − 21bn + 2bn 2bn =

∫ ∞
0 (1− e−σ)ne−3σdσ=

=
2

(n + 1)(n + 2)(n + 3)
∑∞

n=0 2bn =
1
2

... ... ...

1
n + m + 1

= ∑m
r=0 (

m
r )(−1)r

rbn mbn =

∫ ∞
0 (1− e−σ)ne−m+1σdσ=

=
n!m!

(n + m + 1)!
∑∞

n=0 mbn =
1
m

Binomial TS Integral Representations Telescopic Series

BTS; TS mTk =∑∞
s=0

(s + m− k)!
(s + m)!

∑n
s=0 (

n
s)
(−1)s

s + 1
=

1
n + 1

∫
xn dx ...

∑n
s=0 (

n
s)

(−1)s

(s + 1)(s + 2)
=

1
n + 2

∫
xn+1 dx;

∫ x
0 ξξ−1 dξ 2T2 =∑∞

s=0
1

(s + 1)(s + 2)
= 1

∑n
s=0 (

n
s)

(−1)s

(s + 1)(s + 2)(s + 3)
=

1
2(n + 3)

∫
xn+2 dx;

∫ x
0 ξ2ξ−1 dξ 3T3 =∑∞

s=0
1

(s + 1)(s + 2)(s + 3)
=

1
4

... ... ...

∑n
s=0 (

n
s)

(−1)s s!
(s + m + 1)!

=
1

m!(m + n + 1)
∫

xn+m dx;
∫ x

0 ξmξ−1 dξ m+1Tm+1 = ∑∞
s=0

s!
(s + m + 1)!

=
1

m!m

Table 3. Combinatorial Identities.

Integral Representations Further Results∫ x
0 (1 + ξ)ndξ ⇒|x=1 ∑n

s=0 (
n
s)
(−1)s2n−s

s + 1
=

2n+1 − 1
n + 1∫ x

0 (1 + ξ)nξdξ ⇒|x=1 ∑n
s=0 (

n
s)
(−1)s2n−s

s + 2
=

2n+2 − (n + 3)
(n + 1)(n + 2)∫ x

0 (a + bξ)ndξ ⇒|x=−1,a=2,b=1 ∑n
s=0 (

n
s)

1
s + 1

=
2n+1 − 1

n + 1∫ 1
0 (1− ξ2)ndξ ⇒ ∑n

s=0 (
n
s)
(−1)s

2s + 1
=

22nn!2

(2n + 1)!
=

1
2

B
(

1
2

, n + 1
)
=

(
3
2
+ n

)
B
(

3
2

, n + 1
)

∫ 1
0 (1− ξα)nξβ−1dξ ⇒ ∑n

s=0 (
n
s)

(−1)s

αs + β
=

1
α

B
(

β

α
, n + 1

)

∫ x
0 Hn(ξ, y)dξ ⇒

∑n
s=0 (

n
s)
(−1)sxs+1

s + 1
Hn−s(x, y) =

Hn+1(x, y)− Hn+1(0, y)
n + 1

⇒

⇒ Hn+1(x, y)− Hn+1(0, y)
(n + 1)x

=
∫ ∞

0 Hn(x(1− e−σ), y)e−σdσ
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Table 3. Cont.

Binomial Convoluted HN Umbral Image

mβn = ∑n
s=0 (

n
s)(−1)shm+s ĥrψ0 = hr = ∑r

s=0
1

s + 1

0βn = − 1
n(n + 1)

(1− ĥ)nψ0

1βn = − 2
n(n + 1)(n + 2)

ĥ(1− ĥ)nψ0

2βn = − 6
n(n + 1)(n + 2)(n + 3)

ĥ2(1− ĥ)nψ0

... ...

mβn = − (n− 1)!(m + 1)!
(n + m + 1)!

ĥm(1− ĥ)nψ0
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