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Abstract: Identifying the physiological processes in the central nervous system that underlie our
conscious experiences has been at the forefront of cognitive neuroscience. While the principles of
classical physics were long found to be unaccommodating for a causally effective consciousness,
the inherent indeterminism of quantum physics, together with its characteristic dichotomy between
quantum states and quantum observables, provides a fertile ground for the physical modeling
of consciousness. Here, we utilize the Schrödinger equation, together with the Planck–Einstein
relation between energy and frequency, in order to determine the appropriate quantum dynamical
timescale of conscious processes. Furthermore, with the help of a simple two-qubit toy model
we illustrate the importance of non-zero interaction Hamiltonian for the generation of quantum
entanglement and manifestation of observable correlations between different measurement outcomes.
Employing a quantitative measure of entanglement based on Schmidt decomposition, we show that
quantum evolution governed only by internal Hamiltonians for the individual quantum subsystems
preserves quantum coherence of separable initial quantum states, but eliminates the possibility of any
interaction and quantum entanglement. The presence of non-zero interaction Hamiltonian, however,
allows for decoherence of the individual quantum subsystems along with their mutual interaction
and quantum entanglement. The presented results show that quantum coherence of individual
subsystems cannot be used for cognitive binding because it is a physical mechanism that leads to
separability and non-interaction. In contrast, quantum interactions with their associated decoherence
of individual subsystems are instrumental for dynamical changes in the quantum entanglement of
the composite quantum state vector and manifested correlations of different observable outcomes.
Thus, fast decoherence timescales could assist cognitive binding through quantum entanglement
across extensive neural networks in the brain cortex.

Keywords: brain cortex; conscious experience; quantum coherence; quantum entanglement; quan-
tum interaction

1. Introduction

We exist in the universe and, consequently, obey its physical laws whatever those
physical laws may be [1]. The principles of classical physics [2–6], however, describe a deter-
ministic clockwork world that is unable to accommodate causally effective conscious expe-
riences [7–9]. This leads to insurmountable problems with the theory of evolution [10–12],
including a lack of explanation of how consciousness could be tolerated by natural se-
lection [13–15]. Fortunately, the discovery of quantum mechanics in 1920s provided a
radically different picture of the physical world in which the fabric of reality is comprised
of quantum probability amplitudes for potential physical events [16–18], whose actual
occurrence is decided indeterministically by the inherent propensity of quantum systems to
produce a definite physical outcome upon measurement [19–22]. This creates a dichotomy
between what exists in the form of quantum states, and what can be observed in the
form of quantum observables. Since consciousness exists but is not observable, reductive
identification of consciousness with quantum information contained in quantum brain
states explains the inner privacy of conscious experiences [23] and justifies the use of
bra-ket notation for writing mental states [24]. For example, there are dozens of papers on
Schrödinger’s cat, Wigner’s friend or Everett’s many worlds/many minds interpretation of
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quantum mechanics that write | ¨̂ 〉 or |_̈〉 to indicate mental states of happiness or sadness,
or to indicate the occurrence or nonoccurrence of certain conscious experiences [25–36].
The reductive identification of consciousness with quantum information implies that the
mental states have to satisfy the axioms of vectors in Hilbert space and obey the temporal
dynamics prescribed by the Schrödinger equation with a physically admissible Hamilto-
nian. This approach allows one to obtain mathematically precise answers to questions
about the nature of consciousness using the tools of quantum information theory.

In this work, we address a number of important questions related to the quantum dy-
namics of consciousness, which has to be governed by the Schrödinger equation. The level
of difficulty and accessibility of the theoretical discourse is carefully adjusted for the needs
of a broad audience comprised of interdisciplinary researchers whose main expertise is
in biomedical sciences but are keen to learn the basics of quantum information theory.
The general outline of the presentation is as follows—in Section 2, we introduce concisely
the basic postulates of quantum mechanics. Next, in Section 3, we construct a simple
two-qubit toy model whose quantum dynamics illustrates the various quantum concepts
defined in Hilbert space. Then, in Section 4, we utilize the Planck–Einstein relation,
which connects energy and frequency, in order to characterize the appropriate quantum
timescale for conscious processes involving interaction energies that exceed the energy
of the thermal noise. Next, we elaborate on the concepts of quantum entanglement in
Section 5 and quantum coherence in Section 6, with an emphasis on how these concepts
relate to the process of decoherence and the presence or absence of quantum interactions.
In Sections 7 and 8, we derive the main results with regard to the importance of internal
Hamiltonians or interaction Hamiltonians for the temporal evolution of initially separable
quantum states into quantum entangled states. In Section 9, we examine the differential
effects of quantum coherence and quantum entanglement on cognitive binding. Finally, we
wrap up the presentation by discussing how the various quantum information theoretic
notions relate to conscious processes that extend across neural networks in the brain cortex.

2. Basic Postulates of Quantum Mechanics

Applying quantum mechanics to study any problem in natural sciences requires a
minimal familiarity with the fundamental quantum mechanical postulates [19–21]. In order
to make the present exposition self-contained, we will concisely summarize those postu-
lates, known as Dirac–von Neumann axioms [37], before we use them to construct and
analyze a simple two-qubit toy model.

Axiom 1. (State) The quantum physical state of a closed system is completely described by a unit
state vector |Ψ〉 in complex-valued Hilbert spaceH.

Axiom 2. (Composition) The Hilbert space of a composite quantum system comprised from k compo-
nents is a tensor product of the state spaces of the component subsystemsH = H1⊗H2⊗ . . .⊗Hk.

Axiom 3. (Observables) To every observable physical property A there exists an associated Her-
mitian operator Â = Â†, which acts on the Hilbert space of states H. The eigenvalues λA of the
operator Â are the possible values of the observable physical property.

Axiom 4. (Born rule) The expectation value 〈Â〉 of a measured quantum observable Â is given by the
inner product with the current quantum state |Ψ〉 of the physical system, namely 〈Â〉 = 〈Ψ|Â|Ψ〉.

Axiom 5. (Dynamics) The time evolution of a closed physical system obeys the Schrödinger equation

ıh̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉, (1)

where the Hamiltonian Ĥ = Ĥ† is the observable corresponding to the total energy of the system.
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With the use of the matrix exponential function [38], the general solution of the
Schrödinger equation could be written in the form

|Ψ(t)〉 = e−
ı
h̄ Ĥt|Ψ(0)〉, (2)

where |Ψ(0)〉 is the initial quantum state at time t = 0. Thus, the Hamiltonian Ĥ is
the generator of time translation that evolves the initial quantum state forward in time.
Exactly because of this great importance of the Hamiltonian for the ensuing quantum
dynamics, throughout this work we will be interested to delineate the differences in action
of internal Hamiltonians, which operate only on the reduced Hilbert subspaces of component
subsystems, and interaction Hamiltonians, which operate on the tensor product Hilbert space
of the composite system.

The Schrödinger equation, which comprises the core of quantum theory [39–41], is lin-
ear and obeys the superposition principle [8]. This means that given any two solutions
|Ψ1〉 and |Ψ2〉 of the Schrödinger equation, we can construct an infinite number of solu-
tions, which are linear combinations of the given two, namely, |Ψs〉 = α1|Ψ1〉+ α2|Ψ2〉.
Thus, the linearity of the Schrödinger equation could be viewed as the underlying rea-
son why the quantum states of physical systems form a Hilbert space. Furthermore,
the Schrödinger equation is unitary, which is an essential ingredient in the proofs of impor-
tant quantum no-go theorems (such as the no-cloning theorem [42]) that characterize the
distinctive properties of quantum information. Therefore, there is a precise mathematical
sense in which a physical theory of consciousness should be considered quantum only if its
basic tenets originate from the Schrödinger equation [7,8], but not from putative violations
of the Schrödinger equation.

3. Minimal Quantum Toy Model

To substantiate the abstract quantum concepts in Hilbert space [43,44], we will con-
struct a toy model whose quantum dynamics could be solved analytically and plotted
for visual inspection. Because we will study quantum interactions, we need at least two
quantum systems. Furthermore, because we would like the model to be biologically rel-
evant (Figure 1), we will consider the quantum dynamics of electrons [45–47], which are
elementary particles with spin- 1

2 thereby acting as minimal quantum bits of information,
or qubits [48]. The simplest possible composite quantum system that is capable of captur-
ing the process of entanglement and decoherence is one composed of two non-identical
interacting qubits in a uniform static magnetic field ~B aligned in the z-direction.

3.1. Hamiltonian of the Toy Model

LetHA be the two-dimensional complex Hilbert space of the first qubit A andHB be
the two-dimensional complex Hilbert space of the second qubit B. Then according to the
Dirac–von Neumann axioms of quantum mechanics [19,20], the composite two-qubit quan-
tum system resides in a four-dimensional complex Hilbert spaceHAB = HA⊗HB, where⊗
denotes the tensor product (also known as Kronecker product of matrices). The eigenvec-
tors of the observable Ŝz,i describing the spin component along the z-axis for the individual
Hilbert spaces can be written as {| ↑z〉i, | ↓z〉i} where i = A, B. The corresponding eigen-
values appear as scaling factors in the relations

Ŝz,i| ↑z〉i =
h̄
2
| ↑z〉i (3)

Ŝz,i| ↓z〉i = −
h̄
2
| ↓z〉i, (4)

where the reduced Planck constant is h̄ = 1.055× 10−34 J s. With the use of the Pauli spin
matrices, σ̂x, σ̂y and σ̂z, we can define all three different spin components as Ŝx,i =

h̄
2 σ̂x,

Ŝy,i =
h̄
2 σ̂y and Ŝz,i =

h̄
2 σ̂z in the respective Hilbert spacesHA andHB.
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Figure 1. Different levels of organization of physical processes within the central nervous system.
At the microscopic scale, the brain cortex is composed of neurons, which form neural networks.
The morphology of the rendered pyramidal neuron (NMO_09565) from layer 5 of rat motor cortex
(http://NeuroMorpho.Org; accessed on 19 April 2021) reflects the functional specialization of cable-
like neuronal projections (dendrites and axon). At the nanoscale, the electric activity of neurons is
generated by voltage-gated ion channels, which are inserted in the neuronal plasma membrane. As
an example of ion channel is shown a single voltage-gated K+ channel composed of four protein
α-subunits. Each subunit has six α-helices traversing the plasma membrane. The 4th α-helix is
positively charged and acts as voltage sensor. At the picoscale, individual elementary electric charges
within the protein voltage sensor could be modeled as qubits represented by Bloch spheres. For the
diameter of each qubit is used the Compton wavelength of electron. Consecutive magnifications
from micrometer (µm) to picometer (pm) scale are indicated by × symbol.

In the composite four-dimensional complex Hilbert spaceHAB, we can explicitly write
quantum states or quantum observables in matrix form using a chosen basis. For the description
of the two-qubit toy model, we will adopt the spin zz basis, {| ↑z↑z〉, | ↑z↓z〉, | ↓z↑z〉, | ↓z↓z〉},
where for economy of notation we have used ordering from left to right to indicate which
subsystem i = A, B is referred to, namely

| ↑z↑z〉 ≡ | ↑z〉A| ↑z〉B (5)

| ↑z↓z〉 ≡ | ↑z〉A| ↓z〉B (6)

| ↓z↑z〉 ≡ | ↓z〉A| ↑z〉B (7)

| ↓z↓z〉 ≡ | ↓z〉A| ↓z〉B. (8)

Then, the individual spin observables inHAB are given by product operators

Ŝx,A =
h̄
2

σ̂x ⊗ ÎB =
h̄
2

(
0 1
1 0

)
⊗
(

1 0
0 1

)
=

h̄
2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (9)

http://NeuroMorpho.Org
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Ŝx,B =
h̄
2

ÎA ⊗ σ̂x =
h̄
2

(
1 0
0 1

)
⊗
(

0 1
1 0

)
=

h̄
2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 (10)

Ŝy,A =
h̄
2

σ̂y ⊗ ÎB =
h̄
2

(
0 −ı
ı 0

)
⊗
(

1 0
0 1

)
=

h̄
2


0 0 −ı 0
0 0 0 −ı
ı 0 0 0
0 ı 0 0

 (11)

Ŝy,B =
h̄
2

ÎA ⊗ σ̂y =
h̄
2

(
1 0
0 1

)
⊗
(

0 −ı
ı 0

)
=

h̄
2


0 −ı 0 0
ı 0 0 0
0 0 0 −ı
0 0 ı 0

 (12)

Ŝz,A =
h̄
2

σ̂z ⊗ ÎB =
h̄
2

(
1 0
0 −1

)
⊗
(

1 0
0 1

)
=

h̄
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (13)

Ŝz,B =
h̄
2

ÎA ⊗ σ̂z =
h̄
2

(
1 0
0 1

)
⊗
(

1 0
0 −1

)
=

h̄
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

. (14)

The magnetic moments of the two qubits are ~µ1 = γ1~S1 and ~µ2 = γ2~S2, where the gyro-
magnetic ratios are γ1 = g1

q1
2m1

and γ2 = g2
q2

2m2
, with g-factors g1 and g2, electric charges

q1 and q2, and masses m1 and m2.
For a qubit that is realized by a spinning electron, we have

~µ = γe~S = ge
qe

2me
~S = ge

µB
h̄
~S, (15)

where the electron g-factor is ge = −2.00231930436256 and the Bohr magneton is
µB = qe h̄

2me
≈ 9.27× 10−24 J/Tesla.

If the internal Hamiltonians for each of the two qubits A and B are respectively

ĤA = −µ1 · ~B (16)

ĤB = −µ2 · ~B (17)

and the interaction between the two qubits is given by

Ĥint = ξ
(
~S1 · ~S2

)
(18)

we can write the total Hamiltonian as

Ĥ = ĤA + ĤB + Ĥint. (19)

After substitution and expanding the inner products, we have
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Ĥ = −µ1 · ~B− µ2 · ~B + ξ
(
~S1 · ~S2

)
= Ω1~Sz,A + Ω2~Sz,B + ξ

(
Ŝx,AŜx,B + Ŝy,AŜy,B + Ŝz,AŜz,B

)
=

h̄
2

Ω1


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

+
h̄
2

Ω2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

+
h̄2

4
ξ


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1



=


E+ + Es 0 0 0

0 E− − Es 2Es 0
0 2Es −E− − Es 0
0 0 0 −E+ + Es

, (20)

where E+ = 1
2 h̄(Ω1 + Ω2), E− = 1

2 h̄(Ω1 −Ω2) and Es =
h̄2

4 ξ. The corresponding angular
frequencies are ω+ = 1

2 (Ω1 + Ω2), ω− = 1
2 (Ω1 −Ω2) and ωs =

h̄
4 ξ.

3.2. Energy Eigenstates and Eigenvalues of the Toy Model

The eigenvalues and eigenvectors of the Hamiltonian correspond to physical energies
that enter in the general solution of the Schrödinger equation [21]. The energy eigenvalues
of the concrete toy Hamiltonian (20) are found to be

E1 = E+ + Es (21)

E2 = −Es −
√

E2
− + 4E2

s (22)

E3 = −Es +
√

E2
− + 4E2

s (23)

E4 = −E+ + Es. (24)

Their corresponding energy eigenvectors expressed in the spin zz basis are given by

|E1〉 = | ↑z↑z〉 (25)

|E2〉 = −C1| ↑z↓z〉+ C2| ↓z↑z〉 (26)

|E3〉 = C2| ↑z↓z〉+ C1| ↓z↑z〉 (27)

|E4〉 = | ↓z↓z〉, (28)

where for economy of notation we have set

C1 = sin

1
2

arccos

 E−√
E2
− + 4E2

s

 =
1√
2

√√√√1− E−√
E2
− + 4E2

s

(29)

C2 = cos

1
2

arccos

 E−√
E2
− + 4E2

s

 =
1√
2

√√√√1 +
E−√

E2
− + 4E2

s

. (30)

The mathematical relationship between eigenvectors and their eigenvalues allows for easy
computation of the action of the Hamiltonian operator, namely

Ĥ|En〉 = En|En〉. (31)

Hence, if we express the initial composite two-qubit quantum state |Ψ〉 in the energy basis

|Ψ〉 = Î|Ψ〉 = ∑
n
P̂(En)|Ψ〉 = ∑

n
|En〉〈En|Ψ〉 = ∑

n
αn|En〉, (32)
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we can propagate it in time using the Schrödinger equation

ıh̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 = Ĥ ∑

n
αn|En〉 = ∑

n
Enαn|En〉. (33)

Explicitly rewriting the quantum state in the energy basis gives a system of differential equations

ıh̄
∂

∂t


α1
α2
...

αn

 =


E1α1
E2α2

...
Enαn

. (34)

Before we solve these differential equations, we can divide both sides by ıh̄ and work only
with the angular frequencies

∂

∂t


α1
α2
...

αn

 = −ı


ω1α1
ω2α2

...
ωnαn

, (35)

where ω1 = E1/h̄, ω2 = E2/h̄, . . ., ωn = En/h̄. Quantum physicists usually take the
approach of working in units in which h̄ = 1, hence energy and angular frequency become
equivalent by the Planck–Einstein relation E = h̄ω. However, our chosen approach is
more general as it does not require fixing the physical units. Also, compared to energy,
the angular frequencies are more appropriate for characterizing the dynamic timescale of
the composite quantum system.

3.3. Quantum Dynamics of the State Vector

The solutions of the Schrödinger Equation (35) are easily found in the form

αn(t) = αn(0)e−ıωnt, (36)

with the immediate interpretation that αn(0) is the initial quantum probability amplitude
of the state |En〉 at t = 0.

Then, the general solution of the time-dependent Schrödinger equation becomes

|Ψ(t)〉 = ∑
n

αn(0)e−ıωnt|En〉 (37)

= α1(0)e−ıω1t|E1〉+ α2(0)e−ıω2t|E2〉+ α3(0)e−ıω3t|E3〉+ α4(0)e−ıω4t|E4〉, (38)

where from Equations (21)–(24) we obtain

ω1 = ω+ + ωs (39)

ω2 = −ωs −
√

ω2
− + 4ω2

s (40)

ω3 = −ωs +
√

ω2
− + 4ω2

s (41)

ω4 = −ω+ + ωs. (42)
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The coefficients of the energy eigenstates also can be fully re-written in terms of the
angular frequencies

C1 =
1√
2

√√√√1− ω−√
ω2
− + 4ω2

s

(43)

C2 =
1√
2

√√√√1 +
ω−√

ω2
− + 4ω2

s

. (44)

Thus, the general quantum state |Ψ(t)〉 at any time t is expressed as

|Ψ(t)〉 = α1(0)e−ıω1t| ↑z↑z〉 −
(
C1α2(0)e−ıω2t − C2α3(0)e−ıω3t)| ↑z↓z〉

+
(
C2α2(0)e−ıω2t + C1α3(0)e−ıω3t)| ↓z↑z〉+ α4(0)e−ıω4t| ↓z↓z〉. (45)

The initial energy quantum probability amplitudes can be further re-written in their expo-
nential form as

αi(0) = |αi(0)|eıϕi , (46)

where the principal arguments are

ϕi ≡ Arg[αi(0)]. (47)

The quantum state |Ψ(t)〉 describes what exists in the quantum world. The quantum
state, however, is not an observable entity [49]. In order to determine what can be measured,
we need to consider the expectation values of quantum observables.

4. Quantum Dynamic Timescale

To determine the relevant dynamic timescale, we need to account for Landauer’s
principle, according to which there is a minimum possible amount of energy Emin required
to erase one bit of information [50] or to transmit one bit successfully across a noisy
quantum channel affected by thermal noise [51,52]

Emin = kBT ln 2 ≈ 2.97× 10−21 J, (48)

where kB = 1.38× 10−23 J/K is the Boltzmann constant and T = 310 K is the physiological
body temperature of humans. From the Planck–Einstein relation E = h̄ω, we can determine
the minimal angular frequency

ωmin =
kBT ln 2

h̄
≈ 2.8× 1013 rad/s. (49)

This means that there will be ωmin
2π × 10−12 ≈ 4.5 full rotations for time period of 1 ps.

The time period for 1 full rotation is 2π
ωmin

≈ 0.22 ps.
As an alternative calculation, consider the interaction of the Bohr magneton with an

external magnetic field of 3 Tesla, which is routinely used for functional magnetic resonance
imaging (fMRI) of the human brain, to obtain an interaction energy

1
2

geµBB ≈ 2.78× 10−23 J, (50)

that is about 100 times smaller than the Landauer’s limit. The corresponding angular
frequency is

Ω1 = Ω2 =
geµBB

2h̄
≈ 2.64× 1011 rad/s. (51)

This means that there will be Ω1
2π × 10−10 ≈ 4.2 full rotations for time period of 100 ps.

The time period for 1 full rotation is 2π
ωint
≈ 23.8 ps. One possible interpretation of the
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latter result is that the MRI experimental technique is by a factor of ≈100 slower that the
predicted quantum characteristic time of neural processes related to consciousness.

The main conclusion is that for typical energies that are comparable to the ther-
mal energy, the rotation of the state vector in Hilbert space occurs with time period at
a subpicosecond timescale. For energies that are an order of magnitude lower than the
thermal energy, the dynamic timescale is picoseconds, for energies that are two orders of
magnitude lower than the thermal energy, the dynamic timescale is tens of picoseconds,
and so on. Therefore, the Planck–Einstein relation E = h̄ω that appears in the Schrödinger
equation fixes the dynamic timescale of quantum processes to picosecond timescale or
faster, which is in the realm of quantum chemistry [8,24]. For complex biomolecules such
as proteins, which catalyze life-sustaining physiological activities, key functional role
is played by hydrogen bonds whose energy is an order of magnitude lower compared
to covalent bonds. Consequently, the quantum transport of energy in protein α-helices
due to conformational bending of hydrogen bonded peptide groups occurs at picosecond
timescale [53–55], as opposed to femtosecond electron transport due to destruction or cre-
ation of covalent bonds [56–60]. Quantum theories of consciousness that require operation
at longer timescales, such as milliseconds, are incompatible with the essentials established
by the Planck–Einstein relation and the Schrödinger equation.

Here, we would like to emphasize that there are contrived methods based on quantum
beats that could realize destructive quantum interference in order to slow down the quan-
tum dynamics of the expectation value of some quantum observables, however, those meth-
ods are not evolutionary plausible as they reduce the computational power of the brain.
To appreciate the meaning of this criticism, consider the operation of computer proces-
sors realized on silicon chips: a processor that operates at MHz (microsecond timescale)
can perform only 106 operations per second, whereas a processor that operates at GHz
(nanosecond timescale) can perform 109 operations per second. The faster the processor is,
the more computational power it has. That is why modern computing technologies aim
toward processors operating at THz (picosecond timescale), where quantum effects become
dominant, rather than the slower timescale of milliseconds or even seconds, where the
computation can be performed manually e.g., by sliding beads on abacus.

5. Quantum Entanglement

Quantum entanglement entails interdependence between different component subsys-
tems, which form a composite quantum system [61]. Although the quantum entanglement
could be manifested in the form of correlations between observable outcomes, the converse
is not true, namely the lack of correlations between observable outcomes does not imply
the lack of entanglement. This is because quantum entanglement is defined for the quan-
tum state, which is a vector in Hilbert space, whereas the probabilities for occurrence of
definite measurement outcomes pertain to quantum observables, which are operators on
the Hilbert space.

Incompatible (non-commuting) observables cannot be measured simultaneously with
a single experimental setting of the measurement apparatus. This means that in the act of
quantum measurement only a set of compatible (commuting) quantum observables can be
determined to have a definite value. Those quantum observables that are not measured do
not have a definite value and consequently there are no actual measurement outcomes from
which could be extracted correlations. If one is careful to distinguish between what is actual
and what is counterfactual, quantum mechanics allows for exact prediction of the possible
correlations that would have been observed had the necessary quantum measurements
been performed.

Definition 1. (Separable state) A bipartite composite quantum state |Ψ〉 ∈ HA ⊗HB is called
separable if and only if it can be written as a tensor product [62]

|Ψ〉 = |ψ〉A ⊗ |ψ〉B. (52)
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Definition 2. (Entangled state) A bipartite composite quantum state |Ψ〉 ∈ HA ⊗HB is called
entangled if and only if it cannot be written as a tensor product [62]

|Ψ〉 6= |ψ〉A ⊗ |ψ〉B. (53)

Theorem 1. (Schmidt decomposition) Let {|i〉A} be a basis forHA and {|j〉B} be a basis forHB.
Then, every bipartite composite quantum state |Ψ〉 ∈ HA ⊗HB can be expressed in {|i〉A|j〉B}
basis as follows

|Ψ〉 = ∑
i

∑
j

cij|i〉A|j〉B. (54)

Next, construct the matrix Ĉ =
(
cij
)

and perform singular value decomposition in the form

Ĉ = ÛΛ̂V̂†, (55)

where Û and V̂† are unitary matrices, and Λ̂ is a diagonal matrix with non-negative singular values
sorted in descending order λ1 ≥ λ2 ≥ . . . ≥ λs ≥ 0 also referred to as Schmidt coefficients. Thus,
the bipartite composite quantum state becomes

|Ψ〉 = ∑
s

λs|ψ〉A ⊗ |ψ〉B, (56)

where |ψ〉A = Û|i〉A and |ψ〉B = V̂†|j〉B is the Schmidt basis [63]. The state is entangled if its
Schmidt rank is greater than 1. Otherwise, the state is separable.

Theorem 2. The singular values of a Hermitian matrix Â = Â† are the absolute values of the
eigenvalues of Â.

Proof. Every Hermitian matrix has a complete set of eigenvectors, and all of its eigenvalues
are real. This allows spectral decomposition

Â = ÛΛ̂Û†, (57)

where Û is unitary matrix and Λ̂ = Λ̂† is a diagonal matrix with real entries. Decompose
the diagonal matrix as Λ̂ =

∣∣Λ̂∣∣signΛ̂. The matrix V̂† = signΛ̂Û† is unitary because Û† is
unitary. Therefore, the singular value decomposition of Â is

Â = Û
∣∣Λ̂∣∣V̂†. (58)

Definition 3. The entanglement number e(Ψ) of a quantum state |Ψ〉 is determined by the Schmidt
coefficients using the formula [64]

e(Ψ) =
√

1−∑
s

λ4
s . (59)

Theorem 3. The Hermitian matrix ĈĈ† is positive semidefinite, namely 〈x|ĈĈ†|x〉 ≥ 0 for all
vectors x. The eigenvalues of the Hermitian matrix ĈĈ† = ÛΛ̂V̂†V̂Λ̂Û† = ÛΛ̂2Û† are equal
to λ2

s . Therefore, an efficient way to compute the entanglement number without recourse to singular
value decomposition is to use [64]

e(Ψ) =
√

1− Tr
(
ĈĈ†ĈĈ†

)
. (60)
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The entanglement number could be normalized in the interval [0, 1] as follows

ẽ(Ψ) =
e(Ψ)

e(Ψ)max
, (61)

where e(Ψ)max is the maximal possible value, which is determined by the dimension n of the Hilbert
space of the smallest subsystem, namely n = min[d(HA), d(HB)]. In the maximally entangled
state, the Schmidt decomposition has n eigenvalues equal to 1√

n , resulting in

e(Ψ)max =

√
1− n

1
n2 =

√
n− 1

n
. (62)

The normalized quantum entanglement number e(Ψ) in the toy model could be
computed from the eigenvalues of ĈĈ† to be

ẽ(Ψ) = 2
{∣∣∣α2

1(0)α
2
4(0)

∣∣∣+ ∣∣∣α2
2(0)α

2
3(0)

∣∣∣+ C2
1C2

2

(∣∣∣α4
2(0)

∣∣∣− 4
∣∣∣α2

2(0)α
2
3(0)

∣∣∣+ ∣∣∣α4
3(0)

∣∣∣)
− 2C+C−|α1(0)α2(0)α3(0)α4(0)| cos[(ω1 −ω2 −ω3 + ω4)t− ϕ1 + ϕ2 + ϕ3 − ϕ4]

+ 2C1C2

∣∣∣α1(0)α2
2(0)α4(0)

∣∣∣ cos[(ω1 − 2ω2 + ω4)t− ϕ1 + 2ϕ2 − ϕ4]

− 2C1C2

∣∣∣α1(0)α2
3(0)α4(0)

∣∣∣ cos[(ω1 − 2ω3 + ω4)t− ϕ1 + 2ϕ3 − ϕ4]

− 2C1C2C+C−
(∣∣∣α3

2(0)α3(0)
∣∣∣− ∣∣∣α2(0)α3

3(0)
∣∣∣) cos[(ω2 −ω3)t− ϕ2 + ϕ3]

− 2C2
1C2

2

∣∣∣α2
2(0)α

2
3(0)

∣∣∣ cos[2(ω2 −ω3)t− 2(ϕ2 − ϕ3)]
} 1

2
. (63)

6. Quantum Coherence

Quantum coherence and decoherence are frequently mentioned in discussions on the
feasibility of quantum approaches to consciousness [25,65]. Because the visibility of quan-
tum interference patterns requires quantum superpositions [66,67], a careless wording may
say that quantum coherence is indicative of present quantum superpositions, whereas de-
coherence is indicative of absent quantum superpositions. Unfortunately, such statements
cannot be literally correct and would appear to be based on misunderstanding the vector
nature of quantum states. Mathematically, a vector can always be decomposed into a
superposition of other vectors, which means that the concept of quantum superposition is
not an absolute property, but a basis-dependent one [8]. Therefore, it is meaningless to talk
about the presence or absence of quantum superpositions without explicitly stating the
basis in which those superpositions are considered.

Definition 4. (Quantum coherence) The `1 norm of coherence C is a basis-dependent quantitative
measure of quantum coherence of an n× n dimensional density matrix ρ̂ defined with the use of the
sum of all off-diagonal moduli [68]

C = 1
n− 1 ∑

i 6=j

∣∣ρij
∣∣. (64)

The quantum coherence is bounded in the interval 0 ≤ C ≤ 1.

Example 1. Consider a qubit in the state | ↑z〉. The density matrix of the qubit in spin z basis is

ρ̂ = | ↑z〉〈↑z | =
(

1 0
)( 1

0

)
=

(
1 0
0 0

)
. (65)
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All off-diagonal elements of the density matrix ρ̂ expressed in spin z basis are zero, hence C = 0,
indicating that the state is not superposed in that basis. However, the same density matrix re-written
in spin x basis becomes

ρ̂ =
1√
2
(| ↑x〉+ | ↓x〉)

1√
2
(〈↑x |+ 〈↓x |) =

1
2
(

1 1
)( 1

1

)
=

1
2

(
1 1
1 1

)
. (66)

All off-diagonal elements of the density matrix ρ̂ expressed in spin x basis are 1
2 , hence C = 1,

indicating that the state is maximally superposed in that basis.

It should be emphasized that the disappearance of quantum coherence merely by
change of basis of a pure state [69] is not the main physical phenomenon studied by deco-
herence theory. Instead, decoherence refers to the loss of quantum purity and conversion
of pure quantum states into mixed quantum states [70–73]. In this latter process, the co-
herent quantum superpositions, which can manifest visible quantum interference patterns
under suitable choice of measurement basis, become converted into incoherent quantum
superpositions, which cannot manifest visible quantum interference patterns. In general,
the loss of visibility of interference patterns is not abrupt, but occurs gradually with the
loss of quantum purity.

Definition 5. (Quantum purity) The quantum purity γ of an n× n dimensional density matrix ρ̂
is defined as

γ = Tr
(

ρ̂2
)

. (67)

The quantum purity is bounded in the interval 1
n ≤ γ ≤ 1.

Example 2. A maximally mixed state with minimal purity γ = 1
2 is realized by a qubit with

density matrix

ρ̂ =
1
2
(| ↑z〉〈↑z |+ | ↓z〉〈↓z |) =

1
2
(| ↑x〉〈↑x |+ | ↓x〉〈↓x |) =

1
2

(
1 0
0 1

)
. (68)

The maximally mixed state is incoherent in every basis, meaning that the `1 norm of coherence
C is zero in every basis. As a result, quantum measurement in any basis will find the spin with
equal probability being in either of the two possible directions, up or down. Furthermore, quantum
superpositions may still be present, even though the maximally mixed state will not manifest visible
quantum interference patterns in any basis. For that latter reason, such quantum superpositions are
called incoherent.

To understand where the incoherent quantum superpositions reside, we have to
consider the quantum mechanical concept of purification.

Definition 6. (Purification) Every mixed state given by a density matrix ρ̂ = ∑i pi|i〉〈i| acting
on finite-dimensional Hilbert spaceHA with basis {|i〉} can be viewed as the reduced state of some
pure state |Ψ〉 ∈ HA ⊗HB, whereHB is another copy ofHA with basis {|i′〉}.

Proof. Every density matrix ρ̂ ∈ HA can be spectrally decomposed in terms of its eigen-
values pi and corresponding set of orthonormal eigenvectors {|i〉}. Working with the basis
{|i〉}massively simplifies the calculations because the density matrix ρ̂ becomes diagonal
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in that basis. Then, consider the state |Ψ〉 = ∑i
√

pi|i〉 ⊗ |i′〉. Explicit calculation of the
partial trace gives

ρ̂ = TrB|Ψ〉〈Ψ|

= TrB

(
∑

i

√
pi|i〉 ⊗ |i′〉∑

j

√
pj〈j| ⊗ 〈j′|

)
= TrB ∑

i
∑

j

√
pi pj|i〉〈j| ⊗ |i′〉〈j′|

= ∑
i

∑
j

δij
√

pi pj|i〉〈j|

= ∑
i

pi|i〉〈i|. (69)

Example 3. Consider two qubits A and B comprising the pure maximally entangled (anti-
correlated) quantum state

|Ψ〉AB =
1√
2
(| ↑z↓z〉+ | ↓z↑z〉). (70)

The composite density matrix is pure

ρ̂AB = ρ̂2
AB =

1
2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

, (71)

whereas the reduced density matrices of each qubit are maximally mixed

ρ̂A = TrB(ρ̂AB) = ρ̂B = TrA(ρ̂AB) =
1
2

(
1 0
0 1

)
. (72)

Thus, the quantum superposition is seen as non-zero off-diagonal elements only in the composite
density matrix ρ̂AB, but not in the reduced density matrices ρ̂A and ρ̂B.

Example 4. Consider two qubits A and B comprising the pure maximally entangled (correlated)
quantum state

|Ψ〉AB =
1√
2
(| ↑z↑z〉+ | ↓z↓z〉). (73)

Again, the composite density matrix is pure

ρ̂AB = ρ̂2
AB =

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

, (74)

whereas the reduced density matrices of each qubit are maximally mixed

ρ̂A = TrB(ρ̂AB) = ρ̂B = TrA(ρ̂AB) =
1
2

(
1 0
0 1

)
. (75)

The reduced density matrices ρ̂A and ρ̂B are exactly the same as in the case when the composite state
is given by (70). Comparison of the the composite states (70) and (73) shows that the measurement
outcomes of the z-components of the two spins will be correlated or anti-correlated, respectively.
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Therefore, knowing only the reduced density matrices of the components does not provide a complete
description of the composite system, whereas knowing the composite state vector does.

In the context of decoherence theory, quantum coherence is used with the intended
meaning of maximal purity. Keeping this clarification in mind, it could be said that the
composite two-qubit system is quantum coherent because its purity is maximal, γ = 1,
whereas each of the component qubits is incoherent because its purity is minimal, γ = 1

2 .
Thus, quantum entanglement leads to decoherence and the two processes go hand by hand.
Conversely, the two component qubits cannot be individually maximally coherent (pure)
and quantum entangled at the same time. Instead, if each of the two qubits is in a pure
state, then the composite state is separable.

Example 5. Consider each of the two qubits A and B being in coherent quantum superposition
1√
2
(| ↑z〉+ | ↓z〉). The composite density matrix is pure

ρ̂AB = ρ̂2
AB =

1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (76)

and the reduced density matrices of each qubit are also pure

ρ̂A = ρ̂2
A = TrB(ρ̂AB) = ρ̂B = ρ̂2

B = TrA(ρ̂AB) =
1
2

(
1 1
1 1

)
. (77)

The separability of the composite state follows from the purity of the components

|Ψ〉AB =
1√
2
(| ↑z〉+ | ↓z〉)⊗

1√
2
(| ↑z〉+ | ↓z〉) = | ↑x〉 ⊗ | ↑x〉. (78)

From the preceding examples, it should be clear that quantum mechanics contains
two very different kinds of relationships between composite systems and component
systems. For separable states, both the composite system and the component systems have
pure quantum states. This implies that it is possible to write state vectors for both the
composite system and the component systems. For quantum entangled states, it is only
the composite system that has a pure quantum state, whereas the component systems are
necessarily described by mixed quantum states. Because mixed quantum states can only be
represented in the form of a density matrix, but not a quantum state vector, this implies that
the components of quantum entangled states cannot be completely described in isolation.
Indeed, the reduced density matrices that describe the components of quantum entangled
states can be used only for computing the quantum probabilities of outcomes from local
measurements performed upon the given component. However, the reduced density
matrices are useless for computing existing correlations between different components [8].

7. Measurement of Quantum Observables

So far, we have discussed the importance of the state vector |Ψ(t)〉 of the composite
system and have solved the Schrödinger equation for the two-qubit toy model. Although,
the state vector |Ψ(t)〉 is not an observable [49], it allows us to determine the expecta-
tion values of any physical observable Â that could be measured at any point in time t.
The important thing to keep in mind is that non-commuting quantum observables are
incompatible with each other and cannot be measured at the same time. This means that
without knowing which observable is actually measured, the quantum dynamics of the
expectation value of any quantum observable 〈Â〉 = 〈Ψ(t)|Â|Ψ(t)〉 is to be considered as
counterfactual, namely, it describes probability distributions of physical events that could
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have happened provided that the quantum observable Â were measured. Thus, quantum
observables do not necessarily reflect what exists, but only what could be observed [23,24].

7.1. Quantum Observables in Spin zz Basis

The probabilities for measuring the composite system in each of the spin zz basis
states from the set {| ↑z↑z〉, | ↑z↓z〉, | ↓z↑z〉, | ↓z↓z〉} are given by the expectation values of
the corresponding projection operators according to the Born rule [74], namely

Prob(↑z↑z) = 〈Ψ(t)|P̂(↑z↑z)|Ψ(t)〉 = 〈Ψ(t)| ↑z↑z〉〈↑z↑z |Ψ(t)〉 = |〈↑z↑z |Ψ(t)〉|2 (79)

Prob(↑z↓z) = 〈Ψ(t)|P̂(↑z↓z)|Ψ(t)〉 = 〈Ψ(t)| ↑z↓z〉〈↑z↓z |Ψ(t)〉 = |〈↑z↓z |Ψ(t)〉|2 (80)

Prob(↓z↑z) = 〈Ψ(t)|P̂(↓z↑z)|Ψ(t)〉 = 〈Ψ(t)| ↓z↑z〉〈↓z↑z |Ψ(t)〉 = |〈↓z↑z |Ψ(t)〉|2 (81)

Prob(↓z↓z) = 〈Ψ(t)|P̂(↓z↓z)|Ψ(t)〉 = 〈Ψ(t)| ↓z↓z〉〈↓z↓z |Ψ(t)〉 = |〈↓z↓z |Ψ(t)〉|2. (82)

Explicit calculation for the observable quantum probabilities gives

Prob(↑z↑z) = |α1(0)|2 (83)

Prob(↑z↓z) = C2
1 |α2(0)|2 − 2C1C2|α2(0)α3(0)| cos[(ω2 −ω3)t− ϕ2 + ϕ3] + C2

2 |α3(0)|2 (84)

Prob(↓z↑z) = C2
2 |α2(0)|2 + 2C1C2|α2(0)α3(0)| cos[(ω2 −ω3)t− ϕ2 + ϕ3] + C2

1 |α3(0)|2 (85)

Prob(↓z↓z) = |α4(0)|2. (86)

It is easy to see that the four quantum probabilities sum up to unity since C2
1 + C2

2 = 1 and
∑n|αn(0)|2 = 1.

In order to perform computer simulations, one can plug in directly different quantum prob-
ability amplitudes αn(0) for the initial superposition of energy states |Ψ(0)〉 = ∑n αn(0)|En〉
and then observe the quantum dynamics that follows. In the case when the initial quantum
state |Ψ(0)〉 is given in a different basis, such as an eigenvector of the evolving quantum
observable, then one first needs to determine the initial quantum probability amplitudes
αn(0) for the energy states using inner products

|Ψ(0)〉 = Î|Ψ(0)〉 = ∑
n
|En〉〈En|Ψ(0)〉 = ∑

n
αn(0)|En〉 (87)

and then proceed with the computer simulation. As an explicit example, we present the
initial energy quantum probability amplitudes for each of the spin zz basis states in the
energy basis

| ↑z↑z〉 = |E1〉 (88)

| ↑z↓z〉 = −C1|E2〉+ C2|E3〉 (89)

| ↓z↑z〉 = C2|E2〉+ C1|E3〉 (90)

| ↓z↓z〉 = |E4〉. (91)

Once we have the initial quantum probability amplitudes in the energy basis, we can plot
the quantum dynamics of the expectation values of the quantum observables given in
Equations (83)–(86).

In the presence of non-zero interaction Hamiltonian, the quantum dynamics of
the composite state vector |Ψ(t)〉 is able to undergo cycles of quantum entanglement
and disentanglement depending on the choice of the initial state vector |Ψ(0)〉. From
Equations (83)–(86) describing the time evolution of the quantum probabilities, it can be
concluded that if the initial state is |Ψ(0)〉 = | ↑z↑z〉 then its associated observable repre-
sented by the expectation value of the projection operator P̂(↑z↑z) = | ↑z↑z〉〈↑z↑z | does
not evolve but stays constant 〈Ψ(t)|P̂(↑z↑z)|Ψ(t)〉 = 1 at all times (Figure 2A). From (45),
it can be seen that the quantum evolution of the quantum state is to rotate in the Hilbert



Symmetry 2021, 13, 773 16 of 30

space with a pure phase e−ıω1t| ↑z↑z〉, which leaves the state separable at all times. It is
worth emphasizing that the quantum state evolves, whereas the expectation value of the
projection operator does not. This illustrates clearly the fact that in the quantum world what
is observed is not what exists, namely, the quantum observables (represented by matrix
operators) are not quantum states (represented by state vectors). Similarly, if the initial
state is |Ψ(0)〉 = | ↓z↓z〉 then its associated observable represented by the expectation value
of the projection operator P̂(↓z↓z) = | ↓z↓z〉〈↓z↓z | does not evolve but stays constant
〈Ψ(t)|P̂(↓z↓z)|Ψ(t)〉 = 1 at all times. Again, the quantum evolution of the quantum state
is to rotate in the Hilbert space with a pure phase e−ıω4t| ↓z↓z〉 thereby leaving the state
separable at all times (Figure 2D). Interesting quantum dynamics results when the initial
state is |Ψ(0)〉 = | ↑z↓z〉 or |Ψ(0)〉 = | ↓z↑z〉. In such cases, the expectation values of
the corresponding projection operators evolve in time and there are observable quantum
interference effects that can be recorded by external measurement devices (Figure 2B,C).
Furthermore, the state repeatedly gets entangled, when Prob(↑z↓z) = Prob(↓z↑z) = 1

2 ,
followed by disentanglement, when one of the latter two probabilities becomes unit and
the other becomes zero. Thus, initially separable composite quantum states are able to get
quantum entangled if the interaction Hamiltonian is non-zero.
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Figure 2. Expectation values of the projectors P̂(↑z↑z), P̂(↑z↓z), P̂(↓z↑z) and P̂(↓z↓z) corresponding
to probabilities of obtaining the given measurement outcomes for the z-spin components of the two
qubits. The initial state |Ψ(0)〉 at t = 0 is | ↑z↑z〉 in panel (A), | ↑z↓z〉 in panel (B), | ↓z↑z〉 in panel
(C) and | ↓z↓z〉 in panel (D). The internal Hamiltonians were modeled with Ω1 = Ω2 = 0.3 rad/ps.
The interaction Hamiltonian was non-zero with ωs = 0.3 rad/ps. The amount of quantum en-
tanglement at each moment of time was measured using the normalized entanglement number
e(Ψ)/e(Ψ)max.

In order to see what the role of the interaction Hamiltonian is, we can turn it off by
setting it to zero. In the absence of interaction Hamiltonian, the quantum dynamics of the
composite state vector |Ψ(t)〉 is no longer able to undergo cycles of quantum entanglement
and disentanglement (Figure 3). Instead, the initially separable quantum states |Ψ(0)〉
remain separable at all times, as indicated by the zero normalized entanglement number,
e(Ψ)/e(Ψ)max = 0. Furthermore, the expectation values stay constant 1 for the particular
projector P̂(↑z↑z), P̂(↑z↓z), P̂(↓z↑z) or P̂(↓z↓z) that corresponds to the initial state |Ψ(0)〉
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(Figure 3A–D). Thus, the presence of non-zero interaction Hamiltonian is essential for
the generation of quantum entanglement starting from an initially separable quantum
state |Ψ(0)〉.
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Figure 3. Expectation values of the projectors P̂(↑z↑z), P̂(↑z↓z), P̂(↓z↑z) and P̂(↓z↓z) corresponding
to probabilities of obtaining the given measurement outcomes for the z-spin components of the two
qubits. The initial state |Ψ(0)〉 at t = 0 is | ↑z↑z〉 in panel (A), | ↑z↓z〉 in panel (B), | ↓z↑z〉 in panel
(C) and | ↓z↓z〉 in panel (D). The internal Hamiltonians were modeled with Ω1 = Ω2 = 0.3 rad/ps.
The interaction Hamiltonian was zero with ωs = 0 rad/ps. The amount of quantum entanglement at
each moment of time was measured using the normalized entanglement number e(Ψ)/e(Ψ)max.

By pairwise comparison of the computer plots performed with or without non-zero
interaction Hamiltonian, it can be seen that there is a difference in the quantum dynam-
ics if the initial state is | ↑z↓z〉 as shown in Figures 2B and 3B, or | ↓z↑z〉 as shown in
Figures 2C and 3C. Yet, there is no difference in the quantum dynamics if the initial state is
| ↑z↑z〉 as shown Figures 2A and 3A, or | ↓z↓z〉 as shown in Figures 2D and 3D. The expla-
nation for these findings is that the quantum dynamics for spin zz states is governed by the
presence of non-zero off-diagonal elements in the interaction Hamiltonian in the zz basis

Ĥint =
h̄2

4
ξ


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

. (92)

The first and fourth rows, which correspond respectively to the states | ↑z↑z〉 and | ↓z↓z〉,
already contain off-diagonal zeroes, hence the zeroing of the interaction Hamiltonian
does not change anything. On the other hand, only the second and third rows, which
correspond respectively to the states | ↑z↓z〉 and | ↓z↑z〉 contain non-zero off-diagonal
elements (coherences). Zeroing of the interaction Hamiltonian removes those non-zero
off-diagonal elements, which in turn prevents the two qubits from interacting with each
other and getting quantum entangled.
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7.2. Complementary Observables in Spin xx Basis

The non-commutativity of quantum operators results in incompatibility of the cor-
responding observables, which cannot be measured with a single experimental setting.
Instead, measurements of incompatible quantum observables require different mutually
incompatible settings of the employed experimental apparatus.

Suppose that we want to measure the two spins in x-direction. We need to consider
the relations

| ↑z〉 =
1√
2
(| ↑x〉+ | ↓x〉) (93)

| ↓z〉 =
1√
2
(| ↑x〉 − | ↓x〉). (94)

Multiplying out the tensor products

| ↑z↑z〉 =
1
2
(| ↑x〉+ | ↓x〉)(| ↑x〉+ | ↓x〉) (95)

| ↑z↓z〉 =
1
2
(| ↑x〉+ | ↓x〉)(| ↑x〉 − | ↓x〉) (96)

| ↓z↑z〉 =
1
2
(| ↑x〉 − | ↓x〉)(| ↑x〉+ | ↓x〉) (97)

| ↓z↓z〉 =
1
2
(| ↑x〉 − | ↓x〉)(| ↑x〉 − | ↓x〉), (98)

we obtain

| ↑z↑z〉 =
1
2
(| ↑x↑x〉+ | ↑x↓x〉+ | ↓x↑x〉+ | ↓x↓x〉) (99)

| ↑z↓z〉 =
1
2
(| ↑x↑x〉 − | ↑x↓x〉+ | ↓x↑x〉 − | ↓x↓x〉) (100)

| ↓z↑z〉 =
1
2
(| ↑x↑x〉+ | ↑x↓x〉 − | ↓x↑x〉 − | ↓x↓x〉) (101)

| ↓z↓z〉 =
1
2
(| ↑x↑x〉 − | ↑x↓x〉 − | ↓x↑x〉+ | ↓x↓x〉). (102)

Upon setting C± = C2 ± C1 and substitution of (99)–(102) into (45), we obtain the quantum
state in spin xx basis

|Ψ(t)〉 = 1
2
[
α1(0)e−ıω1t + C−α2(0)e−ıω2t + C+α3(0)e−ıω3t + α4(0)e−ıω4t]| ↑x↑x〉

+
1
2
[
α1(0)e−ıω1t + C+α2(0)e−ıω2t − C−α3(0)e−ıω3t − α4(0)e−ıω4t]| ↑x↓x〉

+
1
2
[
α1(0)e−ıω1t − C+α2(0)e−ıω2t + C−α3(0)e−ıω3t − α4(0)e−ıω4t]| ↓x↑x〉

+
1
2
[
α1(0)e−ıω1t − C−α2(0)e−ıω2t − C+α3(0)e−ıω3t + α4(0)e−ıω4t]| ↓x↓x〉. (103)
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The probabilities of spin xx observables are

Prob(↑x↑x) =
1
4
|α1(0)|2 +

1
2

C−|α1(0)α2(0)| cos[(ω1 −ω2)t− ϕ1 + ϕ2]

+
1
2

C+|α1(0)α3(0)| cos[(ω1 −ω3)t− ϕ1 + ϕ3]

+
1
2
|α1(0)α4(0)| cos[(ω1 −ω4)t− ϕ1 + ϕ4] +

1
4

C2
−|α2(0)|2

+
1
2

C+C−|α2(0)α3(0)| cos[(ω2 −ω3)t− ϕ2 + ϕ3]

+
1
2

C−|α2(0)α4(0)| cos[(ω2 −ω4)t− ϕ2 + ϕ4] +
1
4

C2
+|α3(0)|2

+
1
2

C+|α3(0)α4(0)| cos[(ω3 −ω4)t− ϕ3 + ϕ4] +
1
4
|α4(0)|2 (104)

Prob(↑x↓x) =
1
4
|α1(0)|2 +

1
2

C+|α1(0)α2(0)| cos[(ω1 −ω2)t− ϕ1 + ϕ2]

− 1
2

C−|α1(0)α3(0)| cos[(ω1 −ω3)t− ϕ1 + ϕ3]

− 1
2
|α1(0)α4(0)| cos[(ω1 −ω4)t− ϕ1 + ϕ4] +

1
4

C2
+|α2(0)|2

− 1
2

C+C−|α2(0)α3(0)| cos[(ω2 −ω3)t− ϕ2 + ϕ3]

− 1
2

C+|α2(0)α4(0)| cos[(ω2 −ω4)t− ϕ2 + ϕ4] +
1
4

C2
−|α3(0)|2

+
1
2

C−|α3(0)α4(0)| cos[(ω3 −ω4)t− ϕ3 + ϕ4] +
1
4
|α4(0)|2 (105)

Prob(↓x↑x) =
1
4
|α1(0)|2 −

1
2

C+|α1(0)α2(0)| cos[(ω1 −ω2)t− ϕ1 + ϕ2]

+
1
2

C−|α1(0)α3(0)| cos[(ω1 −ω3)t− ϕ1 + ϕ3]

− 1
2
|α1(0)α4(0)| cos[(ω1 −ω4)t− ϕ1 + ϕ4] +

1
4

C2
+|α2(0)|2

− 1
2

C+C−|α2(0)α3(0)| cos[(ω2 −ω3)t− ϕ2 + ϕ3]

+
1
2

C+|α2(0)α4(0)| cos[(ω2 −ω4)t− ϕ2 + ϕ4] +
1
4

C2
−|α3(0)|2

− 1
2

C−|α3(0)α4(0)| cos[(ω3 −ω4)t− ϕ3 + ϕ4] +
1
4
|α4(0)|2 (106)

Prob(↓x↓x) =
1
4
|α1(0)|2 −

1
2

C−|α1(0)α2(0)| cos[(ω1 −ω2)t− ϕ1 + ϕ2]

− 1
2

C+|α1(0)α3(0)| cos[(ω1 −ω3)t− ϕ1 + ϕ3]

+
1
2
|α1(0)α4(0)| cos[(ω1 −ω4)t− ϕ1 + ϕ4] +

1
4

C2
−|α2(0)|2

+
1
2

C+C−|α2(0)α3(0)| cos[(ω2 −ω3)t− ϕ2 + ϕ3]

− 1
2

C−|α2(0)α4(0)| cos[(ω2 −ω4)t− ϕ2 + ϕ4] +
1
4

C2
+|α3(0)|2

− 1
2

C+|α3(0)α4(0)| cos[(ω3 −ω4)t− ϕ3 + ϕ4] +
1
4
|α4(0)|2. (107)
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Computer simulations confirm again that in the presence of non-zero interaction
Hamiltonian the quantum dynamics of the composite state vector |Ψ(t)〉 is able to undergo
cycles of quantum entanglement and disentanglement depending on the choice of the
initial state vector |Ψ(0)〉 (Figure 4). When, the initial state is |Ψ(0)〉 = | ↑x↑x〉 (Figure 4A)
or |Ψ(0)〉 = | ↓x↓x〉 (Figure 4D), the quantum dynamics leaves the state |Ψ(t)〉 separable at
all times, as indicated by the zero normalized entanglement number, e(Ψ)/e(Ψ)max = 0.
However, in these cases each qubit manifests its own quantum interference pattern, which
is independent on the interference pattern manifested by the other qubit. This, reveals
the importance of the internal Hamiltonians to generate quantum interference patterns
only within the reduced subspaces of the component subsystems. When, the initial state
is |Ψ(0)〉 = | ↑x↓x〉 (Figure 4B) or |Ψ(0)〉 = | ↓x↑x〉 (Figure 4C), the quantum dynamics
of the state |Ψ(t)〉 undergoes cycles of quantum entanglement and disentanglement. In
the presence of quantum entanglement, the quantum interference patterns manifested by
the two qubits become correlated, which can be appreciated by comparison with the case
when the interaction Hamiltonian is turned off.
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Figure 4. Expectation values of the projectors P̂(↑x↑x), P̂(↑x↓x), P̂(↓x↑x) and P̂(↓x↓x) correspond-
ing to probabilities of obtaining the given measurement outcomes for the x-spin components of the
two qubits. The initial state |Ψ(0)〉 at t = 0 is | ↑x↑x〉 in panel (A), | ↑x↓x〉 in panel (B), | ↓x↑x〉 in panel
(C) and | ↓x↓x〉 in panel (D). The internal Hamiltonians were modeled with Ω1 = Ω2 = 0.3 rad/ps.
The interaction Hamiltonian was non-zero with ωs = 0.3 rad/ps. The amount of quantum en-
tanglement at each moment of time was measured using the normalized entanglement number
e(Ψ)/e(Ψ)max.

In the absence of interaction Hamiltonian (Figure 5), the quantum dynamics can
no longer generate quantum entanglement from initially separable composite quantum
state |Ψ(0)〉. For all four initial quantum states, the quantum dynamics leaves the state
|Ψ(t)〉 separable at all times. When the initial state is |Ψ(0)〉 = | ↑x↑x〉 (Figure 5A) or
|Ψ(0)〉 = | ↓x↓x〉 (Figure 5D), the expectation values for the projectors P̂(↑x↑x), P̂(↑x↓x),
P̂(↓x↑x) and P̂(↓x↓x) remain the same as in the corresponding cases with non-zero in-
teraction Hamiltonian (Figure 4A,D). However, when the initial state is |Ψ(0)〉 = | ↑x↓x〉
(Figure 5B) or |Ψ(0)〉 = | ↓x↑x〉 (Figure 5C), the expectation values for the projectors
P̂(↑x↑x), P̂(↑x↓x), P̂(↓x↑x) and P̂(↓x↓x) differ from those shown in the corresponding
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cases with non-zero interaction Hamiltonian (Figure 4B,C). The explanation of these find-
ings is based on the presence or absence of non-zero off-diagonal elements (coherences)
in the interaction Hamiltonian when expressed in the spin xx basis, analogously to the
explanation that was already given for the spin zz observables. In fact, the matrix form (92)
of the interaction Hamiltonian is preserved exactly the same during the conversion from
spin zz basis to spin xx basis. Noteworthy, the internal Hamiltonians ĤA and ĤB do change
their matrix form during the conversion from spin zz basis to spin xx basis, which in turn
explains why the expectation values of spin xx or spin zz observables for initial states
where both spins start aligned in the same direction, either display quantum interference
patterns (Figure 5A,D) or stay constant (Figure 3A,D), respectively.
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Figure 5. Expectation values of the projectors P̂(↑x↑x), P̂(↑x↓x), P̂(↓x↑x) and P̂(↓x↓x) correspond-
ing to probabilities of obtaining the given measurement outcomes for the x-spin components of the
two qubits. The initial state |Ψ(0)〉 at t = 0 is | ↑x↑x〉 in panel (A), | ↑x↓x〉 in panel (B), | ↓x↑x〉 in panel
(C) and | ↓x↓x〉 in panel (D). The internal Hamiltonians were modeled with Ω1 = Ω2 = 0.3 rad/ps.
The interaction Hamiltonian was zero with ωs = 0 rad/ps. The amount of quantum entanglement at
each moment of time was measured using the normalized entanglement number e(Ψ)/e(Ψ)max.

8. Quantum Dynamics of Initial Quantum Entangled States

The importance of non-zero interaction Hamiltonian for entangling two qubits starting
from an initially separable quantum state, goes in the other direction as well. In other
words, non-zero interaction Hamiltonian is required to disentangle two qubits starting
from an initially entangled quantum state. For illustration, consider the following four
maximally entangled initial states |Ψ(0)〉 given by
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1√
2
(| ↑z↑x〉+ | ↓z↓x〉) =

1
2
(|E1〉+ C−|E2〉+ C+|E3〉 − |E4〉) (108)

1√
2
(| ↑z↓x〉+ | ↓z↑x〉) =

1
2
(|E1〉+ C+|E2〉 − C−|E3〉+ |E4〉) (109)

1√
2
(| ↑z↑x〉 − | ↓z↓x〉) =

1
2
(|E1〉 − C+|E2〉+ C−|E3〉+ |E4〉) (110)

1√
2
(| ↑z↓x〉 − | ↓z↑x〉) =

1
2
(|E1〉 − C−|E2〉 − C+|E3〉 − |E4〉) (111)

and suppose that we measure the expectation values of the projectors P̂(↑x↑x), P̂(↑x↓x),
P̂(↓x↑x) and P̂(↓x↓x). When the initial state |Ψ(0)〉 is 1√

2
(| ↑z↑x〉+ | ↓z↓x〉) (Figure 6A) or

1√
2
(| ↑z↓x〉 − | ↓z↑x〉) (Figure 6D), the state |Ψ(t)〉 remains maximally entangled at all times

even though the spin xx observables undergo dynamics that manifests quantum interfer-
ence patterns. However, when the initial state |Ψ(0)〉 is 1√

2
(| ↑z↓x〉+ | ↓z↑x〉) (Figure 6B)

or 1√
2
(| ↑z↑x〉 − | ↓z↓x〉) (Figure 6C), the state |Ψ(t)〉 undergoes cycles of disentanglement

and entanglement. The time points at which the composite quantum state |Ψ(t)〉 be-
comes separable coincide with unit quantum probability creating a peak at one of the two
states | ↑x↓x〉 or | ↓x↑x〉, while all other orthogonal basis states remain empty with zero
quantum probability.
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Figure 6. Expectation values of the projectors P̂(↑x↑x), P̂(↑x↓x), P̂(↓x↑x) and P̂(↓x↓x) corre-
sponding to probabilities of obtaining the given measurement outcomes for the x-spin compo-
nents of the two qubits. The initial state |Ψ(0)〉 at t = 0 is 1√

2
(| ↑z↑x〉+ | ↓z↓x〉) in panel (A),

1√
2
(| ↑z↓x〉+ | ↓z↑x〉) in panel (B), 1√

2
(| ↑z↑x〉 − | ↓z↓x〉) in panel (C) and 1√

2
(| ↑z↓x〉 − | ↓z↑x〉) in

panel (D). The internal Hamiltonians were modeled with Ω1 = Ω2 = 0.3 rad/ps. The interaction
Hamiltonian was non-zero with ωs = 0.3 rad/ps. The amount of quantum entanglement at each
moment of time was measured using the normalized entanglement number e(Ψ)/e(Ψ)max.

In the case when the interaction Hamiltonian is turned off, all four maximally entangled
initial quantum states 1√

2
(| ↑z↑x〉+ | ↓z↓x〉) (Figure 7A), 1√

2
(| ↑z↓x〉+ | ↓z↑x〉) (Figure 7B),
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1√
2
(| ↑z↑x〉 − | ↓z↓x〉) (Figure 7C) and 1√

2
(| ↑z↓x〉 − | ↓z↑x〉) (Figure 7D) undergo quantum

dynamics that leaves the composite state |Ψ(t)〉maximally entangled at all times. Now, we are
ready to prove a general theorem according to which quantum dynamics resulting only from
internal Hamiltonians is unable to change the amount of quantum entanglement that is
already possessed by the initial quantum state.

| x    x↓ ↓ 〉
| x    x↓ ↑ 〉

| x    x↑ ↓ 〉
| x    x↑ ↑ 〉

10

5

0

Ti
m

e 
(p

s)

0

1

0.5

0.25

0.75

Pr
ob

ab
ilit

y

A

| x    x↓ ↓ 〉
| x    x↓ ↑ 〉

| x    x↑ ↓ 〉
| x    x↑ ↑ 〉

10

5

0

Ti
m

e 
(p

s)

0

1

0.5

0.25

0.75

Pr
ob

ab
ilit

y

B

| x    x↓ ↓ 〉
| x    x↓ ↑ 〉

| x    x↑ ↓ 〉
| x    x↑ ↑ 〉

10

5

0

Ti
m

e 
(p

s)

0

1

0.5

0.25

0.75

Pr
ob

ab
ilit

y

C

| x    x↓ ↓ 〉
| x    x↓ ↑ 〉

| x    x↑ ↓ 〉
| x    x↑ ↑ 〉

10

5

0

Ti
m

e 
(p

s)

0

1

0.5

0.25

0.75

Pr
ob

ab
ilit

y

D En
ta

ng
le

m
en

t

0

0.2

0.4

0.6

0.8

1

Figure 7. Expectation values of the projectors P̂(↑x↑x), P̂(↑x↓x), P̂(↓x↑x) and P̂(↓x↓x) corre-
sponding to probabilities of obtaining the given measurement outcomes for the x-spin compo-
nents of the two qubits. The initial state |Ψ(0)〉 at t = 0 is 1√

2
(| ↑z↑x〉+ | ↓z↓x〉) in panel (A),

1√
2
(| ↑z↓x〉+ | ↓z↑x〉) in panel (B), 1√

2
(| ↑z↑x〉 − | ↓z↓x〉) in panel (C) and 1√

2
(| ↑z↓x〉 − | ↓z↑x〉) in

panel (D). The internal Hamiltonians were modeled with Ω1 = Ω2 = 0.3 rad/ps. The interaction
Hamiltonian was zero with ωs = 0 rad/ps. The amount of quantum entanglement at each moment
of time was measured using the normalized entanglement number e(Ψ)/e(Ψ)max.

Theorem 4. Unitary quantum dynamics resulting from the Schrödinger equation that is only due
to internal Hamiltonians is unable to change the amount of quantum entanglement that is already
present in the initial composite quantum state |Ψ(0)〉.

Proof. Without loss of generality, suppose that we have a composite system of two qubits
governed by the Hamiltonian

Ĥ = ĤA ⊗ ÎB + ÎA ⊗ ĤB. (112)

Express the initial quantum state in Schmidt basis

|Ψ(0)〉 = λ1| ↑A〉| ↑B〉+ λ2| ↓A〉| ↓B〉, (113)

where the basis vectors are orthogonal

〈↓A | ↑A〉 = 〈↓B | ↑B〉 = 0. (114)
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Solving the Schrödinger equation gives the composite quantum state at any time point t
using the matrix exponential of the Hamiltonian

|Ψ(t)〉 = e−
ı
h̄ (ĤA⊗ ÎB+ ÎA⊗ĤB)t|Ψ(0)〉. (115)

Using the commutativity of ĤA⊗ ÎB and ÎA⊗ ĤB, namely,
[
ĤA ⊗ ÎB, ÎA ⊗ ĤB

]
= 0, we can

apply a special case of the Baker–Campbell–Hausdorff formula [75–78]

e−
ı
h̄ (ĤA⊗ ÎB+ ÎA⊗ĤB+

1
2 [ĤA⊗ ÎB , ÎA⊗ĤB])t = e−

ı
h̄ (ĤA⊗ ÎB)te−

ı
h̄ ( ÎA⊗ĤB)t. (116)

Using the power series definition of the matrix exponential, we have

|Ψ(t)〉 =
∞

∑
k=0

1
k!

[
− ı

h̄
(

ĤA ⊗ ÎB
)
t
]k ∞

∑
n=0

1
n!

[
− ı

h̄
(

ÎA ⊗ ĤB
)
t
]n
|Ψ(0)〉. (117)

Taking into account that powers of the identity operator are also identity, we obtain

|Ψ(t)〉 =
(

e−
ı
h̄ ĤAt ⊗ ÎB

)(
ÎA ⊗ e−

ı
h̄ ĤBt

)
|Ψ(0)〉 = e−

ı
h̄ ĤAt ⊗ e−

ı
h̄ ĤBt|Ψ(0)〉. (118)

Further substitution of the initial quantum state in Schmidt basis followed by distribution
of the time evolution operators gives

|Ψ(t)〉 = λ1e−
ı
h̄ ĤAt| ↑A〉 ⊗ e−

ı
h̄ ĤBt| ↑B〉+ λ2e−

ı
h̄ ĤAt| ↓A〉 ⊗ e−

ı
h̄ ĤBt| ↓B〉. (119)

Because both internal time evolution operators e−
ı
h̄ ĤAt and e−

ı
h̄ ĤBt are unitary, they preserve

inner products

〈↓A (t)| ↑A (t)〉 = 〈↓A |e
ı
h̄ ĤAte−

ı
h̄ ĤAt| ↑A〉 = 〈↓A |1| ↑A〉 = 0 (120)

〈↓B (t)| ↑B (t)〉 = 〈↓B |e
ı
h̄ ĤBte−

ı
h̄ ĤBt| ↑B〉 = 〈↓B |1| ↑B〉 = 0. (121)

This implies that the time evolved composite state decomposed in Schmidt basis is

|Ψ(t)〉 = λ1| ↑A (t)〉| ↑B (t)〉+ λ2| ↓A (t)〉| ↓B (t)〉, (122)

which has exactly the same Schmidt coefficients as |Ψ(0)〉. The amount of quantum entan-
glement measured by the entanglement number e(Ψ) is only a function of the two Schmidt
coefficients λ1 and λ2. Therefore, during quantum dynamics that is only due to internal
Hamiltonians, the entanglement number stays constant, e[Ψ(0)] = e[Ψ(t)]. Note that
we did not resort anywhere in the proof to the fact that we have only two component
systems, or that the individual Hilbert spaces have only two complex dimensions. Hence,
the presented proof straightforwardly generalizes to multipartite systems with an arbitrary
number of dimensions of the individual Hilbert spaces.

9. Quantum Coherence Cannot Bind Conscious Experiences

Having explored the precise meaning of various quantum information-theoretic con-
cepts, we are ready to apply quantum information theory to a specific problem of con-
sciousness, namely, the problem of binding of conscious experiences.

Definition 7. (Single mind) Awake healthy humans experience an integrated mental picture
consisting of visual, auditory, gustatory, olfactory, and sensorimotor perceptions. Being a single
mind can be understood introspectively as the total content of all conscious experiences that you
have at a single time instant. Single minds are conscious [8].

Definition 8. (Collection of minds) Being within a collection of minds can be understood through
contemplation of what it is like to be a participant in a conversation with another human. When you
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talk with a friend, you may only guess what it is like to be inside your friend’s mind, but you do
not have direct access to your friend’s conscious experiences. Thus, you and your friend are two
separate minds. Taken together, you and your friend, form a collection of minds. The collection of
conscious minds is not conscious because it does not possess a single mind [8].

Some quantum mind advocates use the phrase quantum coherence as a magical buz-
zword that presumably explains the physical mechanism that binds your conscious experi-
ence, e.g., your visual experiences with your auditory experiences, into a single integrated
conscious mind that is you. Unfortunately, this cannot be the case due to the intimate
relationship between subsystem coherence and separability of the composite system as
discussed in Sections 5 and 6. The latter important point could be better appreciated by
considering the following illuminating example.

Example 6. (Alice and Bob have two separate minds) Take two people, Alice and Bob, each of
which has an individual conscious mind. Let Alice have a mind defined by the pure (quantum
coherent) state |ΨA〉 and let Bob have a mind defined by the pure (quantum coherent) state |ΨB〉.
The quantum mechanical axioms for composition then imply that the composite system is also in a
pure (quantum coherent) state |ΨAB〉 = |ΨA〉 ⊗ |ΨB〉. Obviously, if all pure (quantum coherent)
states had a conscious mind, then |ΨAB〉 would be paradoxically a global conscious mind as well [8].
In order to ban paradoxical occurrence of minds within other larger minds, quantum theory needs
to postulate that factorizable non-entangled quantum states correspond to a collection of minds like
Alice and Bob [23,24].

Theorem 5. Quantum purity (colloquially referred to as “quantum coherence” in decoherence
theory) is related to separability, non-interaction and lack of binding, rather than binding of
conscious experiences.

Proof. Arrive at contradiction (i.e., occurrence of minds within other minds) by assuming
the opposite (i.e., that quantum purity binds conscious experiences). In mathematical logic,
arriving at contradiction implies that the assumed premise is false.

Extremely cold temperatures in quantum technologies attempt to reduce the quantum
interactions in order to ensure that the initial composite state of qubits is separable in
the computational basis, and stays unaltered when no computational quantum gates are
performed [79]. In other words, in order for human programmer to be able to extract
any useful information from the quantum computation, the quantum computer should be
isolated from interaction with its physical environment. However, we as conscious minds
do not exist in a void isolated from interaction from the rest of the universe. On the contrary,
we constantly receive sensory information from the surrounding world. What is more,
we enjoy so greatly being aware of the surrounding world that total sensory deprivation of
healthy human subjects in a dark room is experienced as a mental torture [80–83]. Fur-
thermore, there is no external programmer who is supposed to extract useful information
by observing the quantum state of our brain. Both of these points show that even the
motivation behind quantum mind models insisting on preserving quantum coherence
through putative isolation from the environment is faulty. Quantum dynamics of brain
molecules occurs at picosecond timescale and rapid quantum entanglement due to quan-
tum interactions could lead to extensive correlations between different quantum brain
observables. Because composite quantum entangled states are much more complex than
separable states, it is quite natural to expect that quantum entanglement due to quantum
interactions is directly related to the complexity of conscious experiences, whereas quan-
tum separability due to non-interaction of individually quantum coherent components
is related to disbinding or splitting of conscious experiences into a collection of simpler,
elementary minds [24].
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Definition 9. (Kolmogorov complexity) The complexity K of description of a given string of
symbols S is the minimal number of classical information bits needed to describe the string S in
some fixed universal description language [84,85].

Example 7. (Condensation reduces complexity) Modeling consciousness in terms of condensation
of multiple components in the same quantum state |ψ〉 ⊗ |ψ〉 ⊗ . . . ⊗ |ψ〉 inside some kind of
room temperature superconductor (as suggested in [86]) goes against the desirable link between
complexity and richness of conscious experiences. Complexity of quantum states requires high level
of entanglement as opposed to separability [87]. Consider a simple system of 3 qutrits whose Hilbert
space H is 3× 3× 3 = 27 dimensional. To specify a general quantum entangled state of these
3 qutrits, we will need 27 different complex quantum probability amplitudes

|Ψ〉 =


a1
a2
...

a27

. (123)

If we suppose that for the encoding of each ai (e.g., as a root of some polynomial equation) it takes K
bits of information, for a general quantum entangled state we will need 27K bits.

If the state is factorizable, however, in the form

|Ψ〉 =

 a1
a2
a3

⊗
 a4

a5
a6

⊗
 a7

a8
a9

, (124)

then we will need only 3 + 3 + 3 = 9 different complex quantum probability amplitudes to fully
specify the separable tensor product state. Thus, for a general separable quantum state of 3 qutrits
we will need 9K bits.

Finally, if all of the 3 qutrits are condensed in the same state

|Ψ〉 =

 a1
a2
a3

⊗
 a1

a2
a3

⊗
 a1

a2
a3

, (125)

then we will need only 3 different complex quantum probability amplitudes to fully specify the
condensed state. The resulting complexity is only 3K bits. The problem with condensation is obvious,
namely, the state becomes less and less complex, therefore conscious experiences will become poorer
and poorer as the condensation progresses. In fact, the previous criticism with regard to quantum
coherence and quantum separability also applies to condensation. In particular, quantum systems
that are in a tensor product state are independent on each other and it makes no sense to claim that
they have a single mind, on the contrary, there is a good reason to conclude that such quantum
systems correspond to a collection of separate, independent minds.

10. Conclusions

Application of quantum information theory to studying neurophysiological pro-
cesses is able to provide novel insights that are hard to anticipate from classical principles
alone [8]. To amend the current lack of concise but rigorous introductions to quantum
physics, we commenced this work with a brief description of the Hilbert space formalism
of quantum mechanics and explained its physical meaning using a minimal quantum toy
model. Then, employing the tools of quantum mechanics, we have determined the appro-
priate quantum dynamical timescale of cognitive processes and pinpointed the physical
mechanism that binds conscious experiences within a single mind.

Our first main result is that the dynamic timescale of quantum processes, which sup-
ports consciousness, has to be constrained by the Planck–Einstein relation between energy
and frequency. Because the typical energies driving biological processes are greater than
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the energy of the thermal noise, the resulting dynamics is fixed to picosecond timescale
or faster, which is in the realm of quantum chemistry [88]. This requires rethinking of the
role of classical neuronal electric spiking at millisecond timescale [89], not as generating
elementary conscious events, but as a form of short term memory comprised of billions of
almost identical picosecond conscious events [8]. Of course, the electric spike eventually
fades away as the neuron repolarizes, which means that the ongoing stream of conscious-
ness will forget the experiences that have triggered the spike unless another biological
form of storing long term memories is used, such as changing the electric excitability of the
neuronal membrane [90], strengthening of the activity of the stimulated synapses [91] or
morphological reorganization of the axo-dendritic neuronal trees [92].

Our second main result is that the quantum interactions due to non-zero interaction
Hamiltonian in the Schrödinger equation are responsible for dynamic changes in the
amount of quantum entanglement, which leads to decoherence of the individual quantum
subsystems along with their interaction. We also proved a rigorous quantum theorem
according to which unitary quantum dynamics that is only due to internal Hamiltonians
is unable to change the amount of quantum entanglement already present in the initial
composite quantum state. This implies that turning off the interaction Hamiltonian will
indeed preserve quantum coherence of individual component subsystems starting from an
initially separable quantum state, however, the quantum probabilities for different physical
observables measured on one of the subsystems will remain independent from those
measured on the other subsystem, which in turn precludes any role of quantum coherence
in cognitive binding of conscious experiences. In fact, decomposition of a composite
quantum state into a tensor product of pure (quantum coherent) states is an indicator of
splitting of different conscious experiences into a collection of individual conscious minds,
whereas inseparability of a composite quantum entangled state is a possible indicator of
binding of different conscious experiences into a single integrated conscious mind [8].

Studying the Schrödinger equation may appear intimidating, but it is a profitable
investment that pays off with a high interest. The mathematical constraints that enter into
the composition of a physically admissible Hamiltonian, together with the axioms that
relate quantum states with the expectation values of quantum observables, are sufficient
for the derivation of general quantum information-theoretic no-go theorems that hold for
all physical processes including those that support consciousness [7,8]. These quantum
theorems then could serve as theoretical tools to differentiate between plausible and
implausible physical solutions of open problems in cognitive neuroscience.
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