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Abstract: The problem of voltage dynamics description in a circuit containing resistors, and at least
two fractional order elements such as supercapacitors, supplied with constant voltage is addressed. A
new operator called Conformable Derivative in the Caputo sense is used. A state solution is proposed.
The considered operator is a generalization of three derivative definitions: classical definition (integer
order), Caputo fractional definition and the so-called Conformable Derivative (CFD) definition.
The proposed solution based on a two-parameter Conformable Derivative in the Caputo sense is
proven to be better than the classical approach or the one-parameter fractional definition. Theoretical
considerations are verified experimentally. The cumulated matching error function is given and it
reveals that the proposed CFD–Caputo method generates an almost two times lower error compared
to the classical method.

Keywords: pseudo-capacitance; fractional; electrical circuit; two-parameter operator; conformable
derivative

1. Introduction

Fractional calculus has been developed rapidly in the last decade. This theory is useful
in many areas, especially in the analysis of dynamical systems, control theory, automation
and robotics [1–3]. On the other hand, there are problems with determining the derivative
product or derivative fractional constant function, which require additional assumptions
depending on the specific definition of fractional derivative. For example, in the case of
transforming the Riemann–Liouville definition of fractional order derivative [4] by the
Laplace formula, there is no interpretation of the initial values of subsequent derivatives of
the non-integer order. This problem is somehow solved assuming zero initial conditions,
but this approach is not satisfactory [5]. Furthermore, e.g., in the Grünwald–Letnikov
definition, there is an inaccuracy in the record with a constant number of iterations and
any value of the order [6]. There are no additional assumptions for the derivative here and
it cannot be clearly interpreted so that it has a physical sense [7]. The problems that are
mentioned above do not apply to the fractional definitions: Caputo, CFD and CFD in the
Caputo sense. For that reason, they have been taken under consideration in this paper.

The symmetry properties for fractional calculus have been considered in many pa-
pers. In [8] a new approach was proposed to construct the symmetry groups for a class of
fractional differential equations which are expressed in the modified Riemann–Liouville
fractional derivative. The Lie symmetries were computed for the resulting partial differen-
tial equation (PDE), and using inverse transformations, the symmetries for the fractional
diffusion equation were derived. In [9], the authors propose a theorem that extends the
classical Lie approach to the case of fractional partial differential equations of the Riemann–
Liouville type. The time fractional Kolmogorov–Petrovskii–Piskunov (FKP) equation is
analyzed by means of the Lie symmetry approach in [10]. The FKP is reduced to an
ordinary differential equation of fractional order via the attained point symmetries and
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the simplest equation method is used to construct the exact solutions of the underlying
equation with the so-called Conformable Fractional Derivative.

In the latest scientific publications, we may find the Caputo definition, which is
used to describe many phenomena; for example, electrical circuits [11–16]. The use of
fractional derivatives having different orders is a complicated process, and only a couple
of illustrative implementations regarding this case are known [17–19]. On the other hand,
SPICE simulations, compared to real measurements, of the circuits containing fractional
elements shows great differences. This becomes the main motivation to use fractional
derivatives of different orders.

This paper gives the solutions to the electric circuit containing two supercapacitors
(their dynamical behavior is clearly fractional order). A linear system of state equations
using the two-parameter operator Conformable Derivative in the Caputo sense is de-
veloped. To the best of the authors’ knowledge this approach is used for the first time.
Finally, the classical (integer order) solution and the solutions based on the Conformable
Fractional Derivative (CFD) definition [15,20–25], CFD–Caputo definitions using [26–29]
and Caputo definition [1,28,30–34] are used to compare their solutions according to the
real measurements.

The paper is organized as follows. At the beginning, the basic form of Caputo and
CFD definitions are presented. Next, the CFD–Caputo definition for non-integer orders
involving fractional time derivatives is developed. Section 3 shows the fractional order
state-space equations and describes the linear solution of the state equations developed
by the author using the two-parameter operator Conformable Derivative in the Caputo
sense. After that, Section 4 describes the electric circuit containing a supercapacitor, which
is used for verification of the theoretical results. The measurements are compared with the
simulations. Concluding remarks are given in Section 5.

2. Basic Definitions

The well-known [5,14,28] Caputo definition of the fractional derivative is given by
the formula

CDα
t f (t) =

1
Γ(1− α)

t∫
0

(t− τ)−a .
f (τ)dτ, for 0 < α < 1, (1)

where
.
f (τ) = d f (τ)

dτ is the classic derivative, Γ(x) =
∞∫
0

tx−1e−tdt is the Euler gamma

function and Re(x) > 0.
The so-called Conformable Fractional Derivative (CFD) of the differentiable function

ƒ is defined as [23]

CFDDβ
t ( f )(t) = lim

ε→0

f (t + εt1−β)− f (t)
ε

, for 0 < β ≤ 1 (2)

and we can write that [20]

CFDDβ
t f (t) = t1−β

.
f (t), for t > 0. (3)

The two-parameter Conformable operator in the Caputo sense is given by [29]

Dα,β
t f (t) =

1
Γ(1− α)

t∫
0

(
tβ − τβ

β

)−α CFDDβ
τ f (τ)

τ1−β
dτ, 0 < α < 1, 0 < β ≤ 1 (4)
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and by substituting (3) into (4) we obtain

Dα,β
t f (t) =

1
Γ(1− α)

t∫
0

(
tβ − τβ

β

)−α .
f (τ)dτ (5)

If we substitute β = 1 in (5), we obtain the Caputo definition (1) for 0 < α < 1.

3. Conformable Operator in the Caputo Sense

Let us consider a linear system of state equations using the two-parameter Con-
formable Derivative in the Caputo sense

Dα1,β1
t y1(t)

...
Dαn ,βn

t yn(t)

 =

 A11 . . . A1n
...

. . .
...

An1 . . . Ann
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where 0 < αk < 1, 0 < βk ≤ 1 are the orders of Conformable operator in the Caputo sense,
yk ∈ Rnk , k = 1, . . . , n, are the components of the state vector, Akj ∈ Rnk×nj , Bk ∈ Rnk×m,

j, k = 1, . . . , n are matrices and u ∈ Rm is the input vector. Dα,β
t is a two-parameter operator

given by the Formula (5). The initial condition for (6) has the form

yk(0) = yk,0 ∈ Rnk , k = 1, . . . , n. (7)

If in the Formula (6) we assume that the control is constant, u(t) = U = const for t ≥ 0
and the matrix A is reversible. In this case we can rewrite the state Equation (6) as

Dα1,β1
t y1(t)

...
Dαn ,βn

t yn(t)

 = Ay(t) + BU = A[y(t) + A−1BU]. (8)

Substituting in Equation (8) yk(t) = xk(t)− (A−1)
kBU, where k = 1, . . . , n, (A−1)

k is
k-th row of the matrix A−1 and using the fact that the operator (5) for constant function is

Dαk ,βk
t ((A−1)

kBU) = 0, we get the state equation for the vector x(t) =
[

x1(t) . . . n(t)
]T

in the following form:
Dα1,β1

t x1(t)
...

Dαn ,βn
t xn(t)

 =

 A11 . . . A1n
...

. . .
...

An1 . . . Ann
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In this case the initial condition has the form

x0 = x(0) = y(0) + A−1BU. (10)

Theorem 1. The solution of Equation (9) with the initial condition (10) has the form

x(t) = F0(t)x0, (11)
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where

F0(t) =
∞

∑
k1=0
· · ·

∞

∑
kn=0

Wk1,...,kn

t

n
∑

j=1
kjαj β j

n
∏
j=1

β
kjαj
j

, (12)

x(t) =

 x1(t)
...

xn(t)

 ∈ RN , N = n1 + · · ·+ nn (13)

and the matrix Wk1,...,kn takes the form

W0,...,0 = IN ,
Wk1,...,kn = 0, f or ki < 0, where i = 1, . . . , n,

(14a)

Wk1,...,kn =
Γ

(
n
∑

j=1
kjαj β j/β1+1−α1

)

Γ

(
n
∑

j=1
kjαj β j/β1+1

) Ã1Wk1−1,k2,...,kn

+ · · ·+
Γ

(
n
∑

j=1
kjαj β j/βn+1−αn

)

Γ

(
n
∑

j=1
kjαj β j/βn+1

) ÃnWk1,k2,...,kn−1

(14b)

for k1, . . . , kn ≥ 0, without k1 = · · · = kn = 0 and

Ã1 =


A11 . . . A1n
0 . . . 0
...

. . .
...

0 . . . 0

, Ãi =



0 . . . 0
...

. . .
...

0 . . . 0
Ai1 . . . Ain
0 . . . 0
...

. . .
...

0 . . . 0


, Ãn =


0 . . . 0
...

. . .
...

0 . . . 0
An1 . . . Ann

. (14c)

Proof. Calculate the i-th line of the left side of Equation (11). We operate the CFD–Caputo
operator on the state vector component and using linearity of the operator (4) we get

Dαi ,βi
t xi(t) = Dαi ,βi

t

 ∞
∑

k1=0
· · ·

∞
∑

kn=0
Wi

k1,...,kn
t

n
∑

j=1
kjαj βj

n
∏
j=1

β
kjαj
j

x0



=
∞
∑

k1=0
· · ·

∞
∑

kn=0
Wi

k1,...,kn

D
αi ,βi
t

t

n
∑

j=1
kjαj βj


n
∏
j=1

β
kjαj
j

x0,

(15)

where Wi
k1,...,kn

is the i-th row of the matrix Wk1,...,kn . Having the Formula (15), the fact that
constants belong to the kernel of operator (5), and by using the Formula (14b), we obtain
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Dαi ,βi
t xi(t) = ∑

(k1,...,kn)∈K

Γ

(
n
∑

j=1
kjαj β j/βi+1−αi

)

Γ

(
n
∑

j=1
kjαj β j/βi+1

)

×AiWk1,...ki−1,ki−1,ki+1,...,kn

D
αi ,βi
t

t

n
∑

j=1
kjαj βj


n
∏
j=1

β
kjαj
j

x0,

(16)

where K = Nn\{(0, . . . , 0)}, Ai is the i-th row of the matrix A. In the Formula (16) we use
the operator’s (5) property and obtain

Dα,β
t (tγ) =

Γ
(

γ
β + 1

)
βα

Γ
(

γ
β + 1− α

) tγ−αβ. (17)

Applying Formula (5) to the function f (t) = tγ for γ 6= 0, we get

Dα,β
t (tγ) = 1

Γ(1−α)

t∫
0

(
tβ−τβ

β

)−α
γτγ−1dτ

= γβα

Γ(1−α)

t∫
0

(
tβ − τβ

)−α
τγ−1dτ.

(18)

By substituting τ = ζ
1
β t into Equation (18), we obtain

Dα,β
t (tγ) = γβα

Γ(1−α)

1∫
0

(
tβ − ζtβ

)−α
ζ

γ−1
β tγ−1t 1

β ζ
1
β−1dζ

= γβαt−αβ+γ−1+1

βΓ(1−α)

1∫
0
(1− ζ)−αζ

γ−1
β + 1

β−1dζ = γβαtγ−αβ

βΓ(1−α)

1∫
0
(1− ζ)−αζ

γ
β−1dζ.

(19)

The integral is expressed by the Gamma function in Formula (19) as

Dα,β
t (tγ) =

γβαtγ−αβ

βΓ(1− α)

Γ(−α + 1)Γ
(

γ
β − 1 + 1

)
Γ
(
−α + 1 + γ

β − 1 + 1
) =

γ

β
βαtγ−αβ

Γ
(

γ
β

)
Γ
(

γ
β + 1− α

) . (20)

Using Formula (20) and recursive formula Γ(z + 1) = zΓ(z), we has Equation (17).
Using the (17) and (16), we get

xi(t) = ∑
(k1,...,kn)∈K

Γ

(
n
∑

j=1
kjαj β j/βi+1−αi

)

Γ

(
n
∑

j=1
kjαj β j/βi+1

)

×AiWk1,...ki−1,ki−1,ki+1,...,kn x0

Γ

(
n
∑

j=1
kjαj β j/βi+1

)
β

αi
i

Γ

(
n
∑

j=1
kjαj β j/βi+1−αi

) t

n
∑

j=1
kjαj βj−αi βi

n
∏
j=1

β
kjαj
j

= Ai ∑
(k1,...,kn)∈K

Wk1,...ki−1,ki−1,ki+1,...,kn x0
tk1α1β1+···+ki−1αi−1βi−1+(ki−1)αi βi+ki+1αi+1βi+1+···+knαn βn

β
k1α1
1 ···βki−1αi−1

i−1 β
(ki−1)αi
i β

ki+1αi+1
i+1 ···βknαn

n
.

(21)

In Equation (21), we exchange the index ki to ki + 1, and using the matrix Wk1,...,kn

properties, we obtain

Dαi ,βi
t xi(t) = Ai

∞
∑

k1=0
· · ·

∞
∑

ki−1=0

∞
∑

ki=0

∞
∑

ki+1=0
· · ·

∞
∑

kn=0
Wk1,...ki−1,ki ,ki+1,...,kn

× tk1α1β1+···ki−1αi−1βi−1+kiαi βi+ki+1αi+1βi+1+···+knαn βn

β
k1α1
1 ···βki−1αi−1

i−1 β
kiαi
i β

ki+1αi+1
i+1 ···βknαn

n
x0,

(22)
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which proves the Equation (11). �

Returning to the original state vector x(t) = y(t) + A−1BU, x0 = y0 + A−1BU in
Equation (11), we get a solution to Equation (6) in the form

y(t) = F0(t)(y0 + A−1BU)− A−1BU. (23)

4. Fractional Electrical Circuit and General Description of the Problem

Let us consider the electrical circuit shown in Figure 1 consisting of the following
elements: e—DC power supply, R1, R2, R3—replaceable external resistors and two superca-
pacitors C1, C2 with parasitic resistance r1, r2.
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The current in the supercapacitor is related to the voltage drop by the formula

i(t) = Cα,βDα,β
t uC(t) for 0 < α < 1, 0 < β ≤ 1, (24)

where Cα,β is the pseudo-capacitance in units of F/s1−αβ. For α = β = 1 the Formula (24)

becomes the well-known classical relation i(t) = C duC(t)
dt .

Using the Equation (24) and Kirchhoff’s laws, we may describe the transient states in
the electrical circuit by the following state equation:[

Dα1,β1
t u1(t)

Dα2,β2
t u2(t)

]
=

[
A11 A12
A21 A22

][
u1(t)
u2(t)

]
+

[
B1
B2

]
e, (25)

where

A =

[
A11 A12
A21 A22

]
=

 − R3+R2+r2
R2Cα1β1

R3
R2Cα1β1

R3
R2Cα2β2

− R3+R1+r1
R2Cα2β2

, (26a)

B =

[
B1
B2

]
=

 R2+r2
R2Cα1β1
R1+r1

R2Cα2β2

, (26b)

and
R2 = R3(R1 + r1 + R2 + r2) + (R1 + r1)(R2 + r2). (26c)

The initial condition (the initial voltages across the capacitors) is given as

u1(0) = u2(0) = 0. (27)

The control voltage is in the form of a step function

e(t) =

{
0 for t < 0
U for t ≥ 0

. (28)
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Using the Formula (23), we get the solution of state Equation (25) with the initial
conditions (27) and control input voltage (28) in the following form:

x(t) = [F0(t)− I2]A−1BU =
∞

∑
k1, k2 = 0

k1 + k2 > 0

Wk1k2

tk1α1β1+k2α2β2

βk1α1
1 βk2α2

2

A−1BU, (29)

where
W00 = I2,

Wk1k2 = 0, for k1 < 0 or k2 < 0
(30a)

Wk1,k2 = Γ((k1−1)α1+k2α2β2/β1+1)
Γ(k1α1+k2α2β2/β1+1) Ã1Wk1−1,k2

+ Γ(k1α1β1/β2+(k2−1)α2+1)
Γ(k1α1β1/β2+k2α2+1) Ã2Wk1,k2−1,

(30b)

for k1, k2 ≥ 0 without k1 = k2 = 0, x(t) = [ u1(t) u2(t) ]
T and

Ã1 =

[
A11 A12
0 0

]
, Ã2 =

[
0 0

A21 A22

]
. (31)

In the considered circuit, resistances are R1 = 21.7 Ω, R2 = 51.7 Ω, R3 = 98.7 Ω,
internal resistances of supercapacitors C1, C2 are r1 = 10.44 Ω, r2 = 28.26 Ω, respectively,
constant input e = 5.0 V and initial conditions u1(0) = 0.0 V, u2(0) = 0.0 V. The nominal
parameters of supercapacitors produced by Panasonic are C1 = 1 F and C2 = 0.33 F
(5,5VDC, coin type, electrostatic double-layer capacitors). Since the manufacturer provides
only information about capacitance, the parameters α, β and Cαβ have to be found based
on measurements and fitting algorithms. Three series of measurements were taken and the
average value of the results are presented in Table 1.

Table 1. Estimated parameters of the supercapacitors.

C1 (1 F) C2 (0.33 F)

Definition α1 β1 Cαβ1 [F/s1−αβ] α1 β1 Cαβ2 [F/s1−αβ]

Classical case 1.000 1.000 0.911 1.000 1.000 0.211
CFD 1.000 0.761 0.424 1.000 0.761 0.091

Caputo 0.857 1.000 0.431 0.857 1.000 0.062
CFD–Caputo 0.914 0.884 0.412 0.914 0.884 0.071

Measurements and fitting algorithms show that the estimated parameters (Table 1)
for the classical case (integer order derivative) and that given by the manufacturer are in
tolerance (±30%). The values appearing in Table 1 are used to calculate the step response
of the system (25) for each definition. Figures 2 and 3 present the voltage measurements on
the supercapacitors (sampling time of 5 ms) and the simulated step response (iteration time
of 5 ms) based on the classical solution, the Conformable Fractional Derivative definition,
the Caputo definition and the two-parameter Conformable Derivative in the Caputo sense.
As previously, three series of measurements were taken to check the repeatability of
the methodology.

Based on the measurement uM(t) and analytical (simulated) solution uA(t), we set
the match error function as ∆u(t) = uA(t) − uM(t). Figures 4 and 5 show the error
function, that is, the difference between real measurement and the simulated behavior (step
response based on state space solution of Equation (25) of the supercapacitors C1 = 1 F
and C2 = 0.33 F, respectively).
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To present the obtained result as a number, the cumulated matching error χ2 =
t

∑
0

∆u(t)2 is given in Table 2.

Table 2. Error (lower is better).

Definition C1 (1 F) C2 (0.33 F)

χ2

Classical case 47.2 46.5
CFD 17.1 42.0

Caputo 22.9 35.0
CFD–Caputo 12.8 23.6

The Figures 4 and 5 reveal that the matching error χ2 for the first supercapacitor was
almost four times bigger for the classic solution than for the CFD–Caputo solutions, and
for the second supercapacitor, two times bigger. The results given in Table 2 prove that the
solution obtained for CFD in the Caputo sense gives the best results for modeling this type
of dynamical system.

5. Conclusions

The solution for the two-parameters operator describing the electrical circuit con-
taining two supercapacitors was developed. Measured characteristics (step response) of
the supercapacitor were compared with theoretical results based on four definitions of
derivatives: classical (integer order), the Conformable Fractional, the Caputo fractional and
the two-parameter Conformable Derivative in the Caputo sense. The match error function
was created. It was determined which analytical solution is best suited to describe the
operation of a real electrical circuit containing fractional elements such as supercapacitors.

The measurements show that the classical approach generates the largest error in the
description of the behavior of the supercapacitor. This means that this method is insufficient
for describing the behavior of electrical circuits containing elements of fractional order. The
fractional Caputo definition, compared to the CFD definition, allows for better description
of the supercapacitor response in the initial charging phase. On the other hand, the CFD
definition allows for a more accurate description in the final phase of the supercapacitor
charging—close to the steady state. The advantages of both definitions were combined.
Numerical simulations supported by real measurements indicate that the newly proposed
CFD–Caputo definition allows for a more accurate description of the behavior of the
electrical circuits with fractional elements such as supercapacitors. From Table 2 it follows
that the CFD–Caputo method for a considered circuit gives 3.6 and 1.9 times more precise
results than the classic approach for capacitor C1 and C2, respectively.
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The proposed method can be extended for electrical circuits (also for mechanic circuits)
containing any number of elements, but at least one should be of fractional order.
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19. Yavuz, M.; Yaşkıran, B. Approximate-analytical solutions of cable equation using conformable fractional operator. New Trends
Math. Sci. 2017, 4, 209–219. [CrossRef]
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