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Abstract: In engineering disciplines, many important problems are to be formed as boundary value
problems (BVPs) that have conditions that are specified at the extremes. To handle such problems, the
conventional shooting method that transforms BVPs into initial value problems has been extensively
used, but it does not always guarantee solving the problem due to the possible failure of finding a
proper initial guess. This paper proposes a universal initial guess finder that is composed of Bézier
functions. Various dimensional problems that include Lambert’s problem for several orbits around
the spherically symmetric Earth are studied to validate the efficacy of the proposed approach, and
the results are compared.

Keywords: boundary value problem; Bézier functions; initial guess finder

1. Introduction

Boundary value problems (BVPs) are important problems in engineering fields because
plenty of problems are formed as BVPs that are given by the differential equations with
boundary conditions (BCs). In celestial mechanics, for example, Lambert’s problem is
the classical problem that is to determine an orbit by solving BVPs [1,2]. The goal of this
problem is to find an orbit between two prescribed positions within a given fixed time of
flight. The orbit determination, which solves Lambert’s problem, is usually utilized for
spacecraft intercept [3], rendezvous [4], orbit transfer [5], etc. A general solving approach
for BVPs is the shooting method that finds unknown initial values that satisfy the given
BCs. For orbit determination, it requires finding the initial velocity that corresponds to
the prescribed position at the initial time. For applying the shooting method, the main
challenge is to determine a suitable initial guess, because it may fail to find the solution
depending on the starting guess selected. Developing an effective approach for selecting a
proper initial guess is essential, because the initial guess affects not only the convergence
rate of the solution, but also the success of obtaining the solution. Hence, this research
proposes a novel approach to provide an appropriate initial guess for solving BVPs.

Bézier functions (BFs) are parametric functions that can describe complicated surfaces
and curves with great flexibility [6–8]. These parametric functions are composed of linear
combinations of polynomials and the coefficients that are called the control points, which
can adjust the shape of curves. BFs have been investigated for describing trajectories in
a variety of studies: airfoil design [9], path planning [10–15], collision avoidance [16–19],
trajectory generation [20], etc. Besides, studies that are associated with the celestial me-
chanics by utilizing BFs are conducted by several researchers. Dilectis and Mortari [21]
used BFs to describe orbit trajectories by only utilizing observations. Pan and Ma designed
a formulation of Lambert’s problem with respect to the argument of periapsis by using
BFs [22]. Mortari and Clocchiatti [23] utilized non-rational BFs (NBFs) by approximating
Kepler’s equation for the entire mean anomaly range, and a root-finding tool by using BFs
for solving Kepler’s equation was proposed by Mortari and Elipe [24]. In addition, Kim
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and Mortari [25] found closed-form solutions for conic section descriptions using rational
BFs (RBFs) and proposed an idea to solve two-point BVPs via NBFs.

This work utilizes BFs to provide a suitable initial guess to efficiently and successfully
solve BVPs. Being inspired by the characteristics of coefficients (control points) of BFs and
the research studied by Kim and Mortari [25], a solution trajectory of the given BVPs is
approximated by adjusting BFs’ coefficients that are control points and weights. From the
approximated trajectory, the initial guess is easily computed at the lower bound. Becuase
this initial guess is close to the initial value to be obtained, the unknown initial value
can be effectively found by applying the initial guess obtained by BFs into the shooting
method. In order to validate the proposed approach, numerical simulation studies are
performed for several BVPs, including an orbit determination problem. Before applying
the proposed approach into the orbit determination problems, it considers one-dimensional
(1D) and 2D BVPs as examples. Subsequently, the proposed approach is applied to the orbit
determination problem for multiple orbits around the Earth that is spherically symmetric
with various initial positions.

2. Method

BFs can approximate arbitrary curves by adjusting the control points and the relative
weights. It is important to note that the weights are only applicable for RBFs that are
explained in Section 2.1. Inspired by the characteristics of the endpoints among the control
points, an effective initial guess finding approach for solving BVPs is proposed.

2.1. Bézier Functions

BFs are implicit functions that can describe complicated curves and surfaces [6,25],
and there are two types: NBFs and RBFs. The shape of curves is mainly ruled by the control
points, but RBFs have additional factors that can control the shape of curves, which are
weights that are associated with the control points. Both types of BFs are composed of
Bernstein polynomials (BPs) and a set of control points (and additional weights for RBFs).
BPs of degree n is defined as [26,27]

bn,k(s) =
(

n
k

)
sk(1− s)n−k, (1)

where (n
k) is a binomial coefficient, k = 0, 1, · · · , n, and s ∈ [0, 1] is the implicit parameter.

BPs have several properties as follows: [26–28]

1. BPs bn,k(s) and bn,n−k(s) are mirror images of each other about the interval mid-point
s = 1/2 (i.e., bn,n−k(1− s) = bn,k(s));

2. there is the recurrent relation between BPs of degree n + 1 and n as bn+1,k(s) =
(1− s)bn,k + sbn,k−1;

3. they are non-negative as bn,k(s) ≥ 0 for s ∈ [0, 1];

4. they form a partition of unity,
n

∑
k=0

bn,k(s) = 1 ∀s;

5. the derivative of BP is defined as
d
ds

bn,k(s) = n[bn−1,k−1(s)− bn−1,k(s)];

6. they are linearly independent, that is, a0 bn,0(s) + a1 bn,1(s) + · · ·+ an bn,n(s) = 0;
7. they can always be written as a linear combination of polynomials of higher degree,

bn−1,k(s) =
n− k

n
bn,k(s) +

k + 1
n

bn,k+1(s); and,

8. they span the full space of polynomials. This means that any n-degree polynomial
can be expressed as a linear combination of n-degree BPs.

Note that BPs are the parametric basis function of both NBFs and RBFs.
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A NBF of degree n is defined as [8,28]

p(s) =
n

∑
k=0

bn,k(s)ck, (2)

where ck is the k-th control point. A set of control points (n + 1 number of points) is defined
from c0 through cn. The first and last control points (c0 and cn) are called endpoints that
indicate the start and end points of the curve. While the endpoints are located on the
curve, the intermediate control points (c1, . . . , cn−1) do not lie on the curve [29]. Instead, the
intermediate control points mainly control the shape of the curve. Because the endpoints lie
on each end of the curve, one or more intermediate control points are required to generate a
curve. That is, at least a quadratic BF is needed to approximate a curve. The r-th derivative
of the NBF of degree n with respect to s is recursively defined as [28]

p(r)(s) =
n−r

∑
k=0

bn−r,k(s)c
(r)
k , (3)

where

c(r)k = n(n− 1) · · · (n− r + 1)
r

∑
l=0

(−1)r−l
(

r
l

)
ck+l . (4)

An RBF of degree n is defined as [8,28]

p(s) =

n

∑
k=0

wkbn,k(s)ck

n

∑
k=0

wkbn,k(s)
, (5)

where wk is the relative weight that is associated with k-th control point. By adding
the weights, the RBFs have more flexibility than the NBFs because the RBFs have more
parameters to be adjusted. That is, the RBFs can closely approximate arbitrary curves by
adjusting both the weights and the control points. In order to determine the derivative
of the RBF, the numerator and denominator are redefined as pn(s) and pd(s), and then
Equation (5) is rewritten as p(s) = pn(s)/pd(s). Subsequently, the r-th derivative of the
RBF of degree n with respect to s is recursively derived as [28]

p(r)(s) =

p(r)n (s)−
r

∑
l=1

(
r
l

)
p(l)d (s)pr−l(s)

pd(s)
, (6)

where the derivatives of pn(s) and pd(s) are obtained by using Equations (3) and (4).

2.2. Shooting Method

A general form of nonlinear BVPs is given by

g(t, x(t), ẋ(t), ẍ(t)) = ẍ(t)− f (t, x(t), ẋ(t)) = 0, (7)

that satisfies the BCs x(ti) = xi and x(tf) = xf. Here, t ∈ [ti, tf] is the time span that is set
with the initial and final time ti and tf, x(t) ∈ Rm is the state vector, g ∈ Rm and f ∈ Rm are
the nonlinear functions, and the subscripts i and f indicate the initial and final parameters,
which also represent the lower and upper bounds. Note that g is to be called the residual.
The BVP is generally solved by using the shooting method that finds the solution of the
given problem by using the solutions to a sequence of initial value problems (IVPs), and
this problem is for solving Equation (7) with x(ti) = xi and ẋ(ti) = zk. Here, the unknown
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initial state zk is initially set to be z0. Afterwards, zk is selected in a manner to ensure
that [30]

lim
k→∞

x(tf, zk) = x(tf) = xf, (8)

where x(tf, zk) denotes the state at tf when zk is applied to the IVP in Equation (7), and ẋ(ti)
indicates the solution to the BVP in Equation (7) with BCs. An initial guess z0 is utilized to
find the solution x(tf, zk) that satisfies

x(tf, zk)− xf = 0. (9)

2.3. Initial Guess Finder

An initial guess is required to solve the BVP using the shooting method, since the BVP
generally provides the boundary values as initial conditions, as mentioned in Section 2.2.
That is, the trajectories of the states for the BVP should contain the boundary values at the
end of the trajectories. Because the endpoints of BFs should lie on the curve similarly, one
can say that the BCs correspond to the endpoints. From this concept, the given BVP can be
approximated by BFs, and the initial guess is obtained from the approximated trajectory at
the lower bound. This work considers two types of BFs to determine the initial guess in
the initial guess finder (IGF). The first IGF uses the NBFs while the second one uses the
RBFs, and they are named NBF-IGF and RBF-IGF, respectively.

For the NBF-IGF, it is necessary to transform the boundary values for the given BVP
into the endpoints. That is, the initial and final time in the given problem are replaced
with tB0 ∈ R and tBn ∈ R, and the initial and final states are replaced with xB0 ∈ Rm and
xBn ∈ Rm in BFs. Note that the unknown intermediate control points are defined as tBi ∈ R
and xBi ∈ Rm for i = 1, · · · , n− 1. Thus, the total number of unknown parameters for the
NBF-IGF is (m + 1)× (n− 1). Using Equation (2), t and x(t) are transformed into NBFs, as
follows:

tB(s) = (1− s)ntB0 +

(
n
1

)
(1− s)n−1stB1 + · · ·+

(
n

n− 1

)
(1− s)sn−1tBn−1 + sntBn , (10)

xB(s) =

 (1− s)nx1,B0 + (n
1)(1− s)n−1sx1,B1 + · · ·+ ( n

n−1)(1− s)sn−1x1,Bn−1 + snx1,Bn
...

(1− s)nxm,B0 + (n
1)(1− s)n−1sxm,B1 + · · ·+ ( n

n−1)(1− s)sn−1xm,Bn−1 + snxm,Bn

. (11)

For the RBF-IGF, it should consider additional unknown weights (wtk ∈ R and
wxk ∈ Rm for k = 0, · · · , n). It is important to note that any endpoint weight values can be used
because the intermediate weights are determined relatively. Thus, the weights corresponding
to the endpoints can be defined as 1 for simplicity (i.e., wt0 = wtn = wj,x0 = wj,xn = 1
for j = 1, ..., m), and the number of unknown weights is (m + 1)× (n− 1). Hence, the
total number of unknown parameters for the RBF-IGF is 2× (m + 1) × (n − 1). Using
Equation (5), t and x(t) are transformed into RBFs, as follows:

tB(s) =
(1− s)nwt0 tB0 + (n

1)(1− s)n−1swt1 tB1 + · · ·+ ( n
n−1)(1− s)sn−1wtn−1 tBn−1 + snwtn tBn

(1− s)nwt0 + (n
1)(1− s)n−1swt1 + · · ·+ ( n

n−1)(1− s)sn−1wtn−1 + snwtn

, (12)

xB(s) =



(1− s)nw1,x0 x1,B0 + (n
1)(1− s)n−1sw1,x1 x1,B1 + · · ·+ ( n

n−1)(1− s)sn−1w1,xn−1 x1,Bn−1 + snw1,xn x1,Bn

(1− s)nw1,x0 + (n
1)(1− s)n−1sw1,x1 + · · ·+ ( n

n−1)(1− s)sn−1w1,xn−1 + snw1,xn
...

(1− s)nwm,x0 xm,B0 + (n
1)(1− s)n−1swm,x1 xm,B1 + · · ·+ ( n

n−1)(1− s)sn−1wm,xn−1 xm,Bn−1 + snwm,xn xm,Bn

(1− s)nwm,x0 + (n
1)(1− s)n−1swm,x1 + · · ·+ ( n

n−1)(1− s)sn−1wm,xn−1 + snwm,xn

. (13)
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To express the corresponding nonlinear functions of the given BVP, the first and
second time derivatives of xB(s) are derived as

ẋB =
dxB
dtB

=
dxB
ds

ds
dtB

=
dxB
ds

(
dtB
ds

)−1
=

x′B
t′B

, (14)

ẍB =
d

dtB

(
x′B
t′B

)
=

d
ds

(
x′B
t′B

)
ds
dtB

=
d
ds

(
x′B
t′B

)
1
t′B

=
x′′Bt′B − t′′Bx′B

t′3B
, (15)

where s in each variable is omitted for the simple notation. Using Equations (14) and (15),
g defined in Equation (7) is transformed into BF form as

gB =
x′′Bt′B − t′′Bx′B

t′3B
− fB, (16)

where fB is the transformed nonlinear function that is composed of BFs. Here, gB and
fB in the NBF-IGF are the function of s, tB1 , . . . , tBn−1 , xB1 , . . . , xBn−1 , and gB and fB in the
RBF-IGF are the function of s, tB1 , . . . , tBn−1 , xB1 , . . . , xBn−1 , wt1 , · · · , wtn−1 , wx1 , · · · , wxn−1 .
To obtain an approximated trajectory, the transformed residual should be zero in order to
satisfy Equation (7), and this is achieved by adjusting the unknown parameters. Once the
unknown parameters are properly determined, the approximated trajectory can be easily
found. Therefore, this becomes finding the proper unknown parameters that minimize the
following cost function [31]:

L =
∫ 1

0
gT

B gB ds. (17)

Note that the difference between the NBF-IGF and RBF-IGF arises in the first step that is the
transformation of state variables, tB(s) and xB(s), using Equations (2) and (5). Depending
on the BFs, the number of unknown variables is different. Once the state variables are
transformed into each BF, the following steps in Equations (14)–(17) remain the same. It is
evident that the RBF-IGF provides a more accurate initial guess, because it has parametric
flexibility that can more precisely approximate a curve. However, it is computationally
more expensive than the NBF-IGF.

Subsequently, this problem becomes to solve Equation (17) with the unknown param-
eters and the following equations [25]:

∂L
∂tBi

= 0 and
∂L

∂xBi

= 0, (18)

for i = 1, · · · , n− 1. Note that, if fB is made of products only in Equation (16), gB becomes
a polynomial equation in s and Equation (17) can be solved in a closed form [25]. Once the
obtained control points (and weights), which are the solution of the optimization problem,
are applied to each state variable expressed as BFs, the approximated trajectory of the given
BVP is found, and the initial guess for solving the given BVP is determined by ẋB(s)|s=0.

The given problem is generally solved by using the shooting method with random
initial guesses because of the lack of information for the initial value, as shown in Figure 1a.
If a proper initial guess is selected, then the shooting method provides the initial value
for the lower bound that satisfies the given BCs. Subsequently, the numerical integration
is performed by using the obtained initial value to find the solution, which is the state
trajectory. If the BCs are not satisfied for the obtained state trajectory, different initial
guesses should be selected. In fact, many engineering problems are sensitive to initial
guesses, and this makes engineers spend a huge effort to find the proper initial guess.
The IGFs that were proposed in this work provide a proper initial guess, even for the
problems that are sensitive to initial guesses because the information of initial guess is
based on the approximated trajectory for the given problem. Figure 1b shows the entire
procedure for solving BVPs using the IGF that is highlighted with blue boxes. Initially,
the state variables and equations are transformed into Bézier functions. Subsequently, the
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optimal control points and weights are obtained by solving the optimization problem that
minimizes the cost function defined in Equation (17). Finally, using the obtained control
points and weights, the initial guess is computed and applied to the shooting method. In
fact, the initial value is relatively easily and efficiently found by using the initial guess that
is provided by the proposed approach as compared to using random initial guesses. As
shown in Figure 1a, the conventional approach iteratively selects random initial guesses to
find the proper solution if the obtained states at the final time do not satisfy the BCs. On
the other hand, replacing the green box shown in Figure 1a with the dashed blue box in
Figure 1b eliminates such an iterative process.

(a) Conventional approach (b) Proposed approach
Figure 1. Flowchart for solving BVPs.

3. Simulation Study

Numerical simulation studies are performed for several problems to validate the
performance of the proposed IGF approaches. The shooting method is utilized to solve
the given BVPs, and the simulation results using an initial guess obtained by each IGF are
compared with the one using randomly selected initial guesses.

In the celestial mechanics, for example, the shape of the orbit trajectories is ellipse,
parabola, or hyperbola, and a part of the entire elliptical orbit is generally the solution tra-
jectory of Lambert’s problem. Therefore, the second order BFs can sufficiently approximate
the orbital trajectory. Quadratic BFs are used in the simulation studies since the aim of this
research is to find an initial guess to efficiently solve BVPs.

For the NBF-IGF, the quadratic NBFs and their first and second derivatives are given as

tB(s) = (1− s)2tB0 + 2s(1− s)tB1 + s2tB2 ,

t′B(s) = 2s(tB2 − tB1) + 2(1− s)(tB1 − tB0), (19)

t′′B(s) = 2(tB0 − 2tB1 + tB2),

xj,B(s) = (1− s)2xj,B0 + 2s(1− s)xj,B1 + s2xj,B2 ,

x′j,B(s) = 2s(xj,B2 − xj,B1) + 2(1− s)(xj,B1 − xj,B0), (20)

x′′j,B(s) = 2(xj,B0 − 2xj,B1 + xj,B2),
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where j = 1, . . . , m. Similarly, the quadratic RBFs and their first and second derivatives for
the RBF-IGF are given as

tB(s) =
wt0(1− s)2tB0 + 2wt1(1− s)stB1 + wt2 s2tB2

wt0(1− s)2 + 2wt1(1− s)s + wt2 s2 ,

t′B(s) =
2s(wt2 tB2 − wt1 tB1) + 2(1− s)(wt1 tB1 − wt0 tB0)− 2(s(wt2 − wt1)− (1− s)(wt1 − wt0))tB(s)

wt0(1− s)2 + 2wt1(1− s)s + wt2 s2 , (21)

t′′B(s) =
2(wt2 tB2 − 2wt1 tB1 + wt0 tB0)− 2(wt2 − 2wt1 + wt0)tB − 4(s(wt2 − wt1)− (1− s)(wt1 − wt0))t

′
B(s)

wt0(1− s)2 + 2wt1(1− s)s + wt2 s2 ,

xj,B(s) =
wj,x0(1− s)2xj,B0 + 2wj,x1(1− s)sxj,B1 + wj,x2 s2xj,B2

wj,x0(1− s)2 + 2wj,x1(1− s)s + wj,x2 s2 ≡
xj,n

xj,d
,

x′j,B(s) =
x′j,n − x′j,dxj,B(s)

xj,d
, (22)

x′′j,B(s) =
x′′j,n − x′′j,dxj,B − 2x′j,dx′j,B(s)

xj,d
,

where

x′j,n = 2s(wj,x2 xj,B2 − wj,x1 xj,B1) + 2(1− s)(wj,x1 xj,B1 − wj,x0 xj,B0),

x′′j,n = 2(wj,x2 xj,B2 − 2wj,x1 xj,B1 + wj,x0 xj,B0),

x′j,d = 2s(wj,x2 − wj,x1) + 2(1− s)(wj,x1 − wj,x0),

x′′j,d = 2(wj,x2 − 2wj,x1 + wj,x0).

For the numerical studies, it considers 1D and 2D nonlinear BVPs, and then 3D
nonlinear BVPs, in particular the orbit determination problems, are considered. For the
shooting method, the bisection method [30,32] is used for the 1D example, because the 1D
problem is identical to a root-finding problem. In the 2D and 3D examples, the trust-region
algorithm [33] is utilized to solve systems of nonlinear equations. In addition to this,
the simplex algorithm [34] is used to find the optimal control points and weights. These
algorithms are run on Octave, which is free software, and the specifications of the computer
for the simulation studies are as follows: Intel i7-7500U @ 2.7 GHz clock speed CPU and
12 GB memory.

3.1. Nonlinear 1D BVP

A nonlinear 1D BVP is given by [35]

ẍ(t) =
2ẋ2(t)

t3 − 9x2(t)
t5 + 4t, (23)

where BCs are x(ti = 1) = 0 and x(tf = 2) = ln 256. At first, the given problem is solved
using the shooting method with random initial guesses as the conventional approach. It
considers three kinds of ranges for the initial guesses due to the lack of the initial value
information and performing the Monte Carlo simulations with 1000 iterations for each
range. Here, the initial guesses are randomly selected in the normal distribution (e.g.,
N
(
µ, σ2), where µ is the mean and σ is the standard deviation). The obtained initial value

for each initial guess is displayed as the same value because the number obtained is the
same up to the 14-th decimal place, as shown in Table 1. Regardless of the initial guesses, it
finds the solution with almost zero mean of the absolute error of x(tf). Because the initial
value to be obtained is near zero, the case for N

(
0, 12) requires the least computational

burden. Furthermore, it is easy to find the solution with an arbitrary initial guess, because
the initial value to be obtained is scalar, not a vector in this problem.
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Table 1. Monte Carlo simulation results for 1D example using random initial guesses.

Initial Guess N
(
0, 1002) N

(
0, 102) N

(
0, 12)

Obtained initial value −0.0751 −0.0751 −0.0751
Number of cases that found the solution 1000 1000 1000

Mean of number of iterations 28.0730 25.2150 20.7430
Mean of number of evaluations 40.0830 37.1640 32.5620

Mean of computational time (sec) 0.1986 0.1969 0.1408
Mean of |x(tf)| error (%) 4.06 × 10−14 4.25 × 10−14 4.11 × 10−14

Next, the proposed approach is applied to solve the given BVP. For this, the given
equations are transformed into the quadratic NBFs and RBFs using Equations (19)–(22).

3.1.1. NBF-IGF

Because the endpoints are defined as tB0(s = 0) = 1, tB2(s = 1) = 2, xB0(s = 0) = 0,
and xB2(s = 1) = ln 256, the number of unknown parameters is 2 (e.g., tB1 and xB1 ). Using
Equation (16), the residual equation is transformed into

gB = ẍB − fB =
x′′Bt′B − t′′Bx′B

t′3B
−

2(x′B/t′B)
2

t3
B

+
9x2

B
t5
B
− 4tB, (24)

where each variable is defined in Equations (19) and (20). Because the given BVP should
satisfy the zero residual, the approximated trajectory can be found as solving the optimiza-
tion problem that minimizes the cost that is defined in Equation (17). Once the optimal
intermediate control points are determined, the approximated solution trajectory over
s ∈ [0, 1] is obtained, and the initial guess is easily computed at s = 0 for Equation (14).

3.1.2. RBF-IGF

The endpoints are determined by the boundary values similar to NBF-IGF, and the
weights that correspond to the endpoints are defined as 1 (i.e., wt0 = wt2 = w1,x0 = w1,x2 =
1) as mentioned in Section 2.3. Therefore, the unknown variables are the intermediate con-
trol points and weights, and the number of unknowns is 4. By substituting the transformed
variables and their derivatives in Equations (21) and (22) into Equation (24), the residual is
obtained. Subsequently, the residual is applied to the cost function for the optimization
problem in Equation (17). After solving the optimization problem, the initial guess is
calculated by substituting the obtained control points and weights into Equation (14) at
s = 0.

In the optimization process, two kinds of stopping criteria are used: (i) the step size
defined as the norm of the difference between the parameters at the current step and
the previous step and (ii) the change in the value of the cost function during the current
step and previous step. When both of the stopping criteria are satisfied, it terminates the
optimization process provides the optimal control points and weights.

Table 2 lists the initial guesses that are obtained by the proposed approaches and
the corresponding simulation results applying the shooting method. Here, (B) represents
the computational time for finding the control points and weights, and (S) means the
computational time for performing the shooting method to find the proper initial value
that satisfies the given BVP by using the initial guess obtained by the proposed approaches.
The RBF-IGF provides the closer initial guess to the actual initial value than the NBF-IGF,
because the RBFs have more flexibility (due to the additional weight parameters) than the
NBFs. For this reason, a small number of iterations and evaluations is required to find the
initial value that satisfies the given upper bound value with almost zero error. That is, the
error is close to the machine epsilon value when applying the initial guess that is obtained
from the RBF-IGF. Because the solution of the shooting method using the initial guess of
the RBF-IGF is precisely computed, the obtained state at the upper bound is almost same
as the given BC. It also explains that the trial trajectories of the shooting method using the



Symmetry 2021, 13, 736 9 of 20

initial guess obtained by the RBF-IGF are very close to the solution trajectory, as shown in
Figure 2b, unlike the trial trajectories generated via the NBF-IGF shown in Figure 2a.

Table 2. Simulation results for 1D example by using the IGFs.

NBF-IGF RBF-IGF

Number of unknown
parameters 2 4

Initial guess obtained by BFs −0.7161 −0.0831
Obtained initial value −0.0751 −0.0751
Number of iterations 18 9

Number of evaluations 29 14

Computational time (sec) 0.1746 0.2656
(=0.1259 (B) + 0.0487 (S)) (=0.2448 (B) + 0.0209 (S))

|x(tf)| error (%) 1.60 × 10−14 1.01 × 10−16
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Figure 2. State trajectories for trials and the solution.

On the other hand, applying the initial guess that is obtained by the NBF-IGF into the
shooting method is computationally more efficient than applying the other one because
the NBF-IGF has only two unknown parameters to be optimized. In fact, the aim of this
research is to provide an effective way to find the initial guess, not the actual initial value.
For this reason, in between two IGFs, it can be said that the NBF-IGF is better to find the
initial guess for solving the given BVP, because it is computationally inexpensive, and the
initial guess is close enough to the initial value to be determined.

The IGF reduces a large amount of the computational time for applying the shooting
method thanks to the properly selected initial guess, as shown in Tables 1 and 2. When
compared the computational time and the accuracy for the absolute value of the upper
bound, the one usingN

(
0, 12) requires less computational time than the one that is required

for the proposed approach, as shown in Figure 3, due to the fact that the initial value is
close to zero.

However, it is shown that the NBF-IGF applied result provides better accuracy and
less computational time overall.
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Figure 3. Accuracy vs. computational time comparison for 1D example.

3.2. Nonlinear 2D BVP

A nonlinear 2D BVP is given by [35]

ẍ(t) =
[

ẍ1(t)
ẍ2(t)

]
=

[
2x3

1(t)− 3x1(t)− 2t2

x3
2(t)− x2(t)ẋ2(t)

]
, (25)

where x(ti = 1) = [2, 0.5]T and x(tf = 2) = [2.5, 1/3]T . The given problem is first solved
using the shooting method with random initial guesses, and the results are listed in Table 3.

Table 3. Monte Carlo simulation results for 2D example using random initial guesses.

Initial Guess N2(0, Σ1002) N2(0, Σ102) N2(0, Σ12)

Obtained initial value [0, −0.25]T [0, −0.25]T [0, −0.25]T

Number of cases that found the solution 17 180 936
Mean of number of iterations 16.3529 11.0611 6.5139

Mean of number of evaluations 47.3529 33.2389 21.5908
Mean of computational time (sec) 0.3658 0.1130 0.0642

Mean of ||x(tf)|| error (%) 8.52 × 10−7 2.10 × 10−5 3.01 × 10−6

Here, Nm(µ, Σσ2) indicates a m-dimensional normally-distributed random vector
with the mean vector µ ∈ Rm and the covariance matrix Σσ2 ∈ Rm×m. In this work, the
covariance matrix is defined as Σσ2 = σ2 Im×m. Because the obtained initial value for each
component is the same up to the 7-th decimal place, these values are displayed as the same
values. Depending on the covariance of initial guesses, the number of cases that found the
solution is differently obtained. In other words, this problem requires a proper initial guess
to find the solution, unlike the 1D example. For the cases that found the solutions, the mean
values, such as the mean of the number of iterations, number of evaluations, computational
time, and upper bound norm error, are summarized in Table 3. That is, the cases that failed
to find the solution are not included. The results show that the computational burden, such
as the computational time and the number of iterations and evaluations, is reduced as the
covariance of the initial guess decreases. In fact, these results are reasonable, because the
initial guess of N2(0, Σ12) is closer to the initial value obtained than the others.

Next, to apply the proposed approach, the variables and nonlinear functions for the given
problem are transformed into the quadratic NBFs and RBFs while using Equations (19)–(22).
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3.2.1. NBF-IGF

The given BCs are replaced with the endpoints as tB0(s = 0) = 1, tB2(s = 1) =
2, xB0(s = 0) = [2, 0.5]T , and xB2(s = 1) = [2.5, 1/3]T . Hence, three unknown control
points are required to be determined, which are tB1 and xB1 = [x1,B1 , x2,B1 ]

T . Using
Equation (16), the residual and the nonlinear function on the right side of Equation (25) are
transformed into the NBFs as

gB = ẍB − fB =
x′′Bt′B − t′′Bx′B

t′3B
−
[

2x3
1,B − 3x1,B − 2t2

B
x3

2,B − x2,B(x′2,B/t′B)

]
, (26)

where each variable is defined in Equations (19) and (20), and the cost function is derived
by substituting Equation (26) into Equation (17). Subsequently, the initial guess is obtained
by using the same process of the 1D example.

3.2.2. RBF-IGF

The weights that correspond to the endpoints are set as wt0 = wt2 = w1,x0 = w1,x2 =
w2,x0 = w2,x2 = 1 similar to the 1D example. Therefore, six unknown variables, such
as three control points and three weights (wt1 and wx1 = [w1,x1 , w2,x1 ]

T), are considered.
The residual is derived by applying the transformed variables and their derivatives in
Equations (21) and (22) into Equation (26). The unknown variables are obtained by solving
the optimization problem that minimizes the cost in Equation (17) composed of the residual,
and the initial guess is computed by applying the obtained control points and weights into
Equation (14) at s = 0.

The results of the shooting method with the initial guesses obtained via the IGFs are
listed in Table 4. The initial guess generated via the NBF-IGF finds the initial value after
one trial shown in Figure 4a. On the other hand, the initial guess that is obtained by the
RBF-IGF requires only one iteration to find the initial value. Because the RBFs provided
the closer initial guess to the initial value, no trial trajectory is required, especially for this
example, as shown in Figure 4b.

On the other hand, applying the NBF-IGF provides a huge benefit in the aspect of the
computational efficiency. In addition to this, the upper bound norm error is obtained as
a very small value that is close to zero. Similar to the 1D example, it can be said that the
NBF-IGF is the better approach than the RBF-IGF.

Table 4. Simulation results for 2D example using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 3 6
Initial guess approximated by BFs [ 1.4493 × 10−3, − 2.4653 × 10−1]T [− 4.0795 × 10−5, − 2.4992 × 10−1]T

Obtained initial value [− 9.4189 × 10−9, − 2.5000 × 10−1]T [1.3005 × 10−8, − 2.5000 × 10−1]T

Number of iterations 2 1
Number of evaluations 9 6

Computational time (sec) 0.1319 0.8024
(=0.1027 (B) + 0.0290 (S)) (=0.7802 (B) + 0.0222 (S))

||x(tf)|| error (%) 1.88 × 10−8 1.79 × 10−6
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Figure 4. Phase trajectories for trials and the solution.

Both IGFs provide suitable initial guesses and, thus, the shooting method finds the so-
lution for the given problem with the small number of iterations, whereas the conventional
approach sometimes fails to find the solutions, as shown in Tables 3 and 4. In particular,
applying the random initial guess with N2(0, Σ1002) provides a poor success rate that finds
the solution. In addition, Figure 5 shows that the accuracy of the upper bound norm error
and the computational time when using random initial guesses and the initial guess that
was obtained by the IGFs.
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Figure 5. Accuracy vs. computational time comparison for 2D example.

It is shown that the shooting method with the NBF-IGF is superior in the aspect of
considering both computational cost and accuracy simultaneously.

3.3. Nonlinear 3D BVP: Orbit Determination Applications

Lambert’s problem is one of the popular nonlinear BVPs in the celestial mechanics
with 3D space. The two-body equation is given by [36]

r̈(t) = − µ

||r(t)||3 r(t), (27)

that satisfies r(ti) = ri and r(tf) = rf. Here, r(t) ∈ R3 is the position vector, µ is the gravita-
tional coefficient, which is defined as µ = 398, 600 km3/sec2, ||r(t)|| is the magnitude of
the position vector, and ri and rf are the initial and final position vectors, respectively.
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The performance of the proposed approaches for the orbit determination problem is
validated by considering three orbits that have different semi-major axes and eccentricities,
and they are listed in Table 5.

Table 5. Orbits information considered in simulations.

Orbit Semi-Major Axis Eccentricity

Hubble telescope orbit 6917 km 0.000283
Tundra orbit 42,164 km 0.268
Molniya orbit 26,600 km 0.74

In the orbit determination problem, the initial velocity at the initial time is found by
applying the shooting method. Because each orbit has a different initial velocity, depending
on the initial position, three kinds of initial positions are considered to deal with various
initial velocities: near apogee, intermediate (between the apogee and perigee), and near
perigee. Note that only one initial position is considered for Hubble telescope orbit, because
it is almost circular orbit. Table 6 lists the BCs for each orbit. Here, the initial time ti is set
as zero, so only the final time information is given.

Table 6. Simulation parameters for the 3D example.

tf (sec) ri (km) rf (km)

Hubble 1500 [−5641.48, −3331.74, 2204.25]T [3329.05, −5754.98, −871.62]T

Tundra (apogee) 25,000 [15,040.51, 22,615.10, 45,161.32]T [−36,285.49, 13,559.48, 27,077.65]T

Tundra (intermediate) 15,000 [−40,292.40, 7484.69, 14,946.57]T [−17,983.49, −11,870.23, −23,704.31]T

Tundra (perigee) 17,000 [−24,501.90, −9999.97, −19,969.49]T [33,647.42, −5531.99, −11,047.13]T

Molniya (apogee) 18,000 [7062.08, 19,756.30, 39,452.43]T [−16,831.22, 12,838.49, 25,637.87]T

Molniya (intermediate) 5000 [−17,436.33, 11,461.54, 22,888.17]T [−14,505.52, 1846.23, 3686.84]T

Molniya (perigee) 5000 [−3653.53, −2884.55, −5680.43]T [17,638.45, 6821.86, 13,622.94]T

Initially, the shooting method with random initial guesses is applied to all cases,
and Table 7 lists the Monte Carlo simulation results (1000 iterations) for each orbit case.
Note that the initial guesses are randomly generated as N3(0, Σ102), because the speed
at each position is around 1.5∼10 km/sec. It sometimes fails to find the solution and, in
particular, no solution is found for the near perigee case of Molniya orbit, as shown in the
table. Because the initial value at the lower bound for the near perigee of Molniya orbit
is relatively greater than the other cases, it is critical to an initial guess in order to find
the solution. Like the 2D example, the cases that found the solution are only considered
to compute the mean values of the number of iterations, the number of evaluations,
computational time, and the upper bound norm error. Once the solution is found, the
upper bound norm error is achieved as less than 0.05 %, and the solution is well found.
However, one can say that the random initial guesses do not guarantee to find the solution,
as shown in Table 7.

Table 7. Monte Carlo simulation results for 3D example using random initial guesses.

Hubble
Tundra Molniya

Apogee Intermediate Perigee Apogee Intermediate Perigee

Number of cases
that found the solution 714 659 850 734 856 978 0

Mean of
number of iterations 9.0686 9.0030 8.7576 11.4659 8.6472 7.5542 -

Mean of
number of evaluations 39.2199 39.6748 38.5471 47.0150 38.1822 34.1769 -

Mean of
computational time (sec) 1.2779 8.2786 5.0861 7.0179 5.7960 1.5298 -

Mean of
||rf|| error (%) 2.44 × 10−3 3.70 × 10−3 2.45 × 10−3 3.62 × 10−2 1.61 × 10−3 5.25 × 10−5 -
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To apply the proposed approach into this problem, four variables, which are the time
t, and three components of the position vector r(t), are transformed into the quadratic
NBFs and RBFs using Equations (19)–(22).

3.3.1. NBF-IGF

For the given BCs that are listed in Table 6, the endpoints for each case are defined for
the NBFs, like the previous examples, and this problem has four unknown control points
(tB1 and rB1 = [r1,B1 , r2,B1 , r3,B1 ]

T). The residual, including the nonlinear function on the
right side of Equation (27), is derived as

gB = r̈B − fB =
r′′Bt′B − t′′Br′B

t′3B
− µ

||rB||3
rB, (28)

and the variables are defined in Equations (19) and (20). After applying the residual in
Equation (28) into the cost function in Equation (17) and solving the optimization problem,
the initial guess is computed using the obtained control points at s = 0.

3.3.2. RBF-IGF

The endpoints are defined as the same way of the NBF-IGF, and the weights that are
associated with the endpoints are defined as wt0 = wt2 = w1,r0 = w1,r2 = w2,r0 = w2,r2 =
w3,r0 = w3,r2 = 1. Hence, the number of unknown parameters is eight: four control points
and four weights that are defined as tB1 , rB1 , wt1 , and wr1 = [w1,r1 , w2,r1 , w3,r1 ]

T . With these
unknown parameters, the cost function in Equation (17) is derived using Equation (28). The
unknown intermediate control points and weights are obtained by solving the optimization
problem, and the initial guess is calculated by applying the obtained parameters into
Equation (14) at s = 0.

Using the simulation parameters that are listed in Table 6, the numerical simulations
for the proposed approaches are conducted, and Tables 8–14 summarize the results. Overall,
the proposed approaches provide the solution with less than 0.1% upper bound norm
errors. Similar to the 1D and 2D examples, applying the RBF-IGF provides a closer initial
guess to the initial value, and the shooting method with the RBF-IGF requires a less number
of iterations and evaluations to find the solution. Because the initial guess is very close to
the initial value, the trial trajectories are also similar to the solution trajectory, as shown in
Figures 6–8.

Table 8. The simulation results for Hubble telescope orbit using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 4 8
Initial guess by BFs [4.4958, −7.4692, −2.5057]T [3.1892, −6.6256, −1.8750]T

Obtained initial value [3.1883, −6.6303, −1.8752]T [3.1883, −6.6303, −1.8752]T

Number of iterations 5 3
Number of evaluations 24 16

Computational time (sec) 0.7423 1.4350
(= 0.2384 (B) + 0.5039 (S)) (= 1.1623 (B) + 0.2727 (S))

||rf|| error (%) 8.17 × 10−5 8.17 × 10−5
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Table 9. Simulation results for Tundra orbit (apogee) using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 4 8
Initial guess approximated by BFs [−2.6141, 0.3707 −0.7402]T [−2.2044, 0.4068, 0.8122]T

Obtained initial value [−2.2024, −0.4074, 0.8136]T [−2.2024, −0.4074, 0.8136]T

Number of iterations 4 3
Number of evaluations 20 16

Computational time (sec) 4.0855 4.4808
(= 0.1772 (B) + 3.9083 (S)) (= 1.0031 (B) + 3.4777 (S))

||rf|| error (%) 2.26 × 10−5 2.26 × 10−5

Table 10. Simulation results for Tundra orbit (intermediate) using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 4 8
Initial guess approximated by BFs [−0.2581, −1.6221, −3.2393]T [−0.3542, −1.3209, −2.6377]T

Obtained initial value [−0.3669, −1.3200, −2.6360]T [−0.3669, −1.3200, −2.6360]T

Number of iterations 4 3
Number of evaluations 20 16

Computational time (sec) 2.8944 3.4718
(= 0.2739 (B) + 2.6205 (S)) (= 1.4237 (B) + 2.2048 (S))

||rf|| error (%) 1.55 × 10−5 1.55 × 10−5

Table 11. Simulation results for Tundra orbit (perigee) using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 4 8
Initial guess approximated by BFs [3.9257, −1.1812, −2.3588]T [3.0000, −1.0583, −2.1134]T

Obtained initial value [3.0053, −1.0563, −2.1093]T [3.0053, −1.0563, −2.1093]T

Number of iterations 4 3
Number of evaluations 20 16

Computational time (sec) 3.1469 3.8489
(= 0.2589 (B) + 2.8880 (S)) (= 1.6548 (B) + 2.1941 (S))

||rf|| error (%) 7.54 × 10−4 7.54 × 10−4

Table 12. Simulation results for Molniya orbit (apogee) using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 4 8
Initial guess approximated by BFs [−1.7511, 0.3576, 0.7140]T [−1.4359, 0.4058, 0.8103]T

Obtained initial value [−1.4240, 0.4070, 0.8129]T [−1.4240, 0.4070, 0.8129]T

Number of iterations 4 3
Number of evaluations 20 16

Computational time (sec) 2.9211 3.2541
(= 0.1543 (B) + 2.7668 (S)) (= 1.0329 (B) + 2.2212 (S))

||rf|| error (%) 8.49 × 10−6 8.49 × 10−6
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Table 13. Simulation results for Molniya orbit (intermediate) using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 4 8
Initial guess approximated by BFs [−0.7146, −1.5981, −3.1913]T [−0.4975, −1.4518, −2.8991]T

Obtained initial value [−0.4975, −1.4513, −2.8981]T [−0.4975, −1.4513, −2.8981]T

Number of iterations 3 2
Number of evaluations 16 12

Computational time (sec) 0.8887 1.4315
(= 0.1816 (B) + 0.7071 (S)) (= 0.8740 (B) + 0.5575 (S))

||rf|| error (%) 2.35 × 10−6 2.35 × 10−6

However, the NBF-IGF also provides an initial guess that is close enough to the initial
value to be obtained and it requires less computational time to obtain the initial guess and
find the solution with the shooting method. Furthermore, the obtained upper bound norm
error using the NBF-IGF is the same as the one using the RBF-IGF. Therefore, one can be
said that that the NBF-IGF has better performance than the RBF-IGF in between both of the
IGFs proposed.

Table 14. Simulation results for Molniya orbit (perigee) using the IGFs.

NBF-IGF RBF-IGF

Number of unknown parameters 4 8
Initial guess approximated by BFs [7.8363, 2.4444, −4.8819]T [8.9313, −1.4052, −2.8067]T

Obtained initial value [9.2497, −1.2852, −2.5665]T [9.2497, −1.2852, −2.5665]T

Number of iterations 6 4
Number of evaluations 28 20

Computational time (sec) 2.2736 3.4960
(= 0.2713 (B) + 2.0023 (S)) (= 2.5954 (B) + 0.9006 (S))

||rf|| error (%) 8.70 × 10−2 8.70 × 10−2

(a) NBF-IGF (b) RBF-IGF
Figure 6. State trajectories of trials and the solution for 3D example: Hubble telescope orbit.

Although the shooting method with random initial guesses provides the solution over
65 % during 1000 times simulations, except for the near perigee case of Molniya orbit, this
does not guarantee finding the solution. On the other hand, the proposed approaches find
the solution for all cases, including the near perigee case of Molniya orbit. In addition,
applying the IGF, especially the NBF-IGF, guarantees the least computational burden to
find the solution than the others, as shown in Figure 9.

Here, “Conventional” indicates the shooting method with random initial guesses, and
the numbers shown in Figure 9 represent the computational time. Therefore, it is concluded
that the proposed IGFs are able to provide suitable initial guesses that guarantee finding
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the solution of the orbit determination problem, including the case that is sensitive to the
initial guess. Because the NBF-IGF not only provides an initial guess close to the initial
value, but is also computationally more efficient than the RBF-IGF, the NBF-IGF is more
beneficial than the RBF-IGF to determine the initial guess.

(a) NBF-IGF (apogee) (b) RBF-IGF (apogee)

(c) NBF-IGF (intermediate) (d) RBF-IGF (intermediate)

(e) NBF-IGF (perigee) (f) RBF-IGF (perigee)
Figure 7. State trajectories of trials and the solution for 3D example: Tundra orbit.
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(a) NBF-IGF (apogee) (b) RBF-IGF (apogee)

(c) NBF-IGF (intermediate) (d) RBF-IGF (intermediate)

(e) NBF-IGF (perigee) (f) RBF-IGF (perigee)
Figure 8. State trajectories of trials and the solution for 3D example: Molniya orbit.
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Figure 9. Computational time comparisons for 3D example.

4. Conclusions

This work proposes efficient initial guess finders (IGFs) that provide proper initial
guesses as approximating BVPs by using the non-rational and rational Bézier functions
(BFs). Each IGF is named NBF-IGF and RBF-IGF, respectively. The IGFs provided proper
initial guesses at the lower bound, and this value is applied to the shooting method. To
validate the efficacy of the proposed approach, various dimensional problems from one-
dimensional (1D) to 3D, including Lambert’s problem, are studied and compared with
the conventional shooting method. For the 1D and 2D problems, the IGFs are as good
as the conventional approach that uses random initial guesses, because the problems are
relatively easy to solve. On the other hand, for the 3D Lambert’s problem, the proposed
IGFs outperform the conventional approach in terms of the computational burden and the
ability to find the solution. In between two IGFs, although the RBF-IGF provides a more
accurate initial guess, the NBF-IGF provides a close enough initial guess and it requires
less computational burden. Therefore, the NBF-IGF is a better option than the RBF-IGF for
providing a proper initial guess to effectively solve the BVPs.
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