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Abstract: Fermat’s Factoring Algorithm (FFA) is an integer factorisation methods factoring the
modulus N using exhaustive search. The appearance of the Estimated Prime Factor (EPF) method
reduces the cost of FFA’s loop count. However, the EPF does not work for balanced primes. This
paper proposed the modified Fermat’s Factoring Algorithm 1-Estimated Prime Factor (mFFA1-EPF)
that improves the EPF method. The algorithm works for factoring a modulus with unbalanced and
balanced primes, respectively. The main results of mFFA1-EPF focused on three criteria: (i) the
approach to select good candidates from a list of convergent continued fraction, (ii) the establishment
of new potential initial values based on EPF, and (iii) the application of the above modification
upon FFA. The resulting study shows the significant improvement that reduces the loop count of
FFA1 via (improved) EPF compared to existing methods. The proposed algorithm can be executed
without failure and caters for both the modulus N with unbalanced and balanced primes factor. The
algorithm works for factoring a modulus with unbalanced and balanced primes.

Keywords: estimated prime factor; integer factorisation problem; continued fraction; Fermat’s
Factoring Algorithm

1. Introduction

Cryptography has its crucial parts in Industrial Revolution 4 (IR4) where technology
is embedded in artificial intelligent to maintain the secureness of the information data.
Regarding cryptography, there are two types of cryptography: symmetric and asymmetric
cryptography. Symmetric cryptography uses the same key for the encryption and de-
cryption process while asymmetric cryptography uses different keys for each encryption
and decryption process. A lot of asymmetric cryptography strength relies on the Integer
Factorisation Problem (IFP). IFP is one of the oldest hard mathematical problems in history.
IFP is defined as finding the two distinct primes, p and q, for a given integer (a modulus)
N = pq, which is the multiplication of those two primes. We et al. [1] mentioned that from
the existing classical sense of computation, a modulus with a minimum 1024-bit length is
still very hard to be factorised. There are several general purpose algorithms to solve the
IFP, such as Pollard’s p− 1, General Number Field Sieve, Quadratic Sieve, Elliptic Curve
Factoring, and Fermat’s Factoring Algorithm [2].

Pierre de Fermat explored Fermat’s Factoring Algorithm (FFA) as one of the IFP
methods that is used to factor the modulus N with balanced primes (Ambedkar et al. [3]).
According to Somsuk and Tientanopajai [4], the modulus N in FFA is written as N =(

p+q
2

)2
−
(

p−q
2

)2
. In this work, the FFA is categorised into Fermat’s Factoring Algorithm 1

(FFA1) and Fermat’s Factoring Algorithm 2 (FFA2). FFA1 uses a square root, while FFA2

Symmetry 2021, 13, 735. https://doi.org/10.3390/sym13050735 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4846-1124
https://orcid.org/0000-0002-0778-4456
https://orcid.org/0000-0001-5000-354X
https://orcid.org/0000-0001-6954-8494
https://www.mdpi.com/2073-8994/13/5/735?type=check_update&version=1
https://doi.org/10.3390/sym13050735
https://doi.org/10.3390/sym13050735
https://doi.org/10.3390/sym13050735
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050735
https://www.mdpi.com/journal/symmetry


Symmetry 2021, 13, 735 2 of 22

uses multiplication as their main processes that lead to factorization of N. Both methods are
having their advantages and disadvantages in terms of the number of loop count (iteration)
and computational time to complete the factoring process. Many studies have introduced
to improve the FFA, to make the algorithm efficient for factoring the modulus N [5–8]. The
main purpose is to speed up the algorithms: either to reduce the loop count or to improve
the algorithm’s computational time for exhaustive search or both [9].

The EPF is introduced by Wu et al. [1]. Wu et al’s study enhances the efficiency of
FFA2 by shortening the search for the target value of p + q and p− q. The EPF method
was adopted as a mechanism to reset the initial values of FFA (in this case is FFA2), which
results in reducing the loop count for the FFA to complete the search and successfully
factor the modulus N. The authors of [1,9] use the continued fraction of 1√

N
to produce a

list of convergent and create an additional extension for the initial values. Potentially, EPF
is considered as a good “device” to increase the efficiency of FFA.

However, as reported in [1], the absence of a deterministic approach to select the
required parameter in EPF is the limitations of such an approach, and most of the cases
cannot work on balanced primes. Somsuk [5] agreed that EPF works perfectly only on
unbalanced primes. By observation and empirical evidence, the selected values on the list
of convergent certainly cannot be used for the initial value because it may cause the FFA2
algorithm to fail. On the other hand, the authors of [1] overlook a convergent-selecting case
that affects the effectiveness of EPF. In finding a solution regarding EPF, FFA1 is chosen to
be the main integer factorisation method in this study. This is because FFA1 potentially
avoids the failure of running algorithm via EPF and reduce the exhaustive search as it uses
a single loop run the algorithm. The resulting study shows a significant improvement that
reduces the loop count of FFA1 via (improved) EPF compared to previous methods (FFA1,
FFA2, FFA2-EPF, and FFA-Euler).

The rest of this paper is sorted as follows. Section 2 introduces the background of the
FFA1, FFA2, and EPF. The definition of a modulus N is provided considering unbalanced
and balanced primes. Section 3 discusses the methodology that will support the finding of
this work. Section 4 presents the mFFA1-EPF, which works on factoring a modulus N for
both unbalanced and balanced primes. The results of numerical examples are shown and
compared with other existing FFA-based method. The conclusion is drawn in Section 5.

2. Preliminaries

Some fundamental information for the study, about FFAs and EPF, and some defini-
tions are provided.

2.1. Balanced and Unbalanced Primes

This section provided the definitions of balanced and unbalanced primes, which
restructure from [10,11], respectively. The definition of balanced prime is as follows.

Definition 1. Let N = pq be a number with a multiplication of two primes p and q. The number
N is defined to have balanced primes where p and q have the same bit-size and satisfy the relation
q < p < 2q.

The term of unbalanced primes is defined, as follows.

Definition 2. Let N = pq be a number with a multiplication of two primes p and q. The number
N is defined to have unbalanced primes where p and q have the different bit-size and satisfy the
relation q < p < αq where α > 2.

2.2. Fermat’s Factoring Algorithm (FFA)

De Weger [12] studied FFA1 as an approach of IFP to factor the modulus N by
searching the value of p + q and p − q. There is modulus N written as the difference

of square, N =
(

p+q
2

)2
−
(

p−q
2

)2
. As the value of p + q and p− q are unknown, we need
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to find the closest of those values. According to Asbullah and Ariffin [10], the smallest
value of p + q, based on balanced prime, is 2

√
N. We start the initial value x = 2d

√
Ne and

then, compute y =
√

x2 − N. If y is an integer then we accept the pair (x, y). Otherwise,
the algorithm is ran by increasing the value of x by 1. If there is a pair of integers (x, y),
then compute the values p = x + y and q = x − y. Note that FFA1 only run a loop on
searching the integer value on p + q via initial value of x.

Bressoud [13] introduced FFA2, which is uses two loops on searching p + q and p− q
to reduce the running time. Wu et al. [1] reformulated the Bressoud’s method. Suppose
there is modulus N = x2 − y2 where x = p+q

2 and y = p−q
2 . The modulus is derived into

4N = u2 − v2 where u = 2x and v = 2y. As the actual values of u and v are unknown,
reset u = 2d

√
Ne and v = 0. Now compute r = u2 − v2 − 4N. If r = 0, thus the solution of

(u, v) is found. There are two cases for value of r as r 6= 0:

• Case 1: When r > 0
The value of v needs to set larger; v← v + 2 and then r ← r− (4v + 4)

• Case 2: When r < 0
The value of u needs to set larger; u← u + 2 and then r ← r + (4u + 4)

When the initial value u and v are created, we need to check the value of r. If r 6= 0,
there are two cases: r > 0 and r < 0. If r > 0, the new v is produced that is increased
by 2 from the old v, then the new r is computed by r − (4v + 4). Otherwise, if r < 0,
the new u is produced that is increased by 2 from the old u, then the new r is computed
from r + (4u + 4). The iteration of both case will be run until r = 0. If (u, v) found, the
factorisation of N occurs as p = u+v

2 and q = u−v
2 .

Remark 1. The sign ← represents an assignment of changes on a same value. For example,
v← v + 2 means the new value v is computed from the old value v with increment by 2.

2.3. Continued Fraction

The continued fraction is a non-integer expansion method that represents a decimal
number into a list of integers. The list of the integer can establish a partial quotient that
brings into a convergent list in term of a rational number. The continued fraction is suitable
for the representation of the rational and irrational number like π, Euler’s number, e, and√

2. Chung et al. [14] mentioned that the continued fraction for a rational number may
produce a finite yield of integer number while for an irrational number may produce an
infinite yield an infinite list of an integer number.

Let r be a real number which has unique continued fraction expansion,

r = [m0, m1, m2, . . . , mi, . . .] = m0 +
1

m1 +
1

m2+
1
...

where mi ∈ Z and i ∈ N. The list of mi is a list integer form of r, thus, let ri with an amount
of i represent the partial quotients as follows:

r0 = m0

r1 = m0 +
1

m1

r2 = m0 +
1

m1 +
1

m2

...

ri = m0 +
1

m1 +
1

m2+
1

...+ 1
mi
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The list of partial quotients, [r0, r1, r2, . . . , ri] is also known as a convergent list. The
list of the convergence is significantly used for several purposes such as shortening the
distance of the initial value in Fermat’s Factoring Algorithm and creating an approximate
value of a rational number. Wu et al. [1] purposed Estimated Prime Factor in which used
in application such as shortening the searching distance for (FFA2). It may give a “hint” for
a new position for initial values of FFA2. The EPF will be discussed in the next section.

2.4. Estimated Prime Factor (EPF)

Wu et al. [1,9] proposed an approach to estimate p + q and p − q using EPF. The
authors of [1,9] mentioned that the continued fraction of 1√

N
is used to give out the partial

knowledge of Dp−Dq
DpDq

in which helps to find p + q and p − q as Dp − Dq and DpDq are

unknown. From the list of convergent 1√
N

, ht
kt

is selected as the additional extension where

kt . N and ht < Dp − Dq < ht+1. The in-depth discussion of convergent ht
kt

in EPF is
provided in Appendix A.

Remark 2. Let kt be denominator of ht
kt

from convergent list pf 1√
N

. The value of kt is approximately
less than N, kt . N, in which kt need to be less and closer to the value of N. As the value of N is
known, it is easy to select ht

kt
by kt comparing with the value of N, and kt could be good indicator to

select a good convergent of 1√
N

as there is i convergents on the list.

We illustrate EPF process in Figure 1.

Figure 1. The process of Estimated Prime Factor (EPF).

3. Methodology

As early discussed in Section 1, Bressoud [13] claimed that the FFA2 has a better
component for loop count without any multiplication or division and exhibit faster com-
putational time. However, the FFA2 requires a huge number of cycles because it needs to
search for the value of p + q and p− q, separately. Compare to FFA2, FFA1 needs to search
for the value of p + q only. This eliminates the process of searching for the value of p− q,
and thus reduces the number of loop count.

Table 1 shows the comparison of loop count between FFA1 and FFA2 based on three
distinct moduli N = pq. The first modulus of N = 1,783,647,329 is taken from an example
in [1]. Observed that the FFA1 dominates the smallest values of loop count (10,552) rather
than the FFA2 (42,215) and the FFA2-EPF (11,455). For N = 195,656,557, again, the FFA1
dominates the smallest loop count compare to the other two methods. N = 1,952,194,393 is
selected to illustrate the balanced prime situation. Similarly, the FFA1 recorded the smallest
loop count, while the loop count for FFA2-EPF is not available as the initial value of u and
v are larger than p + q and p− q. Overall, the FFA1 requires a lesser loop count, therefore
it can factor modulus N relatively faster than the FFA2 and the FFA2-EPF.



Symmetry 2021, 13, 735 5 of 22

Table 1. The comparison on loop count between FFA1, FFA2, and FFA2-EPF based on 3 distinct
modulus N = pq.

Modulus N = pq
Loop Count

FFA1 FFA2 FFA2-EPF

1,783,647,329 = 84,449 · 21,121 10,552 42,215 11,455
195,656,557 = 27,103 · 7219 3173 13,115 8131

1,952,194,393 = 47,969 · 40,697 150 3785 N/A

Recall that the initial value of the FFA1 started from
√

N and it increased by 1 until it
reach the value p+q

2 . Therefore, there exists a distance, denoted by d0 from the initial value

where it starts from
√

N to p+q
2 : d0 =

∣∣∣ p+q
2 −

√
N
∣∣∣ (as shown in Figure 2). The methodology

is to introduce a new parameter λ ∈ N, such that
√

N + λ will be serve as a new initial
value for the FFA1. The reason is to establish a new distance, dnew =

∣∣∣ p+q
2 − (

√
N + λ)

∣∣∣, as
shown in Figure 2, where dnew < d0. Therefore, a good λ is needed toward initial value of
FFA1 to obtain the dnew.

In this work, the EPF method is used to extend the initial value of FFA1. We show
that the EPF approach is suitable to be used in FFA1 with following conditions. Suppose
x = p+q

2 and y = p−q
2 . Note that from Section 2.4, we have p =

√
N +Dp and q =

√
N−Dq.

Recall that modulus N = x2 − y2 =
(

p+q
2

)2
−
(

p−q
2

)2
, therefore

N =

(
(Dp +

√
N) + (

√
N − Dq)

2

)2

−
(
(Dp +

√
N)− (

√
N − Dq)

2

)2

=

(
2
√

N + Dp − Dq

2

)2

−
(

Dp + Dq

2

)2

=
4N + 4

√
N(Dp − Dq) + (Dp − Dq)2

4
− (Dp + Dq)2

4
4N = 4N + 4

√
N(Dp − Dq) + (Dp − Dq)

2 − (Dp + Dq)
2

4
√

N(Dp − Dq) = 4DpDq√
N(Dp − Dq) = DpDq

Dp − Dq

DpDq
=

1√
N

(1)

From Equation (3), the value Dp − Dq is needed to improve FFA1, which obtained
from the convergences of continued fraction of 1√

N
. Recall from Section 2.4, from the

continued fraction of 1√
N

will established a list of hi
ki

. As a candidate Dp−Dq
DpDq

, the ht
kt

is
selected with kt . N and ht be the additional extension λ to improve the initial value
of FFA1.

Figure 2. The position of x =
√

N and p+q
2 .
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Now, the bound of Dp−Dq will be consider. Recall in Section 2.4 where p = Dp +
√

N
and q =

√
N − Dq, p + q = 2

√
N + Dp − Dq, we have Dp − Dq = p + q − 2

√
N. As

ht < Dp − Dq, thus

ht < Dp − Dq = p + q− 2
√

N. (2)

We proceed with a lemma that shows x = d
√

N + ht
2 e is always smaller than p+q

2 .

Lemma 1. Let p = Dp +
√

N and q =
√

N − Dq. If ht
kt

be a fraction from the convergent list of

continued fraction 1√
N

with ht < Dp − Dq, then
√

N + ht
2 < p+q

2 .

Proof. Suppose there exist ht
kt

from convergent list of continued fraction 1√
N

. If ht <

Dp − Dq, then substituting the Equation (2) into
√

N + ht
2 , thus it can be rewritten as

follows.

√
N +

ht

2
=

2
√

N + ht

2

<
2
√

N + Dp − Dq

2

=
p + q

2

Observation 1. Consider Lemma 1. As
√

N + ht
2 is always smaller than p+q

2 , therefore ht
2 via

EPF can be use as the additional extension λ. Furthermore, we can set x =
√

N + ht
2 to serve as

the (improved) initial value of x in the FFA1 algorithm.

In this study, we discover two types of possible selected convergent on the list. The
first is Type 1: ht

kt
from the convergent list of 1√

N
where kt . N. For Type 1, Wu et al. [1] men-

tioned that ht
kt

can be an indicator of convergent with index t to select the good candidate
for initial value.

[
h1

k1
, . . . ,

ht

kt
,

ht+1

kt+1
, . . . ,

hi
ki

]
(3)

Next, is the Type 2: h′i
k′i

where it is the last convergent on the list, which will be elabo-

rated further. Thus, h′i will be selected for additional extension for potential initial value.

[
h1

k1
,

h2

k2
, . . . ,

h′i
k′i

]
(4)

The behaviour of Type 2 convergent selection is analysed via experiment on 50 distinct
balanced prime moduli N. Figure 3 shows there are three possible positions on the potential
initial value with additional extension that close to p+q

2 as follows.
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(a) Situation 1

(b) Situation 2

(c) Situation 3

Figure 3. Three possible situations of Type 2 convergent selection.

Observation 2. Figure 3 shows that Situation 1 happens when the value of p+q
2 is larger than the

two initial values, Situation 2 shows that position p+q
2 is in the middle of potential initial values,

and Situation 3 is where the value of p+q
2 is smaller than the potential initial values.

The result via experimental analysis of 50 distinct moduli N indicates that 33 moduli
are considered as Type 2 convergent selection and 42.42% of them have potential initial
value with additional extension h′i−3 and h′i−4 larger than p+q

2 (i.e., Situation 3), while the
rest might fall under Situation 1 or Situation 2. This experimental analysis suggests that
the position of those potential initials values close to p+q

2 is undecidable. This study aims
to provide solutions that covered unbalanced and balanced primes for all three situations.
The in-depth analysis of Type 2 will be discussed in Section 4.3.

4. Results and Discussion

By the observation in Section 3, an improvement for FFA1 to increase the effectiveness
of the algorithm to factor a modulus N is sought after. The aim is to focus on three
important parts: (i) EPF’s technique is used, (ii) establishing potential initial values for
FFA1, and (iii) the alteration on the original FFA1 algorithm to suit the said potential initial
value. Thus, we introduce mFFA1-EPF to improve the effectiveness of FFA1.

4.1. mFFA1-EPF: Unbalanced Prime

This section is dedicated for the modulus N with unbalanced primes factor. From
Observation 1, we setting x = d

√
N + ht

2 e as the improved initial value in FFA1 algorithm
is which less than p+q

2 . Let us start with the following question.

Question 1. Is there any other potential initial values aside from x =
√

N + ht
2 that can be selected

to shorten the distance towards p+q
2 ?

Answer. Interestingly, if we can find other candidates for initial values in which potentially
reduces the distance dnew, then it can be useful to reduce the loop count to search for
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the value of p+q
2 . Suppose the value of

√
N + ht is considered as the other candidate of

potential values (i.e., the value of λ). Then, such value is supposed close to p+q
2 . However,

in general, it position is undecided whether
√

N + ht is larger (as shown by Figure 4) or is
smaller than p+q

2 (i.e., similar to Lemma 1).

Figure 4. The position of
√

N + ht >
p+q

2 .

Next, suppose there exist ht−1 such that ht−1
kt−1

is from the convergent list of 1√
N

with

kt−1 < kt . N. By empirical evident, the value
√

N + ht−1 < p+q
2 can be considered as

another candidate of additional extension for FFA1. Based on the empirical evident, it
shows that the position of

√
N + ht

2 and
√

N + ht−1 are unpredictable as illustrated in
Figure 5a,b.

(a) The position with
√

N + ht
2 <
√

N + ht−1

(b) The position with
√

N + ht
2 >
√

N + ht−1

Figure 5. The possible position between
√

N + ht
2 ,
√

N + ht−1,
√

N + ht, and p+q
2 .

There are three candidates for the potential values for λ: ht
2 , ht−1, and ht. In answering Ques-

tion 1, the algorithm will start to compute the first value, a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)

,

while the second value is a2 = d
√

N + hte. Once a1 and a2 are established, then two

values—y1 =
√

a2
1 − N and y2 =

√
a2

2 − N—are computed.

After establishing the values of a’s and y’s, three procedures run simultaneously:

• Procedure 1: The iteration with potential initial value a1 and y1. The value a1 is
increased by 1 until y1 is integer.

• Procedure 2: The iteration with potential initial value a2 and y2. The value a2 is
increased by 1 until y2 is integer.

• Procedure 3: The iteration with potential initial value a2 and y2. The value a2 is
decreased by 1 until y2 is integer.

Remark 3. Note that the same value a2 is applied in both Procedure 2 and Procedure 3. As the
value a2, might be larger than p+q

2 , the main role of Procedure 3 is to prevent the mFFA1-EPF
algorithm to keep running forever. All of the procedure is done by parallel computing, which means
that the algorithm will completely be stopped whenever one of the procedures outputs y1 or y2 as an
integer. Eventually, p and q will be obtained.
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Unbalanced prime is demonstrated in Algorithm 1 as follows and flowchart on Figure A1
in Appendix B.1.

Algorithm 1: mFFA1-EPF: Unbalanced Prime
Input: Modulus N
Output: The prime p and q

1 Compute the continued fraction of 1√
N

.

2 Select ht−1
kt−1

and ht
kt

which is convergence to 1√
N

, where kt−1 < kt < N

3 Compute a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)

and a2 = d
√

N + hte
4 Compute y1 =

√
a2

1 − N and y2 =
√

a2
2 − N

5 do in parallel
6 Procedure 1: while y1 6= integer do
7 Compute a1 ← a1 + 1

8 Compute y1 =
√

a2
1 − N

9 end while
10 p = a1 + y1 and q = a1 − y1
11

12 Procedure 2: while y2 6= integer do
13 Compute a2 ← a2 + 1

14 Compute y2 =
√

a2
2 − N

15 end while
16 p = a2 + y2 and q = a2 − y2
17

18 Procedure 3: while y2 6= integer do
19 Compute a2 ← a2 − 1

20 Compute y2 =
√

a2
2 − N

21 end while
22 p = a2 + y2 and q = a2 − y2

23 return (p,q)

Remark 4. For the Type 2 case, Step 2 on Algorithm 1 is changed by selecting h′i
k′i

and
h′i−1
k′i−1

. Beside

that, Step 3 will be modified with a1 = max
(
d
√

N + h′i−1e, d
√

N +
h′i
2 e
)

and a2 = d
√

N + h′ie.

Examples 1–4 are presented as illustrations of mFFA1-EPF for unbalanced primes.
Example 1 demonstrates Type 1 of convergent-type selection, while Example 2 demon-
strates Type 2 of convergent-type selection. Example 3 shows the importance of a2 for this
algorithm, and Example 4 shows the application of a previous example from Wu et al. [1].

Example 1. Let N = 707,896,463. By the continued fraction method, the following list of fraction
1√
N

is created [
. . . ,

34
904,615

,
139

3,698,279
,

33,811
899,586,412

, . . .
]

We select 139
3,698,279 as a candidate of ht

kt
and 34

904,615 as a candidate of ht−1
kt−1

since kt−1 < kt . N. Now,
the potential initial values are computed as follows:

1. a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)
= 26,676

2. a2 = d
√

N + hte = 26,746
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With a1 = 26,676 and a2 = 26,746, Algorithm 1 is performed. The algorithm is stopped
when Procedure 2 satisfy the searching on Algorithm 1 where y2 become an integer (y2 = 66,126).
Finally, p = a2 + y2 = 50,359 and q = a2 − y2 = 14,057 are computed.

Example 2. Let N = 7,665,365,527,725,431. By continued fraction method, the following conver-
gent list of 1√

N
is created

[
. . . ,

1273
111,453,789,228

,
1554

136,055,921,807
,

2827
247,509,711,035

]

2827
247,509,711,035 is selected as h′i

k′i
(the last convergent on the list) and 1554

136,055,921,807 as
h′i−1
k′i−1

as k′i < N.

The potential initial values are computed as follows:

1. a1 = max
(
d
√

N + h′i−1e, d
√

N +
h′i
2 e
)
= 87,553,628

2. a2 = d
√

N + h′ie = 87,554,901

With a1 = 87,553,628 and a2 = 87,554,901, Algorithm 1 is performed. The algorithm is
stopped when Procedure 2 satisfies the searching on Algorithm 1 where y2 become an integer (y2 =
96,393,384). Last, p = a2 + y2 = 136,721,029 and q = a2 − y2 = 56,065,739 are computed.

Example 3. Suppose N = 2,927,489,533. By continued fraction method, the following convergent
list of 1√

N
is created

[
. . . ,

5329
288,332,366

,
7097

383,992,269
,

12426
672,324,635

]

12,426
672,324,635 is selected as h′i

k′i
and 7097

383,992,269 as
h′i−1
k′i−1

as k′i < N. Now, the potential initial values are

computed as follows:

1. a1 = max
(
d
√

N + h′i−1e, d
√

N +
h′i
2 e
)
= 61,204

2. a2 = d
√

N + h′ie = 66,533

With a1 = 29,682 and a2 = 36,369, Algorithm 1 is performed. The algorithm is stopped
when Procedure 3 satisfies the searching on Algorithm 1 where y2 become integer (y2 = 65,903).
Last, p = a2 + y2 = 49,307 and q = a2 − y2 = 10,723 are computed.

Example 4. Suppose N = 1,783,647,329 which adapted from the numerical example of Wu
et al. [1]. By continued fraction method, the following convergent list of 1√

N
is created

[
. . . ,

2758
11,6479,301

,
10,205

430,990,307
,

12,963
547,469,608

, . . .
]

12,963
547,469,608 is selected as a candidate of ht

kt
and 10,205

430,990,307 as a candidate of ht−1
kt−1

since kt−1 < kt < N.
Two potential initial values are computed as follows:

1. a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)
= 52,439

2. a2 = d
√

N + hte = 55,197

Algorithm 1 is performed and stop when Procedure 1 satisfies that y1 is an integer (y1 =
31,664). Last, p = a1 + y1 = 84,449 and q = a1 − y1 = 21,121 are computed.

4.2. Discussion of Algorithm 1 (mFFA1-EPF: Unbalanced Primes)

This section presents a comparative analysis between the mFFA1-EPF and the previous
technique, based on loop count and computational time. Note that all experimental results
were using a computer running on 2.1 GHz on Intel® Core i3 with 4 GB of RAM.
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According to Table 2, the loop count on Procedure 2 of Examples 1 and 2 is the
shortest one. It shows that the mFFA1-EPF has the smallest loop count compared to the
other methods. For Example 3, Procedure 3 has the shortest path (630), at the same time
it indicates

√
N + ht is larger than p+q

2 . Thus far, the results give a good visualization
representing the factorization of modulus N by our method experimentally. Example 4 is
the same example as given in Wu et al. [1]. Procedure 1 obtained the smallest loop count
(346) compared to other methods. This N/A (Not Applicable) means that all the proce-
dure in Algorithm 1 is stopped when one of the y’s from any procedures got the integer first.

Table 2. The comparison on loop count between FFA1, FFA2, and FFA2-EPF with our propose method toward Examples 1–4.

N = pq FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3
Example 1 128,439 386,939 342,627 N/A 120,265 N/A
Example 2 8,841,310 98,337,910 97,340,072 N/A 8,838,483 N/A
Example 3 11,796 98,844 33,091 N/A N/A 630

Example 4 [1] 11455 42,215 10,551 346 N/A N/A

The mFFA1-EPF is performed by parallel computing, which means Procedures 1–3
were run simultaneously. We recorded the computational time for the three different
procedures. In Table 3, mFFA1-EPF is faster than FFA1 by 4 numerical examples. This seems
to be a slight improvement for FFA1 as there is an involvement of additional extension.
mFFA1-EPF is good in term of loop count, running without failure and computational time
(compared to FFA1).

Table 3. The comparison on computational time in second (s) between FFA1, FFA2, and FFA2-EPF with mFFA1-EPF toward
Examples 1–4.

N = pq FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3
Example 1 2.86 0.64 0.50 N/A 2.01 N/A
Example 2 338.12 215.89 199.27 N/A 301.98 N/A
Example 3 0.63 0.17 0.09 N/A N/A 0.33

Example 4 [1] 0.55 0.12 0.10 0.23 N/A N/A

To make mFFA1-EPF more convincing, there are numerical examples from Somsuk [6]
provided in Table 4.

Table 4. The comparison loop count between FFA1, FFA2, FFA2-EPF, and FFA-Euler with our proposed method by Somsuk’s
Example (Tables 2 and 3 [6]).

Modulus N FFA1 FFA2 FFA2-EPF FFA-Euler
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3
1,047,329,636,821,139,813
= 1,971,074,143 · 531,349,691

227,820,673 1,895,365,798 1,893,402,196 227,820,673 N/A 227,819,732 N/A

788,582,867,650,121,563
= 1,066,200,463 · 739,619,701

14,888,197 356,357,156 307,600,540 14,888,197 N/A 14,236,836 N/A

This comparison highlights the improvement made by mFFA1-EPF compared to the
method FFA-Euler, provided by Somsuk [6]. By two examples from in [6], the exhaustive
search is improved with shortest loop counts, and the potential initial values are shorter
than the FFA-Euler loop count. This shows that our method can be compatible with all
unbalanced prime.



Symmetry 2021, 13, 735 12 of 22

4.3. mFFA1-EPF: Balanced Prime

Previously, in the case of a modulus with unbalanced primes, three candidates are
determined as the λ. Only two potential initial values that possibly shorten the dnew were
selected. In this section, we will explore the case of a modulus with balanced primes. The
aim is to dictate the proper candidates from the convergent list (i.e., mFFA1-EPF) for the
potential initial values via a similar approach.

Recall that ht
kt

with index t, where kt . N, deemed as the indicator for selecting a
good convergent to additional extension of initial values for FFA2-EPF [1]. When the EPF
technique applied for the balanced prime case on FFA1, by empirical evidence, it shows
that such indicator leads to the initial value (

√
N + ht) relatively far away from the target

value (exceeded by p+q
2 ). Therefore, we conjecture that the EPF method seems not to be an

effective method to factor the modulus N with a balanced prime. Furthermore, the result
in Somsuk [5] agreed that EPF is only suitable for unbalanced prime. It failed to address
the convergent with index t as a suitable index to improve the initial value.

Therefore, in this section, we provide the strategies to address such drawback of
factoring the modulus N with a balanced prime by imposing modification in the mFFA1-
EPF algorithm. The strategies involve convergent selection and modification of potential
initial values. Therefore, to enhance the effectiveness via mFFA1-EPF, the additional
extension ht until ht−5 is observe empirically to determine the smallest value of dnew. The
result of the observation is presented on Figure 6, and the discussion follows.

Suppose ht
kt

with index t where kt . N is chosen via EPF. Note that for the modu-

lus N with balanced primes case, the value
√

N + ht � p+q
2 . Therefore, the additional

extension from ht to ht−5 is analysed. Interestingly, the additional extension
√

N + ht−j

for j = 0, 1, 2, 3, 4, 5 can be a potential initial values as it moves closer to the value of p+q
2 .

Figure 6a–f shows comparison of potential initial values between the additional extension
of
√

N + ht−j for j = 0, 1, 2, 3, 4, 5 and p+q
2 , respectively. The potential initial values de-

crease, because the value of additional extension is become smaller from ht to ht−5 (i.e.,
ht > ht−1 > ht−2 > ht−3 > ht−4 > ht−5).

Question 2. What are the suitable initial values that need to be implemented on mFFA1-EPF with
balanced primes?

Answer. Based on Figure 6, the line graph between the initial value (represented by the
blue dots) starts closer to the target value p+q

2 (represented by the red dots) as the value of
initial values changes. A hindrance to the development process for this approach is that we
can not determine the smallest value of dnew via additional extension ht to ht−5. In other
words, the “closeness” of the potential initial values with additional extension unable to
be decided simply from the results of Figure 6. This is because the additional extension a
random value from the generation of convergent list of 1√

N
. It requests further analysis. A

statistical analysis of 50 distinct moduli N with balanced primes is conducted to determine
the closeness of potential initial value through index t to t− 5, as follows.

In this work, a measurement called Mahalanobis Distance (MD) is implemented. MD
is the distance between two points in multivariate space. According to Çakmakçı et al. [15],
MD measures the distance between a multidimensional point of probability distribution
and distribution of distance. The smaller the value of MD, the closer the mean of candidate
of potential initial values to the mean of the target value.
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In the one-dimensional case on the mFFA1-EPF for balanced prime, MD is used to
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Figure 6. The comparison value of 50 data (distinct modulus N) between ht, ht−1, ht−2, ht−3, ht−4

and p+q
2 .

In the one-dimensional case on the mFFA1-EPF for balanced prime, MD is used to
calculate the normalized distance between the mean of each ht to ht−5 and the mean of the
target value p+q

2 . The measurement formula is

MD =
|µIV − µAV |

σIV+AV
(5)

where µIV is a mean of each data potential initial value of
√

N + ht to
√

N + ht−5 while
µAV is mean of actual value p+q

2 . The value σIV+AV is calculated from combination data
from potential initial value and the actual value p+q

2 . The following formula is represented
for MD between

√
N + ht and p+q

2 ,

MD(
√

N+ht) =

∣∣∣µIV(
√

N+ht) − µAV

∣∣∣
σIV+AV

We calculate MD for
√

N + ht to
√

N + ht−5 by same data of 50 moduli N and represent
the MD value on Table 5.

Table 5 shows the comparison of the MD index of “closer distance” between several
potential initial values from ht to ht−5 and p+q

2 . Table 5 reported that the MD index value
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of
√

N + ht−3 and
√

N + ht−4 are the smallest MD values among other potential initial
values, that is, 0.0114 and 0.0116, respectively. It means that

√
N + ht−3 and

√
N + ht−4 are

the most suitable candidates for potential initial values, because they have the smallest
dnew on average with respect to MD measurement.

Table 5. The comparison on the closeness of value between the candidate of potential initial value
with p+q

2 by MD.

Mahalanobis Distance (MD) Value

MD(
√

N+ht) 0.4965

MD(
√

N+ht−1)
0.2932

MD(
√

N+ht−2)
0.0756

MD(
√

N+ht−3)
0.0114

MD(
√

N+ht−4)
0.0116

MD(
√

N+ht−5)
0.0257

Observation 3. The candidates
√

N + ht−3 and
√

N + ht−4 have the smallest value of MD.
Therefore, it is highly suggested to select convergents with index t− 3 and t− 4 to improve the
initial values.

Based on Observation 3, two potential initial values are set as follows:

1. b1 =
√

N + ht−3

2. b2 =
√

N + ht−4

Remark that the FFA1 algorithm requires an initial value less than the target value
and will keep increasing by one (i.e., +1) until it reaches p+q

2 . Therefore, in mFFA1-EPF, we
use the variation technique, which means the value of b1 and b2 need to be increased and
decreased by 1 simultaneously. Next, the following values are established:

1. y1 =
√

b2
1 − N

2. y2 =
√

b2
2 − N

Four procedures are introduced using the above values, with the variation technique
as follows:

• Procedure 1: The iteration with potential initial values b1 and y1. The value of b1 is
increased by 1 until it is the same as the y1 becomes an integer.

• Procedure 2: The iteration with potential initial values b2 and y2. The value of b2 is
increased by 1 until it is the same as y2 becomes an integer.

• Procedure 3: The iteration with potential initial values b1 and y1. The value of b1 is
decreased by 1 until it is the same as the y1 becomes an integer.

• Procedure 4: The iteration with potential initial values b2 and y2. The value of b2 is
decreased by 1 until it is the same as the y2 becomes an integer.

Note that these four procedures were run simultaneously by parallel computing
which will stop when one of the y’s become the first integer. Algorithm 2 shows how the
workflow runs.
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Algorithm 2: mFFA1-EPF: Balanced Prime
Input: Modulus N
Output: The prime p and q

1 Compute the continued fraction of 1√
N

.

2 Select ht−3
kt−3

and ht−4
kt−4

which is convergence to 1√
N

, where kt−4 < kt−3 < N

3 Compute b1 = d
√

N + ht−3e and b2 = d
√

N + ht−4e
4 Compute y1 =

√
b2

1 − N and y2 =
√

b2
2 − N

5 do in parallel
6 Procedure 1: while y1 6= integer do
7 Compute b1 ← b1 + 1

8 Compute y1 =
√

b2
1 − N

9 end while
10 Compute p = b1 + y1 and q = b1 − y1
11

12 Procedure 2: while y2 6= integer do
13 Compute b2 ← b2 + 1

14 Compute y2 =
√

b2
2 − N

15 end while
16 Compute p = b2 + y2 and q = b2 − y2
17

18 Procedure 3: while y1 6= integer do
19 Compute b1 ← b1 − 1

20 Compute y1 =
√

b2
1 − N

21 end while
22 Compute p = b1 + y1 and q = b1 − y1
23

24 Procedure 4: while y2 6= integer do
25 Compute b2 ← b2 − 1

26 Compute y2 =
√

b2
2 − N

27 end while
28 Compute p = b2 + y2 and q = b2 − y2

29 return (p, q)

4.4. Discussion on Algorithm 2 (mFFA1-EPF: Balanced Primes)

Algorithm 2 is also illustrated as a flowchart in Figure A2 in Appendix B.2. The exper-
imental result is represented using the mFFA1-EPF via balanced prime on Example 5 while
applying mFFA1-EPF is represented on Somsuk’s numerical example [6] in Example 6.

Example 5. (Procedure 1 satisfies on Example 5). Let N = 616,696,115,591. By continued
fraction method, the following convergent list 1√

N
is created

[
. . . ,

61
47,903,301

,
123

96,591,902
,

184
144,495,203

,
491

385,582,308
, . . .

]

491
385,582,308 is selected as a candidate of ht−3

kt−3
and 184

144,495,203 as a candidate of ht−4
kt−4

since kt−4 <

kt−3 < kt . N. Now, there are two candidates of potential initial value and 2 y’s are computed as
follows:

1. b1 = d
√

N + ht−3e = 785,792
2. b2 = d

√
N + ht−4e = 785,485
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Algorithm 2 is performed because y1 and y2 not integers. The values b1 and b2 in Procedure 1
and 2 are increased by 1 while initial values in Procedure 3 and 4 are decreased by 1. The algorithm
stop where y1 from Procedure 1 is integer (y1 = 801,204). Finally, compute p = b1 + y1 =
960,049 and q = b1 − y1 = 642,359.

Example 6. [6] (Procedure 1 satisfies on Example 6) Say N = 340,213. By continued fraction
method, a list of fraction 1√

N
is created

[
. . . ,

1
583

,
3

1750
,

4
2333

,
7

4083
, . . .

]

3
1750 is selected as a candidate of ht−3

kt−3
and 1

583 as a candidate of ht−4
kt−4

since kt−4 < kt−3 < kt < N.
Now, there are two candidates of potential initial value and 2 y’s are computed as follows:

1. b1 = d
√

N + ht−3e = 587
2. b2 = d

√
N + ht−4e = 585

Algorithm 2 is performed because y1 and y2 not integer. The values b1 and b2 in Procedure 1
and 2 are increased by 1 while initial values in Procedure 3 and 4 are decreased by 1. The algorithm
stop where y1 from Procedure 1 is integer (y1 = 587). We compute p = b1 + y1 = 653 and
q = b1 − y1 = 521.

Table 6 shows the comparison on count loop and computational time in seconds (s),
between several FFAs with our proposed method toward Example 5. The loop count on
Procedure 1 (15412) is the least number of loop count compared to previous methods.
Besides, FFA2-EPF can not undergo the process and the loop count is not available since
the initial value exceeded the value of p + q and p− q. When it goes on computational
time, the algorithm is not shown the fastest one but it still improves from FFA1.

Table 6. The comparison on loop count and computational time in second (s) between several FFAs with our propose
method toward Example 5.

Example 5 FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3 Procedure 4
Loop count 15,903 174,748 N/A 15,412 N/A N/A N/A
Computational time, s 0.71 0.2 N/A 0.48 N/A N/A N/A

For Table 7, mFFA1-EPF is applied toward [6] to compare the loop count and compu-
tational time. It shows the shortest loop count even the initial value is exactly the value of
p+q

2 ( p+q
2 =

√
N + ht−3 = 587). Using Algorithm 2, the loop count reduced significantly,

which result in the exhaustive search to run without fail.

Table 7. The comparison on loop count and computational time in second (s) between several FFAs with our propose
method toward Example 6 [6].

Example 6 FFA1 FFA2 FFA2-EPF FFA-Euler
mFFA1-EPF

Procedure
1

Procedure
2

Procedure
3

Procedure
4

Loop count 3 6 N/A 3 0 N/A N/A N/A
Computational
time, s

2.12× 10−2 1.45× 10−2 N/A 7.89× 10−3 4.92× 10−2 N/A N/A N/A

Remark 5. Consider Type 2 of the continued fraction convergent selection of the modulus N with
balanced primes. For Type 2, we use Algorithm 2 with a changes in Step 2 where h′i−3 and h′i−4 and
k′i < N.
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Now, we replicate a numerical example from the Algorithm 2 with respect to Remark 5 on
Example 7.

Example 7. (Procedure 4 satisfies on Example 7). Suppose N = 9,355,908,869. By continued
fraction method, a convergent list of 1√

N
is created

[
. . . ,

1611
155,825,501

,
2009

194,322,428
,

3620
350,147,929

,
9249

894,618,286
,

22,118
2,139,384,501

]

As h′i
k′i

is the last convergent on the list, 2009
194,322,428 is selected as a candidate of

h′i−3
k′i−3

and 1611
155,825,501 as

a candidate of
h′i−4
k′i−4

as k′i−4 < k′i−3 < k′i < N. We compute two candidates of initial value of x, y1

and y2 as follows:

1. b1 = d
√

N + h′i−3e = 98,735
2. b2 = d

√
N + h′i−4e = 98,337

Since y1 and y2 are not integer, the values b1 and b2 in Procedures 1 and 2 are increased by
1 while initial values in Procedures 3 and 4 are decreased by 1. The algorithm stop where y2 in
Procedure 4 is integer (y2 = 97,245). We compute p = b2 + y2 = 107,279 and q = b2 − y2 =
87,211.

Table 8 shows the comparison on loop count and computational time in second
between several FFAs with our propose method toward Example 7. Procedure 4 shows
the smallest loop count with 1092 compared to FFA1 (1590) and FFA2 (10,553). The loop
count of FFA2-EPF is unavailable as the initial values are exceeded the value of p + q and
p− q. On computational time, our algorithm is slightly better than FFA1. Procedure 4
plays it crucial part to achieve the value p+q

2 , and, at the same time, Procedure 4 obtains
the indicators of whether the value is larger or smaller than p+q

2 . Therefore, Algorithm 2
with Remark 5 helps to search for the value of p+q

2 without failure.

Table 8. The comparison on loop count and computational time in second (s), between several FFAs with our propose
method toward Example 7.

Example 7 FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3 Procedure 4
Loop count 1590 10553 N/A N/A N/A N/A 1092
Computational time, s 8.90 × 10−2 1.90 × 10−2 N/A N/A N/A N/A 4.07× 10−2

Recall that there is dnew = p+q
2 − (

√
N + λ). For mFFA1-EPF, the λ varies according

to type of modulus N; λ = ht and λ = ht−1 for a modulus with unbalanced primes while
λ = ht−3 and λ = ht−4 for a modulus with balanced primes. Multiple λ can lead to the
shortest path toward p+q

2 . For comparison on mFFA1-EPF with FFA1, both methods use
the same process of calculating the square roots to reach the target value p+q

2 . However,
mFFA1-EPF uses the additional extension on its potential initial values dnew < d0 where
d0 is the loop count of FFA1. Based on the empirical results in this work, the loop count
and computational time of mFFA1-EPF are improved compared to FFA1. Consequently, it
reduces the cost of running the exhaustive search.

The uniqueness of FFA2 is that it uses multiplication operation as the main process, it
has less cost in computational time compared to the mFFA1-EPF which uses square root
operation. Alas, FFA2 requires a greater number of iterations to achieve p + q and p− q.
In this regard, the mFFA1-EPF uses less cost in terms of computational memory and less
space to run the iteration compared to FFA2.

The objective of establishing additional extension on FFA2-EPF is the same as mFFA1-
EPF, to shorten the path toward p + q and p− q. mFFA1-EPF has a shorter loop count than
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FFA2-EPF because the main operation comes from FFA2, which uses a huge number of
iteration to achieve its target values: p + q and p− q. Thus, mFFA1-EPF requires less cost
in terms of space compared to FFA2-EPF.

5. Conclusions and Future Works

In this study, we discovered two types of convergent list selections. The first is Type
1: ht

kt
is selected from the convergent list of 1√

N
where kt . N. For Type 1, Wu et al. [1]

mentioned that ht
kt

can be an indicator of convergent with index t to select a good candidate

for initial value. Next, Type 2: h′i
k′i

where k′i is the last convergent on the list (as illustrated

by Figure 4) where h′i will be selected for additional extension for potential initial value.
This paper proposed two improved factoring algorithms called mFFA1-EPF for unbalanced
primes and mFFA1-EPF for balanced primes. The general idea for designing the algorithms
is due to a modification made to EPF and then implemented to (improved) FFA1. The
resulting study shows a significant improvement that reduces the loop count of FFA1 via
(improved) EPF compared to previous methods (FFA1, FFA2, FFA2-EPF, and FFA-Euler).

An interesting limitation to our work is that the computational time of mFFA1-EPF is
still far beyond efficient to factor a modulus with 1024-bit size of balanced primes, with the
current technology. We foresee that the mFFA1-EPF might be useful once a large quantum
computer with stable qubits is available. The mFFA1-EPF is a type of searching algorithm,
thus it might take advantage of making fine adjustments or manipulating the mathematical
nature within Grover’s searching quantum algorithm [16]. The mFFA1-EPF can be used in
machine architecture with low power such as the Internet of Things-based devices, which
requires to factor small composites integer [1,9]. Furthermore, we expect mFFA1-EPF to be
an assistive tool to increase the effort on the machine learning and artificial intelligence
approaches, such as in [17], have been introduced in the literature to deal with similar
problems as ours.
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Appendix A. The Proving on Estimated Prime Factor (EPF)

We discuss the original study by Wu et al. [1,9]. There is a distance between p and q
with

√
N that written as

Dp = p−
√

N (A1)

Dq =
√

N − q (A2)

Derive (A1) and (A2) to become
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p = Dp +
√

N (A3)

q =
√

N − Dq (A4)

Denote that N = pq. We substitute (A3) to p and (A4) to q and yield

N = pq = (
√

N + Dp)(
√

N − Dq)

= N +
√

N(Dp − Dq)− DpDq (A5)

N is eliminated on the both side which generate Equation (A6) and lead to Equation (A7).

N = N +
√

N(Dp − Dq)− DpDq

N − N =
√

N(Dp − Dq)− DpDq

DpDq =
√

N(Dp − Dq) (A6)

1√
N

=
Dp − Dq

DpDq
(A7)

We do not have any informations about the value of Dp − Dq and DpDq. However,
from Equation (A7), 1√

N
can be useful to get Dp − Dq and DpDq as N is publically known.

Now, a convergent list 1√
N

is produced by continued fraction.

Suppose there is a convergent list 1√
N

, assign as hi
ki

with hi, ki ∈ Z and i be a number of

the convergent produced. From the continued fraction, we know that hi
ki
→ 1√

N
as i→ ∞.

As the size hi and ki increase as i increase, there exist t such that

ht < Dp − Dq < ht+1 (A8)

We use ht and kt to correspond the estimation of Dp and Dq that is

ht ≈ Dp − Dq

kt ≈ DpDq

The convergent with index t be the selection fraction for improving the FFA as it give
an advantage on shorten the exhasutive search on p + q and p− q.



Symmetry 2021, 13, 735 20 of 22

Appendix B. Flowchart mFFA1-EPF

Appendix B.1. mFFA1-EPF on Unbalanced Prime

Figure A1. The flowchart of mFFA1-EPF on unbalanced prime.
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Appendix B.2. mFFA1-EPF on Balanced Prime

Figure A2. The flowchart of mFFA1-EPF on balanced prime.
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