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Abstract: In this paper a system of nonlinear Riemann–Liouville fractional differential equations
with non-instantaneous impulses is studied. We consider a Riemann–Liouville fractional derivative
with a changeable lower limit at each stop point of the action of the impulses. In this case the
solution has a singularity at the initial time and any stop time point of the impulses. This leads to an
appropriate definition of both the initial condition and the non-instantaneous impulsive conditions.
A generalization of the classical Lipschitz stability is defined and studied for the given system. Two
types of derivatives of the applied Lyapunov functions among the Riemann–Liouville fractional
differential equations with non-instantaneous impulses are applied. Several sufficient conditions for
the defined stability are obtained. Some comparison results are obtained. Several examples illustrate
the theoretical results.

Keywords: Riemann–Liouville fractional derivative; differential equations; non-instantaneous im-
pulses; Lipschitz stability in time; Lyapunov functions

1. Introduction

Fractional differential equations have attracted considerable attention due to their
many applications in science and engineering (see the monographs [1–4] and the refer-
ences therein). The main advantage of fractional derivatives is that they can describe
the properties of heredity and memory of many materials. There are various types of
fractional derivatives known in the literature. One of the most important properties of
the solutions is stability. There are various types of stability that describe different proper-
ties of the solutions. One of them is Lipschitz stability, defined and studied for ordinary
differential equations in [5]. Later, this type of stability was studied for various types
of differential equations and problems, such as nonlinear differential systems [6–8], im-
pulsive differential equations with delays [9], fractional differential systems [10], Caputo
fractional differential equations with non-instantaneous impulses [11], a piecewise linear
Schrödinger potential [12], a hyperbolic inverse problem [13], the electrical impedance
tomography problem [14], the radiative transport equation [15] and neural networks with
non-instantaneous impulses [16].

In this paper we define and study Lipschitz stability for Riemann–Liouville (RL) frac-
tional differential equations with non-instantaneous impulses. We will initially introduce
the statement of the problem.

Let two sequences of points {ti}∞
i=0, t0 = 0, and {si}∞

i=0 be given such that tk < sk <
tk+1 < sk+1, k = 0, 1, 2, . . . , and limi→∞ ti = ∞.

There are mainly two types of impulses involved in differential equations: instanta-
neous impulses (known as impulses), where time of action is negligibly small comparatively
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with the whole duration of the process and non-instantaneous impulses that start their actions
abruptly and continue to act on a finite interval.

In this paper we will consider the non-instantaneous impulses starting at points
si, i = 0, 1, 2, . . . and acting on intervals (si, ti+1), i = 0, 1, 2, . . . . The intervals (si, ti+1), i =
0, 1, 2, . . . will be called impulsive intervals. In addition, we will consider the RL fractional
derivatives with changeable lower limits at each stop time point ti, i = 0, 1, 2, . . . of the
impulsive action.

The presence of the RL fractional derivative leads to two particular types of initial
conditions that are equivalent (see the classical book [2]):

- integral form of the initial condition

0 I1−q
t x(t)|t=0 = x0.

- weighted form of the initial condition

lim
t→0+

(
t1−qx(t)

)
=

x0

Γ(q)
.

Following the ideas of the impulses in ordinary differential equations, i.e., after the
impulse the differential equation is the same with a new initial condition, the integral form
and weighted form of the impulsive conditions can be defined.

In this paper we will use the integral form of both the initial condition and the
impulsive conditions.

Keeping in mind the above description, in this paper we will study the initial value
problem (IVP) for the following system of nonlinear RL fractional differential equations
with non-instantaneous impulses (NIRLFDE) of fractional order q ∈ (0, 1):

RL
ti

Dq
t x(t) = f (t, x(t)) for t ∈ (ti, si], i = 0, 1, 2, . . . ,

lim
t→ti+

[(t− ti)
1−qx(t)] =

Ψi−1(ti, x(si−1 − 0))
Γ(q)

, for i = 1, 2, . . . ,

x(t) = Ψi(t, x(si − 0)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . .

lim
t→0+

[t1−qx(t)] =
x0

Γ(q)
,

(1)

where x ∈ Rn and RL
0 Dq

t x(t) is the Riemann–Liouville fractional derivative.

Remark 1. Both given sequences {ti}∞
i=0 and {si}∞

i=0 divide the positive real line into two types of
intervals: the intervals (tk, sk], k = 0, 1, 2, . . . , on which the differential equation is given, and the
impulsive intervals (sk, tk+1], k = 0, 1, 2, . . . ,.

Remark 2. The equality limt→ti+[(t − ti)
1−qx(t)] =

Ψi−1(ti ,x(si−1−0))
Γ(q) could be replaced by

limt→ti+[(t− ti)
1−qx(t)] = x(ti−0)

Γ(q) .

Remark 3. For q→ 1 the impulsive condition limt→ti+[(t− ti)
1−qx(t)] = Ψi−1(ti ,x(si−1−0))

Γ(q) in
Equation (1) is reduced to x(ti+) = Ψi−1(ti, x(si−1 − 0)), which is an impulsive condition for
ordinary differential equations with impulses (see the book [17]).

Note that the solutions of the IVP for the NIRLFDE of Equation (1) have singularities
at each point ti, i = 0, 1, 2, . . . . This requires stability properties to be studied at intervals
excluding these points. In this paper we will define a new type of Lipschitz stability for
NIRLFDE of the type in Equation (1), which is an appropriate generalization of the classical
Lipschitz stability introduced in [5]. It is called generalized Lipschitz stability in time.
This type of stability is connected with the singularity of the solution at both the initial
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time point and the stop time points of impulses. In connection with this we consider
an interval excluding these time points. We use Lyapunov functions and two types of
derivatives of these Lyapunov functions among the studied RL fractional equation with
non-instantaneous impulses. Several sufficient conditions for Lipschitz stability in time are
obtained. Some examples illustrating the theoretical results and comparing the application
of both fractional derivatives of Lyapunov functions are given.

We will use the following sets:

C1−q([a, b],Rn
) =
{

u : (a, b]→ Rn : u ∈ C((a, b),Rn
), lim

t→a+
(t− a)1−qu(t) < ∞

}
,

PC1−q([0, ∞),Rn
) =
{

u : (0, ∞)→ Rn : u ∈ C
(
J ,Rn

)
,

u(tk) = u(tk − 0) = lim
ε→0+

u(tk − ε) < ∞, k = 1, 2, . . . ,

u(sk) = u(sk − 0) = lim
ε→0+

u(sk − ε) < ∞, k = 0, 1, 2, . . . ,

lim
t→tk+

(t− tk)
1−qu(t) < ∞, k = 0, 1, . . .

}
,

where J =
(
∪∞

k=0 (tk, sk]
)⋃ ( ∪∞

k=0 (sk, tk+1]
)

, a, b ∈ R+ : a > b.

Remark 4. If u ∈ PC1−q([0, ∞),Rn
) then for any k = 0, 1, 2, . . . we get u ∈ C1−q([tk, sk],Rn

).

The main contributions of the paper can be summarized as follows:

- for a nonlinear system with RL fractional derivatives of order q ∈ (0, 1) and non-
instantaneous impulses we define in an appropriate way both the initial condition
and the non-instantaneous impulsive conditions;

- generalized Lipschitz stability in time of the zero solution of a system of nonlinear RL
fractional differential equations with non-instantaneous impulses is defined;

- two types of derivatives of Lyapunov functions among the RL fractional differential
equations with non-instantaneous impulses are applied;

- comparison results with Lyapunov functions, scalar RL fractional equations with
non-instantaneous impulses and both types of derivatives of Lyapunov functions
are proved;

- sufficient conditions for generalized Lipschitz stability in time are obtained by the
application of both types of derivatives of Lyapunov functions.

2. Preliminaries

In this section we will give the definitions of fractional derivatives used in the paper
(see, for example, [1–3]). These definitions are given for scalar functions but they also are
easily generalized to the vector case by taking fractional derivatives component-wisely.
Throughout the paper we will assume q ∈ (0, 1).

- Riemann–Liouville (RL) fractional integral:

a I1−q
t m(t) =

1
Γ(1− q)

t∫
a

m(s)
(t− s)q ds, t > a,

where Γ(.) denotes the Gamma function;
- Riemann–Liouville fractional derivative:

RL
a Dq

t m(t) =
1

Γ(1− q)
d
dt

t∫
a

(t− s)−qm(s)ds, t > a;
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- The Grünwald–Letnikov fractional derivative is given by

GL
a Dq

t m(t) = lim
h→0

1
hq

[ t−a
h ]

∑
r=0

(−1)r
qCr m(t− rh), t > a,

and the Grünwald–Letnikov fractional Dini derivative by

GL
a Dq

+m(t) = lim sup
h→0+

1
hq

[ t−a
h ]

∑
r=0

(−1)r
qCrm(t− rh), t > a, (2)

where qCr =
q(q−1)...(q−r+1)

r! and [ t−a
h ] denotes the integer part of the fraction t−a

h > 0.

Remark 5. If m ∈ C([a, a + T],R), then RL
a Dq

t m(t) = GL
a Dq

t m(t) = GL
a Dq

+m(t) hold (see
Theorem 2.25 [2]).

Proposition 1 (Lemma 2.3 [18]). Let m ∈ C1−q([a, a + T),R). Suppose that for an arbitrary
t1 ∈ (a, a + T), we have m(t1) = 0 and m(t) < 0 for a ≤ t < t1. Then it follows that
RL
a Dq

t m(t)|t=t1 ≥ 0.

Remark 6. From Remark 5 it follows that in Proposition 1 the fractional derivative could be
replaced by GL

a Dq
t m(t)|t=t1 .

The practical definition of the initial condition as well as the impulsive conditions of
fractional differential equations with RL derivatives is based on the following result:

Proposition 2 ([2]). Let q ∈ (0, 1) and a, T > 0, m : [a, a + T] → R be a Lebesgue measur-
able function.

(a) If there exists a.e. a limit limt→a+[(t− a)1−qm(t)] = c ∈ R, then there also exists a limit

a I1−q
t m(t)|t=a := lim

t→a+

1
Γ(1− q)

t∫
a

m(s)
(t− s)q ds = cΓ(q) = Γ(q) lim

t→a+
[(t− a)1−qm(t)].

(b) If there exists a.e. a I1−q
t m(t)|t=a = c ∈ R, and if there exists limt→a+[(t− a)1−qm(t)], then

lim
t→a+

[(t− a)1−qm(t)] =
c

Γ(q)
=

1
Γ(q) a I1−q

t m(t)|t=a.

Remark 7. According to Proposition 2 the initial condition and the impulsive conditions in
Equation (1) could be replaced by the equalities 0 I1−q

t x(t)|t=0 = x0 and tk I1−q
t x(t)|t=tk =

Ψi−1(ti, x(si−1 − 0)), i = 1, 2, . . . , respectively.

We introduce the assumptions:
(A1) The sequences {ti}∞

i=0, t0 = 0, and {si}∞
i=0 are such that tk < sk < tk+1 <

sk+1, k = 0, 1, 2, . . . , limi→∞ ti = ∞ and infi(si − ti) = λ > 0.
(A2) The function f ∈ C(∪∞

i=0[ti, si]×Rn,Rn), f (t, 0) = 0 for t ∈ ∪∞
i=0[ti, si].
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(A3) The functions Ψi ∈ C([si, ti+1] × Rn,Rn), i = 0, 1, 2, . . . , Ψi(t, 0) = 0 for t ∈
[si, ti+1]. Let ρ > 0 and J ⊂ R+, 0 ∈ J be an interval. Defining the classes:

M(J) = {a ∈ C[J,R+] : a(0) = 0, is strictly increasing in J, and

a−1(αr) ≤ rqa(α) for some function qa : qa(α) ≥ 1, if α ≥ 1},
K(J) = {a ∈ C[J,R+] : a(0) = 0, a(r) is strictly increasing in J, and

a(r) ≤ Kar for some constant Ka > 0},
Sρ = {x ∈ Rn : ||x|| ≤ ρ}.

Remark 8. The function a(u) = u ∈ K(R+) and a(u) = u ∈ M(R+). In addition, a(u) = K1u,
K1 > 0 is from the class K(R+) with Ka = K1. The function a(u) = K2u2, K2 ∈ (0, 1] is from
the class M([1, ∞)) with q(u) =

√
u

K2
≥ 1 for u ≥ 1.

We will generalize Lipschitz stability ([5]) to systems of RL fractional differential
equations with non-instantaneous impulses. In our further considerations below we will
assume the existence of the solution of the IVP for the NIRLFDE of Equation (1) and we
will denote it by x(t; x0) ∈ PC1−q([0, ∞),Rn).

Example 1. Consider the IVP for the scalar linear NIRLFDE

RL
ti

Dq
t y(t) = ay(t) for t ∈ (ti, si], i = 0, 1, 2, . . . ,

lim
t→ti+

[(t− ti)
1−qy(t)] =

y(si−1 − 0)
tiΓ(q)

, for i = 1, 2, . . . ,

y(t) =
y(si − 0)

t
for t ∈ (si, ti+1], i = 0, 1, 2, . . . ,

lim
t→0+

[t1−qy(t)] =
y0

Γ(q)
,

(3)

where y0 ∈ R, a ∈ R.
The solution of Equation (3) is given by

y(t) =


y0

(
∏k−1

i=0
(si−ti)

q−1Eq,q(a(si−ti)
q)

ti+1

)
(t− tk)

q−1Eq,q(a(t− tk)
q), if t ∈ (tk, sk],

y0

(
∏k−1

i=0
(si−ti)

q−1Eq,q(a(si−ti)
q)

ti+1

)
(sk−tk)

q−1Eq,q(a(sk−tk)
q)

t , if t ∈ (sk, tk+1],

k = 0, 1, 2, . . . .

It has singularities at the point tk, k = 0, 1, 2, 3, . . . which are the initial time and the end times
of action of the non-instantaneous impulses at which the impulsive condition is switching to the
differential equation (in the particular case a = 0.5, y0 = 1, tk = 2k, sk = k + 1, k = 0, 1, 2, . . . ,
q = 0.3 the graph of the solution y(t) is given on Figure 1).

Example 1 illustrates that the stability of the solution for non-instantaneous impulsive
differential equations in the case of the RL fractional derivative has to be studied on
intervals excluding from the right the points tk, k = 0, 1, 2, . . . . In connection with this
phenomenon we will define a new type of stability:

Definition 1. The zero solution of the IVP for the NIRLFDE of Equation (1) is said to be gen-
eralized Lipschitz stable in time if there exist a nonegative integer N, positive numbers
δ, M : M ≥ 1 and a sequence of positive numbers {Ti}∞

i=0, Ti < infi(si − ti) such that
for any initial value x0 ∈ Rn : ||x0|| < δ the inequality ||x(t; x0)|| ≤ M||x0|| holds for
t ∈ ∪∞

i=N [ti + Ti, ti+1].
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Remark 9. Note the generalized Lipschitz stability in time gives a bound of the solution to the
right of an existing point and over intervals excluding to the right of any of the starting time points
of the non-instantaneous impulses.

0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

Figure 1. Example 1. Graph of the solution of Equation (3) for a = 0.5, y0 = 1, and q = 0.3.

3. Lyapunov Functions and Comparison Results

Definition 2 ([17]). Let J ⊂ R+, 0 ∈ J, J = J
⋂{∪∞

i=0(ti, ti+1]} and ∆ ⊂ Rn. We will
say that the function V(t, x) belongs to the class Λ(J, ∆) if V ∈ C(J × ∆,R+), V(ti, x) =
V(ti − 0, x) = limε→0+ V(ti − ε, x) for i = 1, 2, . . . , x ∈ ∆, and it is locally Lipschitz with
respect to its second argument.

We will use two types of derivatives of Lyapunov functions from the class Λ(R+, ∆)
to study the Lipschitz stability of the NIRLFDE of Equation (1) (see Remark 1) :

- The RL fractional derivative of the Lyapunov function V ∈ Λ(R+, ∆) among the
NIRLFDE of Equation (1) is defined by

RL
tk

DqV(t, x(t)) =
1

Γ(1− q)
d
ds

t∫
tk

(t− s)−qV(s, x(s))ds, t ∈ (tk, sk], k = 0, 1, 2, . . . , (4)

where x ∈ PC1−q(R+, ∆) is a solution of Equation (1).
- The Dini fractional derivative of the Lyapunov function V ∈ Λ(R+, ∆) among the

NIRLFDE of Equation (1) is defined by:

Dtk
(1)V(t, x) = lim sup

h→0+

1
hq

[
V(t, x)−

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x− hq f (t, x))

]
for t ∈ (tk, sk], x ∈ ∆, k = 0, 1, 2, . . . .

(5)

Remark 10. The definition of the Dini fractional derivative of the Lyapunov function V ∈
Λ(R+, ∆) among the NIRLFDE of Equation (1) is similar to the Grünwald–Letnikov fractional
Dini derivative in Equation (2).

Remark 11. Let x(t) be a solution of Equation (1). Then for any k = 0, 1, 2, . . . the equality

Dtk
(1)V(t, x(t)) = lim sup

h→0+

1
hq

[
V(t, x(t))−

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x(t)− hq f (t, x(t)))

]
,

t ∈ (tk, sk],
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holds.

We will use as a comparison scalar equation the following equation:

RL
ti

Dq
t u(t) = g(t, u(t)) for t ∈ (ti, si], i = 0, 1, 2, . . . ,

lim
t→ti+

[(t− ti)
1−qu(t)] =

Hi−1(ti, u(si−1 − 0))
Γ(q)

, for i = 1, 2, . . . ,

u(t) = Hi(t, u(si − 0)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . ,

lim
t→0+

[t1−qu(t)] =
u0

Γ(q)
,

(6)

where u0 ∈ R, g : ∪∞
i=0[ti, si]×R→ R, Hi : [si, ti+1]×R→ R, i = 0, 1, 2, . . . .

We introduce the following conditions:
(A4) The function g ∈ C(∪∞

i=0[ti, si]×R,R) is decreasing w.r.t. its second argument
and g(t, 0) = 0 for t ∈ ∪∞

i=0[ti, si].
(A5) The functions Hk ∈ C([sk, tk+1]×R,R), k = 1, 2, 3, . . . , are increasing w.r.t. its

second argument and Hk(t, 0) = 0 for t ∈ [sk, tk+1].
In our study we will use some comparison results with both defined above types of

derivatives of Lyapunov functions.

3.1. Comparison Result with RL Fractional Derivative of Lyapunov Functions.

Lemma 1. Assume the following conditions are satisfied:

1. Conditions (A2)–(A5) are satisfied.
2. The function x∗(t) = x(t; x0), x∗ ∈ PC1−q(R+,Rn) is a solution of Equation (1).
3. The function u(t) = u(t; u0), u ∈ PC1−q(R+,R) is a solution of Equation (6).
4. The function V ∈ Λ(R+,Rn) is such that

(i) The inequality

RL
ti

Dq
t V(t, x∗(t)) ≤ g(t, V(t, x∗(t))), t ∈ (ti, si], i = 0, 1, 2, . . . ,

holds.
(ii) For all i = 0, 1, 2, . . . the inequalities

V(t, Ψi(t, x∗(si − 0))) ≤ Hi(t, V(si, x∗(si − 0))), t ∈ [si, ti+1],

hold.
(iii) For all i = 1, 2, . . . the inequalities

lim
t→ti+

(t− ti)
1−qV(t, x∗(t)) ≤ V(ti, x∗(ti)))

Γ(q)

hold.

If limt→0+ t1−qV(t, x∗(t)) ≤ u0
Γ(q) , then the inequality

V(t, x∗(t)) ≤ u(t) for t > 0 (7)

holds.

Proof. Let m(t) = V(t, x∗(t)), t > 0.
Case 1. Let t ∈ (0, s0].
Let ε > 0 be an arbitrary number. We will prove

m(t) < u(t) + tq−1ε, t ∈ (0, s0]. (8)
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From the choice of the initial point u0 we obtain

lim
t→0+

t1−qV(t, x∗(t)) ≤ u0

Γ(q)
<

u0

Γ(q)
+ ε = lim

t→0+
t1−qu(t) + lim

t→0+
t1−qtq−1ε

= lim
t→0+

t1−q
(

u(t) + tq−1ε
)

.
(9)

From inequalities (9) there exists a number δ > 0 such that t1−qV(t, x∗(t)) < t1−q(
u(t) + tq−1ε

)
for t ∈ (0, δ), i.e., Equation (8) is satisfied on (0, δ).

If δ ≥ s0 the inequality in Equation (8) is proved.
If δ < s0 we assume the inequality in Equation (8) is not true. Then there exists a point

t∗ ∈ [δ, s0] such that m(t∗) = u(t∗) + (t∗)q−1ε, m(t) < u(t) + tq−1ε, t ∈ (0, t∗).
From condition (A4), equality RL

0 Dq
t tq−1 = 0 and Proposition 1 with t1 = t∗ and

v(t) = m(t)− u(t)− tq−1ε we obtain the inequality

RL
0 Dq

t m(t)|t=t∗ ≥ RL
0 Dq

t

(
u(t) + tq−1ε

)
|t=t∗ =

RL
0 Dq

t u(t)|t=t∗ = g(t∗, u(t∗))

= g
(

t∗, m(t∗)− (t∗)q−1ε
)
> g(t∗, m(t∗)).

(10)

The inequality of Equation (10) contradicts condition 4 (i). Therefore, the inequality in
Equation (8) is true for any arbitrary number ε and thus Equation (7) holds for t ∈ (0, s0].

Case 2. Let t ∈ (s0, t1]. Then from conditions 4(ii), (A5), and the inequality V(s0, x∗(s0−
0)) ≤ u(s0) we get V(t, x∗(t)) = V(t, Ψ0(t, x∗(s0 − 0)) ≤ H0(t, V(s0, x∗(s0 − 0))) ≤
H0(t, u(s0 − 0)) = u(t), i.e., the inequality of Equation (7) holds on (s0, t1].

Case 3. Let t ∈ (t1, s1].
Let ε > 0 be an arbitrary number. We will prove

m(t) < u(t) + (t− t1)
q−1ε, t ∈ (t1, s1]. (11)

From condition 4(iii) and the inequality V(t1, x∗(t1)) ≤ u(t1) = H0(t1, u(s0 − 0))
we obtain

lim
t→t1+

(t− t1)
1−qV(t, x∗(t)) ≤ V(t1, x∗(t1))

Γ(q)
≤ H0(t1, u(s0 − 0))

Γ(q)

<
H0(t1, u(s0 − 0))

Γ(q)
+ ε

= lim
t→t1+

[(t− t1)
1−qu(t)] + lim

t→t1+
(t− t1)

1−q(t− t1)
q−1ε

= lim
t→t1+

(t− t1)
1−q
(

u(t) + (t− t1)
q−1ε

)
.

(12)

From the inequality of Equation (12) there exists a number δ1 > 0 such that (t −
t1)

1−qV(t, x∗(t)) < (t − t1)
1−q
(

u(t) + (t − t1)
q−1ε

)
for t ∈ (t1, t1 + δ1), i.e., inequality

V(t, x∗(t)) < u(t) + (t− t1)
q−1ε holds, i.e., Equation (11) is satisfied on (t1, t1 + δ1).

If δ1 ≥ s1 − t1 the inequality of Equation (11) is proved.
If δ1 < s1 − t1 we assume the inequality of Equation (11) is not true. Then there

exists a point t∗1 ∈ [t1 + δ, s1] such that m(t∗1) = u(t∗1) + (t∗1 − t1)
q−1ε, m(t) < u(t) + (t−

t1)
q−1ε, t ∈ [t1, t∗1).

From condition (A4), equality RL
t1

Dq
t (t− t1)

q−1 = 0 and Proposition 1 with t1 = t∗1
and v(t) = m(t)− u(t)− (t− t1)

q−1ε we obtain the inequality

RL
t1

Dq
t m(t)|t=t∗1

≥ RL
t1

Dq
t

(
u(t) + (t− t1)

q−1ε
)
|t=t∗1

= RL
t1

Dq
t u(t)|t=t∗1

= g(t∗1 , u(t∗1))

= g
(

t∗1 , m(t∗1)− (t∗1 − t1)
q−1ε

)
> g(t∗1 , m(t∗1)).

(13)
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The inequality of Equation (13) contradicts condition 4(i). Therefore, the inequality of
Equation (11) is true for any arbitrary number ε and thus Equation (7) holds for t ∈ (s1, t1].

Following the above procedure we prove the claim of Lemma 1.

3.2. Comparison Result with Dini Fractional Derivative of Lyapunov Functions.

Lemma 2. Assume:

1. Conditions 1,2,3, 4(ii) and 4(iii) of Lemma 1 are satisfied.
2. The function V ∈ Λ(R+,R) is such that the inequality

Dtk
(1)V(t, x∗(t)) ≤ g(t, V(t, x∗(t)), for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

holds.

If limt→0+ t1−qV(t, x∗(t)) ≤ u0
Γ(q) , then the inequality V(t, x∗(t)) ≤ u(t) for t > 0 holds.

Proof. The proof is similar to the one in Lemma 1 where instead of the RL fractional
derivative of the Lyapunov function we will use the Dini fractional derivative. The main
difference between both proofs of Lemma 1 and Lemma 2, respectively, is connected with
the inequalities of Equations (10) and (13) for t∗ ∈ (t0, s0] and t∗1 ∈ (t1, s1].

We will consider the general case of (tk, sk], k = 0, 1, 2, . . . , i.e., assume that for a
fixed non-zero integer k there exist δk ∈ (0, tk − sk) and a point t∗k ∈ (tk + δk, sk] such that
m(t∗k ) = u(t∗k ) + (t∗k − tk)

q−1ε, m(t) < u(t) + (t− tk)
q−1ε, t ∈ (tk, t∗k ).

According to Remark 6 with τ = t∗k we obtain the inequality

GL
tk

Dq
+m(t)|t=t∗k

≥ GL
tk

Dq
+u(t)|t=t∗k

+ GL
0 Dq

+((t− tk)
q−1ε)|t=t∗k

= GL
tk

Dq
+u(t)|t=t∗k

= g(t∗k , u(t∗k )) = g(t∗k , m(t∗k )− (t∗k − tk)
q−1ε) > g(t∗k , m(t∗k )).

(14)

For any fixed t ∈ (tk, sk] we have (see Equation (2))

GL
tk

Dq
+m(t) = lim sup

h→0+

1
hq

[
t−tk

h ]

∑
r=0

(−1)r
qCrm(t− rh)

= lim sup
h→0+

1
hq

[
t−tk

h ]

∑
r=0

(−1)r
qCrV(t− rh, x∗(t− rh))

= lim sup
h→0+

1
hq

{
V(t, x∗(t))−

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x∗(t− rh))

]

= lim sup
h→0+

1
hq

[
V(t, x∗(t))−

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x∗(t)− hq f (t, x∗(t))

]

+
[

t−tk
h ]

∑
r=1

(−1)r+1
qCr

[
V(t− rh, x∗(t)− hq f (t, x∗(t))−V(t− rh, x∗(t− rh))

]}
.

(15)

Denote

F(t, x∗, tk, h) =
[

t−tk
h ]

∑
r=1

(−1)r+1
qCrx∗(t− rh).

From Equation (1) it follows

GL
tk

Dq
t x∗(t) = lim sup

h→0+

[
x∗(t)− F(t, x∗, tk, h)

]
= RL

tk
Dq

t x∗(t) = f (t, x∗(t)).

Therefore, x∗(t)− hq f (t, x∗(t)) = F(t, x∗, tk, h) + Ω(hq) where limh→0+
||Ω(hq)||

hq = 0.



Symmetry 2021, 13, 730 10 of 17

Therefore, for any r = 1, 2, . . . and h > 0

V(t− rh, x∗(t)− hq f (t, x∗(t))−V(t− rh, x∗(t− rh))

≤ L||F(t, x∗, tk, h) + Ω(hq)− x∗(t− rh)||

≤ L||
[

t−tk
h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− x∗(t− rh)||+ L||Ω(hq)||.

(16)

Thus, by (1 + u)α = 1 + ∑∞
k=1 αCkuk, i.e., 1 = ∑∞

k=1(−1)k+1
αCk, we obtain

||
[

t−tk
h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− x∗(t− rh)||

= ||
[

t−tk
h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− (

∞

∑
j=1

(−1)j+1
qCj)x∗(t− rh))||

≤ ||
[

t−tk
h ]

∑
j=1

(−1)j+1
qCj[x∗(t− jh)− x∗(t− rh)]||

+ ||
∞

∑
j=[

t−tk
h ]

(−1)j+1
qCj|| ||x∗(t− rh)||.

(17)

From Equations (15)–(17) and condition 2 of Lemma 2 we get

GL
tk

Dq
+m(t) ≤ Dtk

(1)V(t, x∗(t)) + L lim sup
h→0+

||Ω(hq)||
hq

[
t−tk

h ]

∑
r=1

(−1)r+1
qCr

+ L lim sup
h→0+

1
hq

[
t−tk

h ]

∑
r=1

(−1)r+1
qCr||

[
t−tk

h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− x∗(t− rh)||

= Dtk
(1)V(t, x∗(t))

+ L lim sup
h→0+

1
hq

[
t−tk

h ]

∑
r=1

(−1)r+1
qCr||

[
t−tk

h ]

∑
j=1

(−1)j+1
qCj[x∗(t− jh)− x∗(t− rh)]||

+ L lim sup
h→0+

||
∞

∑
j=[

t−tk
h ]

(−1)j+1
qCj||

1
hq

[
t−tk

h ]

∑
r=1

(−1)r+1
qCr||x∗(t− rh)||

= Dtk
(1)V(t, x∗(t)) ≤ g(t, V(t, x∗(t))).

(18)

The inequality of Equation (18) contradicts the inequality of Equation (14).

4. Main Results

We will obtain some sufficient conditions for generalized Lipschitz stability in time by
Lyapunov functions and their two fractional derivatives.

4.1. RL Fractional Derivative of Lyapunov Functions Among the Solutions.

Theorem 1. Let the following conditions be satisfied:

1. Conditions (A1)–(A5) are fulfilled.
2. There exists a function V ∈ Λ(R+,Rn) such that
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(i) there exists a sequence of numbers {τi}∞
i=0, 0 < τi < λ = infi(si − ti) such that

the inequality

b(||x||) ≤ V(t, x), x ∈ Rn, t ∈ ∪∞
i=0[ti + τi, ti+1] (19)

holds, where b ∈ M([0, ρ]), ρ > 0;

(ii) for any function y ∈ C1−q([0, s0],Rn) : limt→0+

(
t1−qy(t)

)
= y0 ∈ Sρ the inequality

t1−qV(t, y(t))|t=0+ = lim
t→0+

t1−qV(t, y(t)) ≤ a(||y0||)

holds with a ∈ K([0, ρ]);
(iii) For all i = 0, 1, 2, . . . the inequalities

V(t, Ψi(t, x)) ≤ Hi(t, V(si, x)), t ∈ (si, ti+1], x ∈ Rn,

hold;
(iv) for any function y ∈ C1−q([tk, sk],Rn) : limt→tk+

(
(t− tk)

1−qy(t)
)
= yk

Γ(q) < ∞
the inequality

(t− tk)
1−qV(t, y(t))|t=tk+ = lim

t→tk+
(t− tk)

1−qV(t, y(t)) ≤ V(tk, yk)

holds;
(v) for any initial value x0 ∈ Sρ and the corresponding solution x(t) = x(t; x0) of Equation

(1) the inequality

RL
tk

Dq
t V(t, x(t)) ≤ g(t, V(t, x(t))), t ∈ (tk, sk], k = 0, 1, 2, . . . ,

holds.

3. The zero solution of the scalar comparison Equation (6) is generalized Lipschitz stable in time.

Then the zero solution of the system in Equation (1) is generalized Lipschitz stable in time.

Proof. Let the zero solution of Equation (6) be generalized Lipschitz stable in time. There-
fore, there exist a nonegative integer N, a sequence of numbers {ςi}∞

i=0, ςi ∈ (0, δ), 0 < δ <
λ = infi(si − ti), a number δ1 > 0, and M1 ≥ 1 such that for any for u0 ∈ Rn : |u0| < δ1
the inequality

|u(t; u0)| ≤ M1 |u0| for t ∈ ∪∞
i=N [ti + ςi, ti+1] (20)

holds, where u(t; u0) is a solution of Equation (6) with the initial value u0.
From the inclusions a ∈ K([0, ρ]) and b ∈ M([0, ρ]) there exists a function qb(u) ≥ 1

for α ≥ 1 and a positive constant Ka such that

αr ≤ b(rqa(α)), r ∈ [0, ρ], (21)

and
a(r) ≤ Kar, r ∈ [0, ρ]. (22)

Without loss of generality we can assume Ka ≥ 1.
Choose the positive constants M2, δ such that M2 > max{1, qb(M1Ka)} ≥ 1 and

δ = min
{

ρ, δ1
Ka

}
. Choose the initial value x0 ∈ Rn : ||x0|| < δ, thus x0 ∈ Sρ.

Consider the solution x∗(t) = x(t; x0) of Equation (1) for the chosen initial value x0.
Then applying Γ(q) > 1 for q ∈ (0, 1) we obtain || limt→0+ t1−qx∗(t)|| = || x0

Γ(q) || <
δ

Γ(q) <

δ ≤ ρ , i.e., limt→0+ t1−qx∗(t) ∈ Sρ and according to condition 2(ii) the inequalities

t1−qV(t, x∗(t))|t=0+ < a(
||x0||
Γ(q)

) < a(||x0||) (23)



Symmetry 2021, 13, 730 12 of 17

hold.
Consider the solution u∗(t) of Equation (6) with u∗0 = limt→0+ t1−qV(t, x∗(t)). From

the choice of x0, the inequalities of Equations (22) and (23) and condition 2(ii) we obtain
u∗0 = limt→0+ t1−qV(t, x∗(t)) ≤ a( ||x0||

Γ(q) ) < a(||x0||) ≤ Ka||x0|| < Kaδ ≤ δ1. Therefore, the
function u∗(t) satisfies Equation (20) for ∪∞

i=N [ti + ςi, ti+1] with u0 = u∗0 , where u∗(t) =
u(t; u∗0) is a solution of Equation (6) with the initial value u∗0 .

From condition 2(v) of Theorem 1 for x(t) ≡ x∗(t) we have condition 4(i) of Lemma 1.
From condition 2(iii) of Theorem 1 for x = x∗(si − 0) we have condition 4(ii) of

Lemma 1.
From condition 2(iv) of Theorem 1 for y(t) ≡ x∗(t) and yk = x∗(ti − 0) we have

condition 4(iii) of Lemma 1.
Therefore, all conditions of Lemma 1 are satisfied and thus,

V(t, x∗(t)) ≤ u∗(t) for t > 0. (24)

Let Ti = max{τi, ςi} for i = 0, 1, 2, . . . . Then for any k = 0, 1, 2, . . . the inclusions
[tk + Tk, tk+1] ⊂ [tk + τk, tk+1] and [tk + Tk, tk+1] ⊂ [tk + ςk, tk+1] hold.

Let k ≥ N be a fixed integer. Then from conditions 2(i), 2(ii), the inequalities of
Equations (20)–(22) with r = ||x0||, α = M1Ka > 1 and Equations (23) and (24) we obtain
for t ∈ [tk + Tk, tk+1]

b(||x∗(t)||) ≤ V(t, x∗(t)) ≤ u∗(t) < M1|u∗0 | = M1t1−qV(t, x∗(t))|t=0+ < M1a(||x0||)
≤ M1Ka||x0|| ≤ b(qb(M1Ka)||x0||) ≤ b(M2||x0||).

(25)

The inequality in Equation (25) proves the claim of Theorem 1.

Theorem 2. Let the conditions of Theorem 1 be satisfied where a(s) = A2sp, A2 > 0, p ≥ 1 in
condition 2(ii) and the condition 2(i) is replaced by :

2∗(i) there exists a sequence of numbers {τi}∞
i=0, 0 < τi < λ = infi(si − ti) such that

the inequality
µ(t)||x||p ≤ V(t, x), x ∈ Rn, t ∈ ∪∞

i=0[ti + τi, ti+1], (26)

holds where µ(t) ≥ A1, t ∈ ∪∞
i=0[ti + τi, ti+1], A1 > 0 is a constant.

Then the zero solution of the system in Equation (1) is generalized Lipschitz stable in time.

Proof. The proof is similar to the one in Theorem 1 where M2 = p
√

M1 A2
A1

and δ =

min
{

λ, p
√

δ1
A2

}
.

4.2. Dini Fractional Derivative of Lyapunov Functions Among the Solutions.

Theorem 3. Let the conditions of Theorem 1 be satisfied where condition 2(v) is replaced by :
2(v*) the inequality

Dtk
(1)V(t, x) ≤ g(t, V(t, x)), x ∈ Rn, t ∈ (tk, sk], k = 0, 1, 2, . . . ,

holds.
Then the zero solution of Equation (1) is generalized Lipschitz stable in time.

The proof of Theorem 3 is similar to the one of Theorem 1 where Lemma 2 is applied
instead of Lemma 1.

Theorem 4. Let the conditions of Theorem 1 be satisfied where a(s) = A2sp, A2 > 0, p ≥ 1 in
condition 2(ii), the condition 2(i) is replaced by condition 2*(i) of Theorem 2 and the condition 2(v)
is replaced by condition 2(v*) of Theorem 3.
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Then the zero solution of Equation (1) is generalized Lipschitz stable in time.

The proof of Theorem 4 is similar to the one of Theorem 2 with the application of
Lemma 2 so we omit it.

Example 2. Let the sequences {ti}∞
i=0, t0 = 0, and {si}∞

i=0 be given such that supk(tk+1 −
tk) = L ≥ 1. Consider IVP for the system of non-instantaneous impulsive RL fractional
differential equations

RL
tk

Dq
t x1(t) = −

(
0.5tq−1 + t−q Γ(2− q)

Γ(2− 2q)
+ x2

2(t)
)

x1(t),

RL
tk

Dq
t x2(t) = −

(
0.5tq−1 + t−q Γ(2− q)

Γ(2− 2q)
−

x2
1(t)

1 + x2
2(t)

)
x2(t)

for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

x1(t) = Ψ1
k(t, x1(sk − 0), x2(sk − 0)),

x2(t) = Ψ2
k(t, x1(sk − 0), x2(sk − 0)), for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

lim
t→tk+

[(t− tk)
1−qx1(t)] =

Ψ1
k−1(tk, x1(sk−1 − 0), x2(sk−1 − 0))

Γ(q)
,

lim
t→tk+

[(t− tk)
1−qx2(t)] =

Ψ2
k−1(tk, x1(sk−1 − 0), x2(sk−1 − 0))

Γ(q)
, k = 1, 2, . . . ,

lim
t→t0+

[t1−qx1(t)] =
x0,1

Γ(q)
, lim

t→t0+
[t1−qx2(t)] =

x0,2

Γ(q)
,

(27)

where x ∈ R2, x = (x1, x2), Ψ1
k(t, x1, x2) = x1

t , Ψ2
k(t, x1, x2) = x2

t for t ∈ [sk, tk+1], k =
0, 1, 2, . . . .

Consider the Lyapunov function V(t, x) = (t − tk)
1−q(x2

1 + x2
2) for t ∈ (tk, tk+1], k =

0, 1, 2, . . . , and x = (x1, x2) ∈ R2. The function V ∈ Λ([0, ∞),R2
) is locally Lipschitz with a

constant L.
Thus, condition 2*(i) of Theorem 2 is satisfied with p = 2, µ(t) = (t − tk)

1−q for t ∈
(tk, tk+1) and τk : τk = tk +

1−q
√

0.1, A1 = 1−q
√

0.1.

Let the function y ∈ C1−q([0, s0],R2), y = (y1, y2), be such that limt→0+

(
t1−qyk(t)

)
=

y0,k, k = 1, 2. Then

lim
t→0+

t1−qV(t, y(t)) = lim
t→0+

t1−q
(

t1−q(y2
1(t) + y2

2(t)
)

=
(

lim
t→0+

t1−qy1(t)
)2

+
(

lim
t→0+

t1−qy2(t)
)2

= y2
0,1 + y2

0,2 = ||y0||2.
(28)

Therefore, condition 2(ii) of Theorem 1 is satisfied with a(s) = A2sp, A2 = 1, p = 2.

Let the function y ∈ C1−q([tk, sk],R2) : limt→tk+

(
(t− tk)

1−qy(t)
)
= yk

Γ(q) < ∞, yk =

(y1,k, y2,k). Then for t ∈ (tk, tk+1] we obtain the inequality

(t− tk)
1−qV(t, y(t))|t=tk+ = lim

t→tk+
(t− tk)

1−qV(t, y(t))

= lim
t→tk+

(t− tk)
1−q(t− tk)

1−q(y1(t)2 + y2(t)2)

=
(

lim
t→tk+

(t− tk)
1−qy1(t)

)2
+
(

lim
t→tk+

(t− tk)
1−qy2(t)

)2
< y2

1,k + y2
2,k

≤ (tk − tk−1)
1−q(y2

1,k + y2
2,k) = V(tk, yk).

(29)

Therefore, condition 2(iv) of Theorem 1 is satisfied.
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Let k be a fixed non-negative integer and t ∈ [si, ti+1], x ∈ R2, x = (x1, x2). Then we obtain
the inequalities

V(t, Ψi(t, x∗(si − 0))) = (t− ti)
1−q
( x2

1
t2 +

x2
2

t2

)
= Hi(t, V(si, x∗(si − 0))), (30)

Therefore, condition 2(iii) of Theorem 1 is satisfied with Hi(t, u) = u
t2 . The RL fractional

derivative of the Lyapunov function, i.e., RL
tk

Dq
t V(t, x(t)) = RL

tk
Dq

t (t− tk)
1−q(x2

1(t) + x2
2(t)) =

1
Γ(1−q)

d
dt

t∫
a
(t− s)−q(s− tk)

1−q(x2
1(s) + x2

2(s))ds with x(t) = (x1(t), x2(t)), t > 0 being the

solution of Equation (27), is very difficult to obtain, so the results with the RL fractional derivative
of Lyapunov functions are not applicable.

We will apply the Dini fractional derivative of the function V among Equation (27).
Let k be a fixed non-negative integer and t ∈ (tk, sk], x1, x2 ∈ R. Then we get

Dtk
(27)(t− tk)

1−q(x2
1 + x2

2) = lim sup
h→0+

1
hq

[
(t− tk)

1−q(x2
1 + x2

2)

−
[

t−tk
h ]

∑
r=1

(−1)r+1
qCr(t− rh− tk)

1−q[(x1 − hq f1(t, x))2 + (x2 − hq f2(t, x))2]
]

= lim sup
h→0+

1
hq (t− tk)

1−q
[

x2
1 − (x1 − hq f1(t, x))2 + x2

2 − (x2 − hq f2(t, x))2
]

+ lim sup
h→0+

1
hq [(x1 − hq f1(t, x))2 + (x2 − hq f2(t, x))2]

[
t−tk

h ]

∑
r=0

(−1)r
qCr(t− tk − rh)1−q

= lim sup
h→0+

1
hq (t− tk)

1−q
[
(2x1 − hq f1(t, x))hq f1(t, x) + 2(x2 + hq f2(t, x))hq f2(t, x)

]
+ [x2

1 + x2
2]

RL
tk

Dq
t (t− tk)

1−q

= 2(t− tk)
1−qx1 f1(t, x) + 2(t− tk)

1−qx2 f2(t, x) + [x2
1 + x2

2]
Γ(2− q)

Γ(2− 2q)
(t− tk)

1−2q

= 2(t− tk)
1−qx1(−0.5tq−1x1 − t−q Γ(2− q)

Γ(2− 2q)
x1 − x2

2x1)

+ 2(t− tk)
1−qx2(−0.5tq−1x2 − t−q Γ(2− q)

Γ(2− 2q)
x2 +

x2x2
1

1 + x2
2
)

+ [x2
1 + x2

2]
Γ(2− q)

Γ(2− 2q)
(t− tk)

1−2q

≤ 2(t− tk)
1−qx1(−0.5tq−1x1 − (t− tk)

−q Γ(2− q)
Γ(2− 2q)

x1 − x2
2x1)

+ 2(t− tk)
1−qx2(−0.5tq−1x2 − t−q Γ(2− q)

Γ(2− 2q)
x2 +

x2x2
1

1 + x2
2
)

+ [x2
1 + x2

2]
Γ(2− q)

Γ(2− 2q)
(t− tk)

1−2q = −V(t, x)− [x2
1 + x2

2]
Γ(2− q)

Γ(2− 2q)
(t− tk)

1−2q

≤ −V(t, x) for t > 0, x ∈ R2.

(31)

Therefore, condition 2(v*) of Theorem 3 is satisfied with g(t, u) ≡ −u, u ∈ R.
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Consider the IVP for the scalar linear NIRLFDE

RL
ti

Dq
t u(t) = −u(t) for t ∈ (ti, si], i = 0, 1, 2, . . . ,

lim
t→ti+

[(t− ti)
1−qu(t)] =

u(si−1 − 0)
tiΓ(q)

, for i = 1, 2, . . . ,

u(t) = u(si − 0)t for t ∈ (si, ti+1], i = 0, 1, 2, . . . ,

lim
t→0+

[t1−qu(t)] =
u0

Γ(q)
,

(32)

where u0 ∈ R. According to Example 1 the solution of Equation (32) is given by

u(t) =


u0

(
∏k−1

i=0
(si−ti)

q−1Eq,q(−(si−ti)
q)

ti+1

)
(t− tk)

q−1Eq,q(−(t− tk)
q), if t ∈ (tk, sk],

u0

(
∏k−1

i=0
(si−ti)

q−1Eq,q(−(si−ti)
q)

ti+1

)
(sk−tk)

q−1Eq,q(−(sk−tk)
q)

t , if t ∈ (sk, tk+1],

k = 0, 1, 2, . . . .

For q ∈ (0, 0.5) the solution u(t) is generalized Lipschitz stable in time (for particular values
q = 0.3, tk = 2k, sk = k, k = 1, 2, . . . and u0 = 1, u0 = 1.5 the graphs of the solutions are given
in Figure 2 and the graphs of the solutions for q = 0.5 are given in Figure 3).

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

u0=1

u0=1.5

Figure 2. Example 2. Graph of the solution of Equation (32) for a = −1, q = 0.3.
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0.5

1.0

1.5
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2.5

u0=1

u0=1.5

Figure 3. Example 2. Graph of the solution of Equation (32) for a = −1, q = 0.5.

For q ∈ (0.5, 1) the solution u(t) is not generalized Lipschitz stable in time (for particular
values q = 0.8, tk = 2k, sk = k, k = 1, 2, . . . and u0 = 1, u0 = 1.5 the graphs of the solutions are
given in Figure 4).



Symmetry 2021, 13, 730 16 of 17

0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

u0=1

u0=1.5

Figure 4. Example 2. Graph of the solution of Equation (32) for a = −1, q = 0.8.

According to Theorem 4 if q ∈ (0, 0.5] the zero solution of the system in Equation (27) is
generalized Lipschitz stable in time.

5. Conclusions

A system of nonlinear RL fractional differential equations with non-instantaneous im-
pulses was studied. We studied the case when the lower limit of the RL fractional derivative
was changed at each stop point of the action of the impulses. This led to a singularity of the
solution at the initial time and the stop time points of impulses and it required appropriate
initial conditions as well as non-instantaneous impulsive conditions. A generalization of
the classical Lipschitz stability was defined and studied. Two types of derivatives of the
applied Lyapunov functions among the studied system were applied to obtain sufficient
conditions for the defined stability. Some comparison results were obtained.

The study in this paper could be continued in future works in various ways. For
example, the obtained theoretical results could be applied to some models described by
RL fractional differential equations with non-instantaneous impulses to study the stability
properties of the equilibrium. Theoretically, some other types of stability of the solutions
for nonlinear NIRLFDE of the type in Equation (1) could be defined and studied.
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published version of the manuscript.
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