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Abstract: This article presents a new method for generating distributions. This method combines two
techniques—the transformed—transformer and alpha power transformation approaches—allowing
for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the
alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric
and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped,
near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making
it more tractable for many modeling applications. Some significant mathematical features of the
suggested distribution are determined. Estimates of the unknown parameters of the proposed
distribution are obtained using the maximum likelihood method. Furthermore, some numerical
studies were carried out, in order to evaluate the estimation performance. Three practical datasets
are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed
alpha power Weibull–exponential distribution can outperform other well-known distributions,
showing its great adaptability in the context of real data analysis.

Keywords: alpha power transformation; moment; order statistics; Rényi entropy; T-X family

1. Introduction

Several statistical distributions have been extensively applied to describe and pre-
dict existing phenomena in several disciplines, such as economics, engineering, finance,
insurance, demography, biology, and environmental and medical sciences. However, in
many of these areas, the data usually demonstrate complicated behavior and varied shapes,
associated with various degrees of skewness and kurtosis. Thus, many of the existing
standard distributions have some limitations when fitting these data, such that applying
these classical distributions may not provide an acceptable fit. Therefore, many researchers
have attempted to extend these existing classical distributions, in order to obtain greater
flexibility in modeling data from different fields of study. Some examples of these modi-
fied distributions in the literature include the exponentiated Weibull distribution [1], the
exponentiated exponential [2], and the exponentiated Gumbel distribution [3], which are
modifications of the well-known Weibull, exponential, and Gumbel distributions, respec-
tively. Extensions of the existing standard models are usually obtained by developing
techniques to generate new families of distributions; that is, new generators for families of
distributions are defined, in order to improve the goodness-of-fit of the distributions.

Various methods for generating new families of distributions have been studied re-
cently. These include the beta-generating (beta-G) family [4], as well as the Kumaraswamy-
generating (Kw-G) family [5]. The beta-G and Kw-G families were developed using
distributions defined on the support [0, 1] as generators. The auhtors of [6] developed a
general method, called the transformed–transformer (T–X) family of distributions, which
enable the use of any continuous distribution as the generator. This family can be described
as follows:
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If r(t) and R(t) are the probability density function (PDF) and cumulative distribution
function (CDF) of a random variable (RV) T, respectively, where T ∈ [a, b] for −∞ ≤ a <
b ≤ ∞, then the CDF and PDF of the T–X family are expressed, respectively, as

F(x) =
∫ W(G(x))

a
r(t)dt, (1)

f (x) =
{

d
dx

W(G(x)))
}

r{W(G(x))}, (2)

where W(G(x)) is a function of the CDF G(x) of any RV X that meets the conditions
described in [6].

Many new distributions have been defined and studied on the basis of the T–X tech-
nique, using different forms of W(G(x)). For example, the study in [7] used W(G(x)) =
log[G(x)/(1− G(x))] to introduce the Gumbel–Weibull distribution, the study in [8] used
W(G(x)) = − log(1− Gα(x)) to introduce the exponentiated Weibull–exponential dis-
tribution, and the studies in [9,10] used W(G(x)) = − log[1 − G(x)] to introduce the
Weibull–Pareto and gamma–normal distributions, respectively.

A new innovative technique, named alpha power transformation (APT), has recently
been developed [11]. The APT can be considered a useful method to incorporate skewness
into any distribution. The CDF and PDF of an APT family can be expressed as

FAPT(x) =


αF(x)−1

α−1 if α > 0, α 6= 1

F(x) if α = 1,
(3)

fAPT(x) =


log α
α−1 f (x)αF(x) if α > 0, α 6= 1

f (x) if α = 1,
(4)

where F(x) and f (x) represent the CDF and PDF of any continuous distribution, respec-
tively.

Various studies have used this technique to introduce new distributions. These include
the studies of [11], where the APT method was applied to the exponential distribution, [12],
who presented the APT–Weibull distribution, [13] introduced the APT–Pareto distribu-
tion, [14] proposed the APT–inverse Lindley distribution, [15], introduced the APT–log
logistic distribution, and [16] have recently proposed the alpha power exponentiated
Weibull–exponential distribution.

In this paper, we combine the T–X family and APT techniques by replacing F(x)
in (3) by (1) and f (x) in (4) by (2) to generate new families of distributions. This newly
established approach can add great flexibility, in terms of fitting real-life applications.

If we choose W(G(x)) = − log[1− G(x)] in (1), then (according to (2)) the PDF for
the T–X family is written as

f (x) =
{

g(x)
1− g(x)

}
r{− log (1− (G(x)}. (5)

If an RV T follows the Weibull distribution, with a and γ as the shape and scale

parameters, respectively, then r(t) = a
γ

(
t
γ

)a−1
e−
(

t
γ

)a

, t ≥ 0. From (5), the PDF of the
Weibull–G family can be obtained as

fWG(x) =
a
γ

g(x)
1− G(x)

(
− log (1− G(x))

γ

)a−1

exp
[
−
(
− log (1− G(x))

γ

)a]
, (6)
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with corresponding CDF

FWG(x) = 1− exp
[
−
(
− log (1− G(x))

γ

)a]
. (7)

The Weibull–exponential distribution (WED) was derived as a member of the Weibull–
G family [9], where G is an exponential RV with density function g(x) = λe−λx , x ≥
0, λ > 0. Therefore, the PDF and CDF of the WED may be presented as

fWE(x) =
aλ

γ

(
λx
γ

)a−1
exp
[
−
(

λx
γ

)a]
, (8)

FWE(x) = 1− exp
[
−
(

λx
γ

)a]
. (9)

This paper introduces a new distribution, named the alpha power Weibull–exponential
distribution (APWED), based on a novel technique for generating new distributions with
more flexibility in modeling real data in a variety of fields. The approach is based on a
combination of the T–X and APT approaches.

The rest of this article is arranged as follows: In Section 2, the APWED is introduced,
along with some special cases of the APWED. Section 3 discusses some fundamental
properties of APWED. In Section 4, we derive the maximum likelihood estimates (MLEs)
of APWED parameters. In Section 5, we carry out a simulation study. In Section 6, the
APWED is applied to three real applications, in order to analyze its usefulness. Finally, we
report our conclusions in Section 7.

2. The Alpha Power Weibull—Exponential Distribution

The CDF of an RV X that has a four-parameter APWED can be described as follows

F(x) =


α

1−exp
[
−( λx

γ )
a]
−1

α−1 if α > 0, α 6= 1

1− exp
[
−
(

λx
γ

)a]
if α = 1,

(10)

where α, λ,γ, a > 0 and x ≥ 0.
The corresponding PDF is given as

f (x) =


log α
α−1

aλ
γ

(
λx
γ

)a−1
exp
[
−
(

λx
γ

)a]
α

1−exp
[
−
(

λx
γ

)a]
if α > 0, α 6= 1

aλ
γ

(
λx
γ

)a−1
exp
[
−
(

λx
γ

)a]
if α = 1.

(11)

The survival function, S(x), of the APWED can be obtained as

S(x) =


α

α−1

(
1− α

−exp
[
−
(

λx
γ

)a])
if α > 0, α 6= 1

exp
[
−
(

λx
γ

)a]
if α = 1.

(12)

The hazard rate function, h(x), of the APWED is expressed as

h(x) =


aλ
γ

(
λx
γ

)a−1
exp
[
−( λx

γ )a
]

α
−exp[−( λx

γ )a ]

1−α
−exp[−( λx

γ )a]
logα if α > 0, α 6= 1

aλ
γ

(
λx
γ

)a−1
if α = 1.

(13)
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2.1. Special Cases of the APWED

1. The APWED reduces to the WED at α = 1.
2. The APWED reduces to the Weibull distribution at α = λ = 1.
3. The APWED reduces to the exponential distribution when α = γ = a = 1.

Figures 1 and 2 illustrate the various shapes of the PDF and h(x) of the APWED for
some particular parameters.
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Figure 1. Plots of the APWED PDF, for some certain values.
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Figure 2. Plots of the APWED hazard function, for some certain values.

Figure 1 shows that the density of the APWED can take a number of forms, including
symmetric, near symmetric, inverted J-shaped, right-skewed, and left-skewed shapes.
Furthermore, Figure 2 shows that the hazard rate of the APWED features a wide variety of
asymmetrical shapes. These results can be viewed as clear measures of the high degree of
versatility of the APWED.
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2.2. Expansion for the PDF

A simple expansion for the APWED PDF in (11) is provided, using the series represen-
tation, as follows

α−z =
∞

∑
q=0

(−1)q (log α)q

q!
(z)q. (14)

Therefore, expanding α
−exp

[
−
(

λx
γ

)a]
in (11) using (14), we have

f (x) =
α log α

α− 1
aλ

γ

(
λx
γ

)a−1
exp
[
−
(

λx
γ

)a] ∞

∑
q=0

(−1)q (log α)q

q!

(
exp
[
−
(

λx
γ

)a])q

.

After some algebraic simplification, the PDF of APWED becomes

f (x) =
α

α− 1
aλ

γ

(
λx
γ

)a−1 ∞

∑
q=0

(−1)q (log α)q+1

q!
exp
[
−(q + 1)

(
λx
γ

)a]
. (15)

3. Properties of the APWED

Some fundamental statistical properties of the APWED are presented in this section,
as follows

3.1. Quantile Function

The pth quantile function (0 < p < 1) of the APWED can be obtained as

xp =
γ

λ

(
− log

(
1− log(p(α− 1) + 1)

log α

)) 1
a
. (16)

As a result, when setting p = 0.5, the median of the APWED can be obtained as

x0.50 =
γ

λ

(
− log

(
1− log(0.50(α− 1) + 1)

log α

)) 1
a
. (17)

For details, see [17].

3.2. Moments

If X ∼ APWED(α, λ, γ, a), then the rth moment of X can be obtained as

µr =E(xr) =
∫ ∞

0
xr f (x)dx

=
α

α− 1
aλ

γ

(
λ

γ

)a−1 ∞

∑
q=0

(−1)q (log α)q+1

q!

∫ ∞

0
xr+a−1exp

[
−(q + 1)

(
λx
γ

)a]
dx.

Substituting y = (q + 1)
(

λx
γ

)a
, the rth moment of the APWED can be expressed as

µr = E(xr) =
α

α− 1

∞

∑
q=0

(−1)q (log α)q+1

q!

(γ

λ

)r
(

1
q + 1

) r
a +1

Γ
( r

a
+ 1
)

. (18)

Therefore, the mean of the APWED is easily expressed as

µ = E(x) =
α

α− 1

∞

∑
q=0

(−1)q (log α)q+1

q!

(γ

λ

)( 1
q + 1

) 1
a +1

Γ
(

1
a
+ 1
)

. (19)
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Additionally, from (18) and (19), the variance for the APWED can be given by

σ2 =E(x2)− µ2

=

(
α

α− 1

∞

∑
q=0

(−1)q (log α)q+1

q!

(γ

λ

)2
(

1
q + 1

) 2
a +1

Γ
(

2
a
+ 1
))
− µ2.

3.3. Moment Generating and Characteristic Functions

The moment generating function (MGF) of APWED is easily expressed as

Mx(t) =
α

α− 1

∞

∑
q=0

∞

∑
r=0

(−1)q (log α)q+1

q!
tr

r!

(γ

λ

)r
(

1
q + 1

) r
a +1

Γ
( r

a
+ 1
)

. (20)

Similarly, the characteristic function of APWED is as follows

φx(t) =
α

α− 1

∞

∑
q=0

∞

∑
r=0

(−1)q (log α)q+1

q!
(it)r

r!

(γ

λ

)r
(

1
q + 1

) r
a +1

Γ

(
r
a
+ 1

)
. (21)

3.4. Mean Residual Life and Mean Waiting Time

If X has the S(x) in (12), then the mean residual life function of the APWED (say, µ(t))
is obtained by

µ(t) =
1

S(t)

(
E(t)−

∫ t

0
x f (x)dx

)
. (22)

If we let I =
∫ t

0 x f (x)dx, from (15), we then have

I =
α

α− 1

∞

∑
q=0

(−1)q (log α)q+1

q!

(γ

λ

)( 1
q + 1

) 1
a +1

γ

(
(q + 1)

(
λt
γ

)a
,

1
a
+ 1
)

, (23)

where γ(a, b) =
∫ a

0 xb−1e−xdx is the lower incomplete gamma function. Thus, by substi-
tuting (12), (19), and (23) into Equation (22), µ(t) can be derived as

µ(t) =
1(

1− α
−exp[−

(
λt
γ

)a
]
)( ∞

∑
q=0

(−1)q (log α)q+1

q!

(γ

λ

)( 1
q + 1

) 1
a +1
[

Γ
(

1
a
+ 1
)
−

γ

(
(q + 1)

(
λt
γ

)a
,

1
a
+ 1
)])

− t.

(24)

If X has the CDF in (10), then its mean waiting time, (µ̄(t)), can be obtained as follows

µ̄(t) = t− 1
F(t)

∫ t

0
x f (x)dx, (25)

where I is given by (23). Thus, by substituting (10) and (23) into Equation (25), µ̄(t) can be
derived as follows

µ̄(t) = t−

(
α ∑∞

q=0(−1)q (log α)q+1

q!
( γ

λ

)( 1
q+1

) 1
a +1

γ
(
(q + 1)

(
λt
γ

)a
, 1

a + 1
))

(
α

1−exp
[
−
(

λt
γ

)a]
− 1
) . (26)
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3.5. Rényi and Shannon Entropies

The measure of uncertainty of an RV X having the PDF in (11) is determined by its
entropy. The Rényi entropy, (REX(v)), is defined as follows

REX(v) =
1

1− v
log
(∫ ∞

0
f (x)vdx

)
; v > 0, v 6= 1.

The Rényi entropy, REX(v), of APWED is, therefore, given by

REx(v) =
v

1− v
log
(

α log α

α− 1

)
− log

(
aλ

γ

)
+

1
1− v

log

(
∞

∑
q=0

(−1)q

q!
(log α)q(v)q

(v + q)v− (v−1)
a

Γ
(

v− (v− 1)
a

))
.. (27)

Furthermore, the Shannon entropy, (SEX), of X is obtained as follows

SEX = E[− log f (x)] = −
∫ ∞

0
log( f (x)) f (x)dx.

Therefore, SEX can be derived, after solving the integral, as

SEX = log
(

α− 1
α log α

γ

aλ

)
+

α

α− 1

∞

∑
q=0

(−1)q (log α)q+1

q!

[
a− 1

a(q + 1)
(k + log(q + 1)) +

1

(q + 1)2 +
(log α)

(q + 2)

]
,

(28)

where k is the Euler constant.
Table 1 presents the mean, variance, skewness, and Kurtosis of APWED for various

values of α, λ, γ, and a. For fixed λ, γ, and a, the values of the mean and the variance of
APWED increase with the increase inα. However, as the value of α increases, the skewness
and Kurtosis values decrease. Furthermore, at fixed α and γ, the mean, variance, skewness,
and Kurtosis decrease with increasing λ and a.

3.6. Order Statistics

Suppose X1, X2, ....., Xn are the observed values of a sample from the APWED and Xi:n
denotes the ith order statistic. The density of the order statistic, Xi:n, is defined in [18] as

fi:n(x) =
n!

(i− 1)!(n− i)!
f (x)[F(x)]i−1[1− F(x)]n−i. (29)

By substituting Equations (10) and (11) into (29), we have

fi:n(x) =
αn−i(−1)i−1

B(i, n− i + 1)(α− 1)n−1 f (x)
(

1− α
1−exp

[
−
(

λx
γ

)a])i−1

(
1− α

−exp
[
−
(

λx
γ

)a])n−i

, (30)

where B(a, b) refers to the beta function. Applying the binomial series expansion, given as

(x− d)n =
n

∑
y=0

(−1)y
(

n
y

)
xn−ydy, (31)
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then fi:n(x) can be expressed as

fi:n(x) =
a log α

B(i, n− i + 1)(α− 1)n

(
λ

γ

)a i−1

∑
y=0

n−i

∑
l=0

(
i− 1

y

)(
n− i

l

)
(−1)i+y+l−1

α−(n+y−i+1)
(x)a−1

exp
[
−
(

λx
γ

)a]
α
−(y+l+1)exp

[
−
(

λx
γ

)a]
.

(32)

Table 1. The mean, variance, skewness, and kurtosis of the APWED for certain selected values of
the parameters.

α λ γ a Mean Variance Skewness Kurtosis

0.5

0.5

2

1 3.3378 13.1798 5.3935 7.3632
1 2 1.5962 0.7901 1.8985 2.1830
2 3 0.8298 0.1018 1.4105 1.5306
3 5 0.5847 0.0199 1.1602 1.2061

5.5 6 0.3246 0.0044 1.1148 1.1478

0.9

0.5

2

1 3.8953 15.5766 4.6210 6.1819
1 2 1.7452 0.8497 1.7866 2.0266
2 3 0.8833 0.1050 1.3672 1.4716
3 5 0.6079 0.0197 1.1457 1.1867

5.5 6 0.3354 0.0043 1.1049 1.1346

1.5

0.5

2

1 4.4136 17.5837 4.0788 5.3732
1 2 1.8783 0.8858 1.6952 1.9026
2 3 0.9303 0.1057 1.3291 1.4210
3 5 0.6281 0.0192 1.1322 1.1689

5.5 6 0.3448 0.0042 1.0954 1.1222

2

0.5

2

1 4.7150 18.6460 3.8192 4.9917
1 2 1.9534 0.8990 1.6473 1.8387
2 3 0.9566 0.1052 1.3082 1.3938
3 5 0.6392 0.0188 1.1244 1.1588

5.5 6 0.3499 0.0040 1.0899 1.1150

2.5

0.5

2

1 4.9516 19.4253 3.6379 4.7276
1 2 2.0114 0.9057 1.6121 1.7923
2 3 0.9767 0.1045 1.2925 1.3734
3 5 0.6477 0.0184 1.1184 1.1511

5.5 6 0.3538 0.0039 1.0856 1.1095

6

0.5

2

1 5.8843 22.0241 3.0690 3.9099
1 2 2.2316 0.9040 1.4921 1.6361
2 3 1.0519 0.0985 1.2367 1.3019
3 5 0.6790 0.0165 1.0962 1.1227

5.5 6 0.3683 0.0035 1.0696 1.0890

4. Maximum Likelihood Estimates

If x1, x2, x3, ...., xn is a random sample of size n from the APWED, then the log-
likelihood (`) for the vector of parameters θ = (α, λ, γ, a) can be written as

`(α, λ, γ, a; x) =n log
(

log α

α− 1

)
+ n log

(
αaλ

γ

)
+ (a− 1)

n

∑
i=1

log
(

λxi
γ

)
−

n

∑
i=1

(
λxi
γ

)a
− log α

n

∑
i=1

e−
(

λxi
γ

)a

. (33)
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Therefore, the MLEs can be computed by differentiating (33) with respect to each
parameter and solving the system of non-linear equations, as given in Appendix A, either
numerically or by directly maximizing (33) using optimization techniques in any statistical
program (i.e., R).

5. Simulation Study

Some simulations are detailed in this section, in order to evaluate the performance of
the MLEs of the APWED parameters. The simulation was performed as follows

1. Different sample sizes (30, 50, 100, 150, 200, and 500) were drawn from the APWED
under 1000 replicates;

2. Two different sets of parameters values were assigned
Set 1 (α = 3, λ = 0.1, γ = 5, a = 9) and
Set 2 (α = 0.5, λ = 2, γ = 1.5, a = 0.3).

3. For each sample size, the average estimates of the parameters and mean square error
(MSE) were calculated using the “optim” function in R.

The simulation results are shown in Table 2. The MSE decreased as n increased and
the MLEs of the parameters approached the true parameters.

Table 2. Simulation Study results for the APWED.

Set 1 Set 2

Sample Size Par. MLE MSE MLE MSE

30

α 2.9422 2.1201 0.3806 4.1005
λ 0.0755 0.0010 4.9901 23.3080
γ 3.7871 2.4981 2.7951 11.2943
a 9.5300 1.9036 0.3053 0.0034

50

α 2.9373 1.5402 1.2925 3.5021
λ 0.0771 0.0010 4.4244 17.3286
γ 3.8701 2.4263 2.6141 8.2774
a 9.4225 1.1767 0.2989 0.0021

100

α 2.9961 0.8505 0.4001 0.0795
λ 0.1036 0.0004 3.9395 12.6731
γ 5.1892 0.9504 2.4014 5.3823
a 9.0946 0.4844 0.2943 0.0014

150

α 3.0051 0.7086 0.3960 0.0687
λ 0.1045 0.0004 3.6920 9.2768
γ 5.2315 0.8841 2.3709 5.0723
a 9.0983 0.3791 0.2943 0.0011

200

α 2.9866 0.5953 0.4138 0.0609
λ 0.1037 0.0003 3.4956 8.3503
γ 5.1882 0.7747 2.3642 4.2086
a 9.0770 0.2935 0.2955 0.0009

500

α 2.9896 0.3320 0.4547 0.0524
λ 0.1018 0.0002 2.9487 4.2672
γ 5.0923 0.4310 2.1032 2.4497
a 9.0334 0.1393 0.2969 0.0005

6. Applications

The APWED was applied to three sets of real data, and its fit was compared with
those of some other well-known distributions.
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6.1. Survival Time Data

The first dataset included the survival times of 55 patients with Head and Neck Cancer
from [19], presented as

6.54, 10.42, 14.48, 16.10, 22.70, 3441.55, 4245.28 49.40 53.62, 63, 64, 83, 84, 91, 108, 112,
129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160, 160, 165,
173, 176, 218, 225, 241, 248, 273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417.

6.2. Failure Time Data

The second dataset was obtained from [20]. This data represented 84 failure times of
aircraft windshields, described as

0.04, 1.87, 2.39, 3.44, 0.30, 1.88, 2.48, 3.47, 0.31, 1.81, 2.61, 3.48, 0.56, 1.91, 2.63, 3.58, 0.94,
1.91, 2.63, 3.51, 1.07, 1.91, 2.65, 3.61, 1.12, 1.98, 2.66, 3.78, 1.25, 2.01, 2.69, 3.92, 1.28, 2.038,
2.82,3, 4.04, 1.28, 2.09, 2.89, 4.12, 1.30, 2.09, 2.90, 4.17, 1.43, 2.01, 2.93, 4.24, 1.48, 2.14, 2.96,
4.26, 1.51, 2.15, 2.96, 4.28, 1.51, 2.19, 3.00, 4.31, 1.57, 2.19, 3.10, 4.38, 1.62, 2.22, 3.11, 4.45, 1.62,
2.22, 3.12, 4.49, 1.65, 2.23, 3.17, 4.57, 1.65, 2.30, 3.34, 4.60, 1.76, 2.32, 3.38, 4.66.

6.3. Strength Data

The third dataset was comprised of 63 values of the strengths of 1.5 cm glass fibers,
obtained from the “UK National Physical Laboratory” and used in the work [21]. These
values included

0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36,
1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61,
1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76,
1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24.

A comparison was made between the APWED and six other competing distributions
with the following density functions:

1. Kumaraswamy–Weibull (Ku–W) by [22]

f (x)Ku−W = αβ
c
γ

(
x
γ

)c−1
e−
(

x
γ

)c[
1− e−

(
x
β

)c]α−1
[

1−
(

1− e−
(

x
β

)c)α
]β−1

,

where x, α, β, c, γ > 0.
2. Exponentiated truncated inverse Weibull–inverse Weibull (ETIWIW) by [23]

f (x)ETIWIW = abθµθ x−θ−1e−(
µ
x )

θ
[

1− e−(
µ
x )

θ
]−b−1

e
1−
[

1−e−(
µ
x )

θ
]−b

1− e
1−
[

1−e−(
µ
x )

θ
]−b


a−1

,

where x, a, b, θ, µ > 0.
3. Alpha power inverse Weibull (APIW) distribution by [24].

fAPIW(x) =

{
log α
α−1 λβx−(β+1)e−λxβ

αe−λxβ

if α > 0, α 6= 1
λβx−(β+1)e−λxβ

if α = 1,

where x, λ, β > 0.
4. Alpha power exponential (APE) distribution by [11].

fAPE(x) =

{
log α
α−1 λe−λxα(1−e−λx) if α > 0, α 6= 1
λe−λx if α = 1,
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where x, λ > 0.
5. Weibull–Lomax (WL) distribution by [9].

fWL(x) =
a
γ

α

β

[
1 + ( x

β )
]−(α+1)

[
1 + ( x

β )
]−α

− log
[
1 + ( x

β )
]−α

γ


a−1

exp

−
− log

[
1 + ( x

β )
]−α

γ


a,

where x, γ, a, α, β > 0.
6. Exponential (E) distribution.

f (x)E = λe−λx, x ≥ 0, λ > 0.

For each dataset, the MLEs of the parameters, along with the standard errors (SEs) for
the APWED and other competing distributions, are reported in Tables 3–5.

To examine the validity of the proposed model, in comparison with the other models,
we considered the following goodness-of-fit (GOF) criteria: The negative −`

(
θ̂
)
, Akaike’s

information Criterion (AIC), the Corrected Akaike Information Criterion (CAIC), the
Hannan–Quinn Information Criterion (HQIC), Anderson–Darling (A), Cramer–von Mises
(W), and Kolmogorov–Smirnov (K–S) statistics. The lower these values, the better the
fit. Tables 6–8 present a comparison between the performance of the APWED and the other
distributions for the three real data sets described above.

Tables 6–8 showed that the APWED have the lowest −`
(
θ̂
)
, AIC, CAIC, HQIC, K-S,

W, and A scores, indicating its superiority in fitting the three real data sets, as compared to
the other distributions.

Table 3. MLEs (SEs in parentheses) for survival time data.

Distribution Estimated Parameters

APWED 0.0097 0.0021 2.2258 1.0213
(α̂,λ̂,γ̂,â) (0.0134) (0.0002) (0.7427) (0.0976)

Ku-W 0.9783 0.0848 0.3994 0.5239
(α̂,β̂,ĉ,γ̂) (0.4010) (0.0119) (0.0019) (0.0109)

ETIWIW 28.0765 0.0612 3.5071 0.1089
(â,b̂,θ̂,µ̂) (7.3394) (0.0025) (0.0033) (0.0033)

APIW 27.1117 19.1687 0.8835 -
(α̂,λ̂, β̂) (20.9187) (6.9268) (0.0772)

APE 0.2756 0.0023 - -
(α̂,λ̂) (0.2311) (0.0004)

WL 5.1200 5.4303 0.7655 3.0234
(γ̂,â,α̂,β̂) (6.5560) (0.5031) (0.8938) (0.5809)

E 0.0027 - - -
(λ̂) (0.0003)
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Table 4. MLEs (SEs in parentheses) for failure time data.

Distribution Estimated Parameters

APWED 25.6685 2.6851 4.9713 1.5886
(α̂,λ̂,γ̂,â) (40.1965) (199.6717) (369.7458) ( 0.3246)

Ku-W 1.3649 0.0812 1.9011 0.7197
(α̂,β̂,ĉ,γ̂) (0.0095) (0.0089) (0.0040) (0.0045)

ETIWIW 2.3249 3.5489 0.4390 5.7867
(â,b̂,θ̂,µ̂) (0.8317) (0.9676) (0.0619) (2.7310)

APIW 3.9152 0.1948 1.2339 -
(α̂,λ̂, β̂) (1.2192) (0.0235) (0.0695)

APE 34.1428 0.7591 - -
(α̂,λ̂) (13.3994) (0.0592)

WL 9.8170 4.5320 5.6555 1.7000
(γ̂,â,α̂,β̂) (10.0656) (0.3975) (4.8035) (0.0898)

E 0.3902 - - -
(λ̂) (0.0423)

Table 5. MLEs (SEs in parentheses) for strength data.

Distribution Estimated Parameters

APWED 10.8494 10.4039 14.9854 4.4840
(α̂,λ̂,γ̂,â) (12.8014) (1625.4758) (2341.4107) (0.7681)

Ku-W 8.3440 0.0923 2.8288 0.6285
(α̂,β̂,ĉ,γ̂) (0.6533) (0.0117) (0.0024) (0.0024)

ETIWIW 1.0768 23.9679 0.9791 5.8196
(â,b̂,θ̂,µ̂) (0.4988) (18.3488) (0.2967) (3.0173)

APIW 193.0604 0.6365 3.8769 -
(α̂,λ̂, β̂) (267.2453) (0.1822) (0.3096)

APE 33.0483 1.2993 - -
(α̂,λ̂) (11.9269) (0.1080)

WL 2.7539 8.7108 2.8070 1.0327
(γ̂,â,α̂,β̂) (1.7144) (0.8782) (1.0768) (0.0211)

E 0.6636 - - -
(λ̂) (0.0836)

Table 6. GOF criteria for survival time data.

Distribution AIC CAIC HQIC K-S W A −`
(
θ̂
)

APWED 751.5332 752.3332 754.6382 0.1596 0.3468 1.8001 371.7666

Ku-W 795.5555 796.3555 798.6605 0.3165 0.3808 1.9230 393.7778

ETIWIW 753.0122 753.8122 756.1172 0.1940 0.3507 1.9772 372.5061

APIW 752.8410 753.3116 755.1698 0.1927 0.4975 2.5184 373.4205

APE 757.1062 757.3369 758.6587 0.1730 0.3904 2.1997 376.5531

WL 752.0366 752.8366 755.1416 0.1620 0.3766 1.8987 372.0183

E 764.0156 764.0911 764.7919 0.2763 0.9638 4.5921 381.0078



Symmetry 2021, 13, 726 13 of 16

Table 7. GOF criteria for failure time data.

Distribution AIC CAIC HQIC K-S W A −`
(
θ̂
)

APWED 267.4350 267.9350 271.3650 0.0652 0.0478 0.4565 129.7175

Ku-W 278.3159 278.8159 282.2459 0.1288 0.0987 0.9209 135.158

ETIWIW 303.1870 303.6870 307.1170 0.1626 0.5833 3.4447 147.5935

APIW 354.8962 355.1925 357.8437 0.2619 1.2682 7.6828 174.4481

APE 281.9912 282.1375 283.9562 0.1603 0.6024 3.4923 138.9956

WL 285.1424 285.6424 289.0724 0.0916 0.1492 1.2825 138.5712

E 331.9754 332.0236 332.9579 0.3032 2.3607 11.81 164.9877

Table 8. GOF criteria for strength data.

Distribution AIC CAIC HQIC K-S W A −`
(
θ̂
)

APWE 34.9483 35.6379 38.3199 0.1225 0.1314 0.8554 13.4741

Ku-W 66.1026 66.7922 69.4742 0.2845 0.6943 3.7613 29.0513

ETIWIW 42.8534 43.5431 46.2251 0.1920 0.3909 1.9878 17.4267

APIW 81.7724 82.1791 84.3011 0.2163 0.8679 4.9894 37.8862

APE 124.7411 124.9411 126.4269 0.3388 2.4692 12.379 60.3706

WL 40.5321 41.2217 43.9037 0.1728 0.2859 1.5654 16.2660

E 179.6606 179.7262 180.5035 0.4180 3.8618 18.424 88.8303

Figures 3–5 display the observed density (histogram) for the three real datasets with
the estimated PDF of the APWED, along with those of the competing distributions. These
figures show that a closer fit to the observed density was provided by the APWED for all
datasets.
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Figure 3. Fitted distributions for survival time data.



Symmetry 2021, 13, 726 14 of 16

Data

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

APWE
Ku−W
ETIWIW
APIW
APE
WL
E

Figure 4. Fitted distributions for failure time data.
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Figure 5. Fitted distributions for strength data.

7. Conclusions

In this article, we introduced a novel approach for generating distributions that
provide great flexibility for modeling real data in a variety of fields. The method combines
two well-known techniques: T–X and APT. The new distribution, APWED, is introduced
as an application of this approach. The density and hazard rate functions of the proposed
distribution have appealing shapes for implementing various data behaviors. For example,
the APWED can be used to analyze both symmetrical and asymmetrical data shapes.
Different fundamental statistical properties of the APWE were provided, such as the
moments, quantile, median, mean residual life, order statistics, and entropy. MLEs were
obtained for the unknown parameters of the APWED, and the conducted simulation
studies showed the consistency and efficacy of the estimators. The application of the new
distribution was also demonstrated by fitting three real datasets. The APWED generally
provided the best fit, compared to the results of well-known competitive models. Thus,
APWED is a promising distribution, which can be used to fit a variety of real-world data.
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Appendix A. The Partial Derivatives of (33), with Respect to Each Parameter
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