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Abstract: Symmetric organic compounds are generally obtained inexpensively, and therefore they can
be attractive building blocks for the total synthesis of various pharmaceuticals and natural products.
The drawback is that discriminating the identical functional groups in the symmetric compounds is
difficult. Water is the most environmentally benign and inexpensive solvent. However, successful
organic reactions in water are rather limited due to the hydrophobicity of organic compounds in
general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile
strategies for the synthesis of a variety of significant organic compounds. This review focuses on the
recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media
without utilizing enzymes.
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1. Introduction

Desymmetrization reactions starting from symmetric compounds are among the most
cost-effective conversions in synthetic organic chemistry that are advantageous for the total
synthesis of complex natural products or pharmaceuticals, because the starting materials,
symmetric compounds, are typically prepared at a large scale from inexpensive sources,
or are commercially available at low cost. Among the numerous solvents, water is one
of the most environmentally friendly and inexpensive solvents, and thus water-mediated
organic reactions are typically regarded as a “green chemistry.” Combining these concepts,
the water-mediated desymmetrization of symmetric organic compounds is expected to
offer remarkable synthetic values.

Discriminating the identical functional groups existing in symmetric compounds is
considered arduous. Organic compounds generally do not dissolve in water in significant
amounts because of their hydrophobic properties. As a result, the studies of water-mediated
desymmetrization reactions of symmetric organic compounds have been rather limited.

Enzyme reactions are a relatively common approach to accomplishing desymmetrization
in aqueous media. Well-known examples for enzymatic desymmetrization reactions
include the monohydrolysis of symmetric diesters and the mono-esterification of symmetric
diols. Conditions for enzyme reactions are typically mild and environmentally benign, and
therefore such approaches are considered green chemistry. A number of studies of the total
synthesis of various significant natural products or pharmaceuticals by the application of
enzymatic desymmetrization have also been reported [1–9]. The somewhat unfortunate
part is that the random screening of various enzymes and substrate symmetric compounds
is still often required for enzymatic desymmetrization despite the recent progress in the
area of modeling approaches for mono-esters based on X-ray crystallography.

A fairly good number of reviews of enzymatic desymmetrization reactions have
already been published [1–9], and reviews of non-enzymatic desymmetrization reactions
in organic solvents have also been published [10–13]. Therefore, this review highlights
some of the recent progress in the research of non-enzymatic desymmetrization reactions in
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aqueous reaction media. Such studies have also been explored only recently since around
2000, and it is still worthwhile for many researchers to pursue further investigation.

2. Water-Mediated Non-Enzymatic Desymmetrization

Among the most well-known non-enzymatic desymmetrization reactions are the ring
opening reactions of strained cyclic compounds such as epoxides. The driving force of these
reactions is the relief of the bond angle strain. Asymmetric versions have also been actively
investigated in this area. Among the most remarkable work in the asymmetric ring opening
reactions of meso epoxides in water was reported by Kobayashi et al. [14,15] (Scheme 1).
They were successful in the asymmetric ring opening with high chemical and optical
yields using various metals such as Zn(II), Cu(II), Sc(III) surfactant-type catalysts in water
through the mechanism exemplified below. They also found that the reactions proceeds
faster than in dichloromethane. It was found that the hydrophobic interactions among the
reactants and Lewis acid surfactant combined catalysts in aqueous media accelerated the
reaction rates.
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Inspired by Kobayashi’s work, Fringuelli and Pizzo et al. also explored aminolysis of
various meso epoxides in water with the use of Zn(II) [16] (Scheme 2).
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Related to this ring-opening of epoxides, Jacobsen et al. reported the hydrolytic
desymmetrization of meso epoxides catalyzed by an oligomeric (salen) Co catalyst with
1.2 equivalents of water, although the solvent was CH3CN [17]. Kureshy et al. reported
that ring opening desymmetrization reactions of stilbene oxide with the chiral ligands they
synthesized can effectively be performed with water as an additive [18].

Other non-enzymatic desymmetrization reactions in aqueous media include the
selective monobenzylation of 1,2- and 1,3-diols reported by Muramatsu et al. employing
Me2SnCl2, N,N-dimethylaminopyridine (DMAP), potassium carbonate, 4-(4,6-dimethoxy-
1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) [19] (Scheme 3). Under
organic solvent-free conditions at room temperature, monobenzoates were obtained up to
97% for cis-cyclooctane-1,2-diol as well as other 1,2 and 1,3-diols. The key intermediate for
the mechanism of the first reaction was proposed to involve a cyclic stannylene complex
which reacts with benzoly chloride, the condensation product of BzOH and DMT-MM, or
an acyl pyridinium intermediate generated with the aid of DMAP.
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More recently, Asano and Matsubara reported that the water-assisted desymmetrization
of gem-diols with an organocatalyst leads to enantio- and diastereoselective tetrahydropyran
(THP) ring formation [20]. The use of water as a solvent can lead to the good yields of the
products, although DCM was employed as the primary solvent and three equivalents of
water was added as a reactant due to the better enantioselectivities.

Perhaps among the most pioneering non-enzymatic water-mediated desymmetrization
reactions are the selective monohydrolysis reactions of symmetric diesters reported by



Symmetry 2021, 13, 720 4 of 14

Niwayama et al. [21–31]. This reaction distinguishes between the two identical ester groups
in water with or without a co-solvent, affording half-esters from a series of symmetric
diesters with high yields (up to >99%), a selectivity which was formerly impossible in
organic media by selective monosaponification reactions in alcohol solvents, for example
(Scheme 4a).
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(b) n- > π* interaction found in symmetric diesters (c) potential micelle-like aggregates by the
reaction intermediate

The reaction mechanism that has been proposed is that potential conformational bias
due to the attractive interactions between the two closely located carboalkoxy groups in
these diesters contributes to distinguishing between the two identical ester groups for
this selectivity, smoothing the way for the hydrolysis of a carboalkoxy group from one
particular direction. The existence of the n- >π * interaction is inferred by theoretical studies
for such an interaction [22] (Scheme 4b). An additional proposed mechanistic hypothesis
includes the formation of micelle-like aggregates wherein the hydrophobic carboalkoxy
groups are directed inside and the hydrophilic COO− groups are directed outside in the
aqueous media, prohibiting further hydrolysis by the aqueous NaOH solution after the
monohydrolysis occurs [23] (Scheme 4c). Based on these mechanistic hypotheses, reaction
conditions can be tuned, and higher selectivities have been achieved for many cases in
which the selective monohydrolysis is difficult [26–30].

Starting from the half-esters having the norbornadiene skeleton obtained by this
selective monohydrolysis reaction, libraries of polymers have also been synthesized in
combination with the ring opening metathesis polymerization (ROMP) recently [32]. The
polymers thus prepared have highly controlled structures, allowing the production of
various amphiphilic polymers as well.

A similar mechanism has been proposed for the desymmetrization reaction reported
by Chong et al. as well. They studied the selective monobromination of symmetric diols in
the aqueous HBr/toluene two-phase media with high selectivities, affording high (>90%)
yields of monobromides, even though statistically the expected yields are a maximum of
50% as in the above monohydrolysis [33] (Scheme 5). As the mechanism for the selectivity,
they propose the reversed micelle-like structure by the bromo alcohol in which the polar
hydroxy groups are pointed inside, which is expected to serve as a barrier from the exposure
from the aqueous HBr.
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Another area attracting interest is the desymmetrization of symmetric carbonyl
compounds by aldol reactions. In particular, some impressive studies have been reported
in the area of asymmetric aldol reactions of prochiral ketones with the use of proline-based
catalysts or other chiral diamine catalysts in water. It is generally explained that the ability
to form double hydrogen bonding by these catalysts and the transition state involving
an enamine formed by the catalyst sequestered from aqueous media by hydrophobic
effects are responsible for the reactivity. Among the most pioneering works for such aldol
reactions was reported by Barbas et al. [34] (Scheme 6). They reported that cyclohexanone
with various arylaldehydes undergoes asymmetric aldol reactions in the presence of a
catalytic amount of a variety of proline derivatives or pyrrolidine-based diamines in water.
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Hayashi et al. also reported asymmetric aldol reactions of cyclohexanone with various
aryl aldehydes catalyzed by protected 4-hydroxyproline derivatives in water leading to
improved diastero- and enantioselectivities [35] (Scheme 7).
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Singh et al. studied asymmetric aldol reactions with acetone and other symmetric
ketones with various aryl aldehydes catalyzed by other proline derivatives in water or
brine [36] (Scheme 8). The hydrophobic effects by the use of water were emphasized due
to the salting-out effect by the use of brine.
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Scheme 8. Examples of asymmetric aldol reactions of symmetric ketones reported by Singh et al.

Luo and Cheng et al. reported highly stereoselective aldol reactions of symmetric
ketones and aromatic aldehydes in the presence of proline-based or pyrrolidine-based
chiral amines and surfactant Brønsted acids [37] (Scheme 9). They also demonstrated
that similar conditions are applicable to Michael reactions with nitrostyrene derivatives
in water. They propose that the reactions occur in micelles generated by these reactants
and additives.
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Scheme 9. Examples of asymmetric aldol reactions and Michael additions of symmetric ketones reported by Luo and
Cheng et al. (DBSA: p-dodecylbenzenesulfonic acid).

Fu et al. prepared the L-prolineamide phenols and utilized them for the direct aldol
reactions of cyclohexanone with aryl aldehydes in water [38] (Scheme 10). The high
diastereo- and enantioselectivities in water was explained by the hydrophobicity of the
organic reactants and the hydrogen bonding among water and polar atoms in the reactants
at the transition state, both of which bring these reactants closer together.
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Later, Kototos et al. explored the enantioselective aldol reactions of cyclohexanones
with arylaldehydes in the presence of various peptides in addition to proline derivatives in
water, various organic solvents, or in a mixture of acetonitrile and water (10:1) (Scheme 11).
They found that the wet acetonitrile in the presence of 4-nitrobenzoic acid (4-NBA) as an
additive afforded the best results [39].
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Fioravanti et al. studied the desymmetrization of N, N’-dialkyl α-diimines reacted with
NsONHCO2Et and calcium oxide in a solvent composed of a mixture of dichloromethane and
water (1:4), which produced monodiaridine with high diastereoselectivity [40] (Scheme 12).
They also found that the intermediate is likely to be stabilized by water, leading to the
high selectivity.
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Scheme 12. Examples of the desymmetrization of diimines reported by Fioravanti et al.

Conejero, Michelet, and Cadierno et al. reported the selective cycloisomerization of
symmetric bispropargylic carboxylic acids catalyzed by a water-soluble Au(III) catalyst (47)
in a toluene/water (1/1) biphasic media [41] (Scheme 13). The selectivities are particularly
high with terminal alkynes. It is also advantageous that the biphasic catalyst can be recycled
for reuse.
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Benniston et al. reported the interesting desymmetrization of 1,1′-
ferrocenedicarboxaldehyde in aqueous media. Oxidation of 1,1′-ferrocenedicarboxaldehyde
with KMnO4 in a water/acetonitrile mixture yielded 1′-formyl ferrocenecarboxylic acid,
while in a water/acetone mixture yielded 1′-[(E)-3-oxo-but-1-enyl]-ferrocenecarboxylic
acid [42] (Scheme 14).
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The remaining examples listed below are desymmetrization reactions in which water
is utilized as a co-solvent or an additive. For example, Nakada et al. reported the catalytic
asymmetric intramolecular cyclopropanation of an α-diazo ketone in the presence of
10 equivalents of water refluxing in toluene [43] (Scheme 15).
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Yu et al. studied the desymmetrization of glutaric anhydrides for the production of
chiral fluorides via the sequential alkoholysis in the presence of an organocatalyst followed
by photoredox-catalyzed fluorination. The latter process applied a solvent consisting of a
mixture of acetonitrile and water (1:1) [44] (Scheme 16).
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Álvarez, Ribagorda, and Carreño explored the Friedel–Crafts alkylation reactions of
indols with symmetric p-quinols in the presence of FeCl3·H2O or chiral catalysts and found
that water molecules play important roles by forming a compact cavity in the transition
state leading to higher selectivity and by stabilizing the transition state [45] (Scheme 17).
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Sun et al. studied the enantioselective ring opening of symmetric oxetanes with suitable
chlorides in the presence of a chiral catalyst. They reported that the unprecedented use of wet
molecular sieves plays a key role for the controlled release of HCl [46] (Scheme 18).
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Overall, the best results from these reactions can be summarized in the Table.1.  
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Overall, the best results from these reactions can be summarized in the Table 1.

Table 1. Summary of non-enzymatic desymmetrization reactions in aqueous media.

Starting Symmetric
Compound Reaction Best Yield (Best Optical

Purity)

epoxide aminolysis (ring opening) 100% (95% e.e.)

diol monobenzoylation 97%

monobromination 94%

diester monohydrolysis >99%

ketone aldol 100% (>99% e.e.)

diimine diaziridine formation 67%

bispopargylic carboxylic acid cycloisomerization 94%

dicarboxaldehyde monooxidation 49%

aldol 60%

cyclohexa-1,4-diene cyclopropanation 79% (84% e.e.)

anhydride alkolysis + fluorination 58% (98% e.e.)

p-quinol Friedel–Crafts alkylation 91%

oxetane chlorination (ring opening) 97% (97% e.e.)

As in Table 1, yields of these non-enzymatic desymmetrization reactions with the use
of water as a main solvent or a co-solvent vary, which leaves values for further development.
In general, it appears that the yields are higher when some mechanistic insight is available.
Our laboratory was among the first to report the non-enzymatic desymmetrization reactions
in aqueous media starting from symmetric diesters [21]. Since we have the mechanistic
hypotheses, we were able to use them to optimize the reaction conditions for the selective
monohydrolysis of many symmetric diesters for the best yields without relying on special
devices. Since the initial publication, these selective monohydrolysis reactions have been
applied to the synthesis of a variety of notable compounds such as pharmaceuticals,
natural products, and polymers. As more mechanistic insights become available for other
desymmetrization reactions as well, this research area is likely to generate powerful tools
for the construction of many significant compounds as in enzymatic desymmetrization
reactions, approaches which nowadays are shifting to more mechanism-driven utilizing
modeling studies from random-screening.

The research about water-mediated organic reactions is still a new area. In particular,
studies on non-enzymatic desymmetrization reactions in aqueous media are quite new, and
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have attracted researchers’ attention only recently, since around 2000. It is anticipated that
many results from this research area will offer uniqueness or novelty, potentially building
up significant outcomes useful for modern synthetic organic chemistry. Considering their
cost–effectiveness and environmentally benign nature, these desymmetrization results
are expected to develop into additional cost–effective “green” reactions applicable to the
synthesis of many more significant organic compounds.
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Abbreviations

SDS sodium dodecyl sulfate
DMAP N,N-dimethylaminopyridine
DMT-MM 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
THP tetrahydropyran
ROMP ring opening metathesis polymerization
TFA trifluoroacetic acid
DBSA p-dodecylbenzenesulfonic acid
4-NBA 4-nitrobenzoic acid
Ns nosyl
ppy (2-pyridinyl) phenyl
dtbbpy 4,4′-Di-tert-butyl-2,2′-bipyridine
LED light-emitting diode
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