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Extended Bayesian Inference 

In the field of cognitive psychology, many causal induction experiments have been conducted to determine how humans evaluate 

the strength of the causal relationship between two events [1-5]. In the case of the usual conditional statement ‘if p, then q’, one 

would think that the confidence in this statement would be proportional to the probability ( )|P q p  of q occurring after p occurs 

[6].  

In contrast, it has been experimentally demonstrated that humans have a strong sense of causal relation between a cause p and 

an effect q when ( )|P p q  is high as well as when ( )|P q p  is high. Specifically, the causal intensity that people feel 

between p and q can be approximated by the geometric mean of ( )|P q p  and ( )|P p q . This is called the dual-factor heuristics 

(DFH) model [1]. If the causal intensity between p and q is denoted as ( )|DFH q p , then ( ) ( ) ( )| | |DFH q p P q p P p q= . 

Here, note that ( ) ( )| |DFH q p DFH p q=  is valid. Such an inference is called ‘symmetry inference’.  

More generally, Shinohara et al. proposed the following model to express the causal strength ( )|C q p between p and q as the 

generalised weighted average of ( )|P q p  and ( )|P p q  [7]. 

Supplementary Information for 

Power laws derived from a Bayesian decision-making model in non-stationary 

environments 

Shuji Shinohara1*, Nobuhito Manome12, Yoshihiro Nakajima3, Yukio Pegio Gunji4, Toru 

Moriyama5, Hiroshi Okamoto1, Shunji Mitsuyoshi1, Ung-il Chung1 

 
1. Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, 

Japan 

2. Department of Research and Development, SoftBank Robotics Group Corp., Tokyo, 105-0021, Japan 

3. Graduate School of Economics, Osaka City University, Osaka, 558-8585, Japan 

4. Department of Intermedia Art and Science, School of Fundamental Science and Technology, Waseda 

University, Tokyo, 169-8555, Japan 

5. Faculty of Textile Science, Shinshu University, Ueda, 386-8567, Japan 

 



 2 

( ) ( ) ( ) ( )
1

| | 1 |m m mC q p P q p P p qα α = + −   (S1) 

The generalised weighted average of the variables x  and y  is expressed by the following equation using the parameters α  

and m . 

 ( ) ( )
1

, 1 m m mm x yμ α α α = − +   (S2) 

Here, α  takes a value of the range 0.0 1.0α≤ ≤  and represents the weighting of x  and y . m  takes a value of the range 

m−∞ ≤ ≤ ∞  and represents the way the average is taken. For example, if 0.5α =  and 1.0m = , then ( )0.5,1.0 0.5 0.5x yμ = +

, which represents the arithmetic mean. If 0.5α =  and 1.0m = − , then ( ) ( )0.5, 1.0 2xy x yμ − = + , which represents the 

harmonic mean. Although equation (S2) cannot be defined when 0.0m = , if we denote the mean value in the limit of 0.0m →  

as ( ), 0.0μ α , then we have ( ) 1, 0.0 x yα αμ α −=  and the geometric mean ( )0.5,0.0 xyμ =  when 0.5α = . If we set 0.0α =  

here, we obtain ( ) ( )| |C q p P q p=  regardless of the value of m, and C corresponds to the conditional probability P.  

Furthermore, Shinohara et al. proposed an extended Bayesian inference that incorporates such a causal inference element into 

Bayesian inference [7, 8]. 
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Here,  

 ( ) ( ) ( )|t t t t t
k kk

C d C h C d h=  (S5) 

In equation (S3), we omit the description of the normalisation process to make the confidence a probability. If we set 0α =  in 

equation (S3), we obtain the same form as the case of Bayesian inference. 
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When 0α = , equation (S4) is expressed as follows, and the model of the hypothesis is invariant. 

 ( ) ( )1 | |t t t t
k kC d h C d h+ ←  (S7) 
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That is, equation (S4) is greatly reduced and the extended Bayesian inference agrees with the Bayesian inference. 

On the other hand, when 0α > , the model is deformed by equation (S4). In this paper, we do not update the models of all the 

hypotheses, but only the model of the hypothesis max
th  that has the highest confidence at that time. 
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If there are multiple hypotheses with an equally high maximum degree of confidence, one of them is selected at random. 

For simplicity, we have fixed 0m =  in this paper. When 0m = , equation (S3) can be transformed as follows:  
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Noting the recurrent nature of ( )t
kC h , equation (S9) can be further transformed as follows: 
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In equation (S10), the denominator ( )t tC d  of the right-hand side is common in each hypothesis and can be considered as a 

constant, so if the normalisation process is omitted, it can be written as follows:  
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When 0m = , equation (S8) can be transformed with respect to max
th  as follows:  
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Through the processes described above, the confidence values for each hypothesis and the model for the hypothesis with 

maximum confidence are corrected whenever the data are observed. We refer to the latter process of modifying the model for 

max
th   as inverse Bayesian inference [9]. If the former process of updating the confidence values for hypotheses is referred to as 

inference, inverse Bayesian inference can be called ‘learning’ because it forms a model for a hypothetical instead of an inference. In 

this sense, although α  in equation (S9) and α  in equation (S12)  are the same parameter, they can be considered as forgetting 

and learning rates, respectively, and can be kept separate. In this paper, we introduce a forgetting rate β and a learning rate γ, and 

transform equations (S9) and (S12) as follows:  
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See the next section for methods that apply the normal distribution as a specific generative model in the extended Bayesian 

inference. 

 

Applying a normal distribution 

 In our model, the confidences ( )t
kC h  for each hypothesis kh  and the model ( )max|t t tC d h  for the hypothesis max

th  with 

maximum confidence are corrected whenever the data td  are observed at time t using equations (S13) and (S14). 

In this paper, we consider the following one-dimensional normal distribution as a concrete model of the hypothesis. For simplicity, 

we assume that the variance Σ  is the same at all times for all hypotheses, and we consider only the difference in the mean t
kμ . 

See [8] for a method to estimate the mean and variance simultaneously. 

 ( ) ( ) ( )2
1| | , exp

22

t
kt t

k k

d
C d h N d

μ
μ

π

 −
 = Σ = −
 ΣΣ
 

 (S15) 

When adopting a normal distribution as a model, if the number of hypotheses is discrete and finite, ( )t
kC h  is a probability and 

( )|t
kC d h  or ( )tC d  is a probability density. For this reason, we introduce a positive number Δ  when computing equations 

(S13) and (S14) as follows:  

 ( ) ( ) ( )11 | ,t t t t
k k kC h C h N d
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Here, max
tμ  is the mean of the model of hypothesis max

th . 

In equation (S16), the term Δ  is common to all hypotheses and can be cancelled by normalisation. Therefore, if we omit the 

normalisation process, we can express (S16) as follows:  
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 ( ) ( ) ( )11 | ,t t t t
k k kC h C h N d

β
μ

−+  ← Σ   (S18) 

In equation (S18), once the confidence ( )t
kC h  of each hypothesis becomes 0, it is always 0 thereafter. To prevent this, a 

normalisation process (smoothing) is performed by adding a small positive constant ε  to the confidence of each hypothesis 

obtained by Equation (S18). 
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In this paper, we set 810ε −= . K represents the number of hypotheses. 

When observing the data td  at time t, the likelihood is changed to ( )1
max|t t tC d h+  by equation (S17). Accordingly, we modify 

the mean of the model of the hypothesis max
th  from max

tμ  to 1
max
tμ +  so that the following equation is satisfied:  
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Solving equation (S20) for 1
max
tμ +  yields the following two solutions. 
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We define 1
max
tμ +  as the solution that is closer to max

tμ . Specifically,  

 1 1 max 2 max1
max

2

t t
t if

otherwise

μ μ μ μ μ
μ

μ
+

 − ≤ −= 


 (S22) 

However, in order to solve equation (S20) as an equation of 1
max
tμ + , ( )1

max|t t tC d h+  must be in the range of 

( )1
max

10 |
2

t t tC d h
π

+< ≤
Σ

. 

For this reason, we set the following constraint when calculating ( )1
max|t t tC d h+  using equation (S17):  

 ( ) ( )( )1 1
max max

1| min max | , ,
2

t t t t t tC d h C d h ε
π

+ + ←  Σ 
(S23) 

We set 810ε −= . 

Let us consider a situation ( )max 1t tC h ≈  where the confidence of the hypothesis with the highest confidence is almost 1. Because 

the confidence of any other hypothesis other than max
th  is almost zero by the constraint of ( ) 1t

kk
C h = , we obtain 
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( ) ( ) ( ) ( )max| |t t t t t t t t
k kk

C d C h C d h C d h= ≈  from ( ) ( ) ( )|t t t t t
k kk

C d C h C d h= . Therefore, equation (S17) can be 

transformed as follows:  
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 (S24) 

If equation (S24) is denoted by ( ) ( )11 1t t tx f x x
γ

γ−+  = =  Δ 
, then ( )tf x  becomes a concave function. 

Solving ( )t tx f x=  results in 10,tx =
Δ

 .  

 The fixed point ( )( ) 1 1, ,t tx f x  =  Δ Δ 
 is a stable point because ( )t tx f x≥  when 1tx >

Δ
  and ( )t tx f x≤   when 1tx <

Δ
 . 

In this study, we set 2πΔ = Σ . In this case, ( )1
max|t t tC d h+   approaches the vertex 1 1

2π
=

Δ Σ
 of the normal distribution 

whenever data td  are observed. 

As shown in formula (S20), 1
max
tμ +  is determined to satisfy the condition ( ) ( )1 1

max max| | ,t t t t tC d h N d μ+ += Σ . This means that 

1
max
tμ +  approaches the observation data td .  

 

To summarize the above ideas: 

1. Set values for parameters , , , Kβ γ ε . 

2. Establish initial values for ( )1 1, , ( 1,2, )k kC h k KμΣ =  . 

3. Repeat the following whenever data td  are observed. 

 Find the hypothesis max
th  with the maximum confidence. 

 Update the confidence ( )1t
kC h+  of each hypothesis using formulas (S18) and (S19). 

 Update the likelihood ( )1
max|t t tC d h+  of the hypothesis max

th  for the observed data td  using formula (S17). 

 Correct the mean 1
max
tμ +  of the model for the hypothesis max

th  using formulas (S21) and (S22) to match the new 
likelihood ( )1

max|t t tC d h+ . 

 

 

Fitting to simulation data  

Fitting to truncated power law distribution (TP) 
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 Here, we describe a method to fit the frequency distribution of duration T observed by simulation to the truncated power law 

distribution (TP). The method was based on references [10-14]. Specifically, we want to find the minimum value minT  and 

maximum value maxT  of the data to be fitted to the TP and the exponent η  of the TP model that best fits the data in the range 

of  min maxT T T≤ ≤ . First, maxT  is the longest step length in the observation data. Next, we describe the method of calculating 

minT . In the case of a discrete distribution, the TP in the range of min maxT T T≤ ≤  is expressed by the following formula:  

 ( ) ( ) ( )
max

min

min max min max
min max

; , , , , ,
, ,

T

i T

Tp T T T T T i
T T

η
ηη ζ η

ζ η

−
−

=

= =   (S25) 

The CDF of ( )min max; , ,p l l lη  is expressed in the following equation. 

( ) ( )
( )

max
min max

min max

, ,
; , ,

, ,
T T

P T T T
T T

ζ μ
η

ζ μ
=  (S26) 

If the observed data in the range of min maxT T T≤ ≤  are { }1 2, , , nT T T , then the log-likelihood of these data for TP is calculated 

using equation (S25) as follows:  

( ) ( ) ( )min max min max min max
1 1

; , ln ; , , ln , , ln
n n

i i
i i

L T T p T T T n T T Tη η ζ η η
= =

= = − −   (S27) 

 The exponent  ( )min max,T Tη  of the TP model that best fits the data in the range of min maxT T T≤ ≤  is η , which maximizes 

( )min max; ,L T Tη . Specifically, we varied η  from 0.5 to 3.5 in increments of 0.01 to obtain  ( )min max,T Tη , which numerically 

maximizes equation (S27). 

We introduce the Kolmogorov-Smirnov static ( )min max,D T T  to measure the closeness of the cumulative frequency 

distribution ( )min max; ,S T T T  created from the data in the range of min maxT T T≤ ≤  and the theoretical cumulative frequency 

distribution  ( )( )min max min max; , , ,P T T T T Tη  represented by equation (S26). 

( ) ( )  ( )( )
min max

min max min max min max min max, max ; , ; , , ,
T T T

D T T S T T T P T T T T Tη
≤ ≤

= −  (S28) 

If we fix maxmaxT T= , then ( )maxmin ,D T T  is a function of minT . We numerically choose minT  out of the observed data, which 

minimizes ( )maxmin ,D T T . That is,  ( )
min

min maxminarg min ,
T

T D T T= . In the above, minT  and minT  were obtained. Finally, we find 

the exponent    ( )min max,T Tμ μ=  of the TP model that best fits the data in the range of  min maxT T T≤ ≤  using the formula (S27). 
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Fitting to exponential distribution (EP) 

In this section, our goal is to find the minimum value minT  of the observed data to be fitted to the exponential distribution (EP) 

model and the exponent λ  of the EP model that best fits the data in the range of minT T≤ . In the discrete case, the EP in the 

range of minT T≤  is expressed in the following equation:  

 ( ) ( ) ( )min
min; , 1 T Tp T T e e λλλ − −−= −  (S29) 

The CDF of ( )min; ,p T T λ  is expressed as follows: 

 ( ) ( )min
min; , T TP T T e λλ − −=  (S30) 

 If the data in the range of minT T≤  is { }1 2, , , mT T T , then the log likelihood for these data is expressed as: 

( ) ( ) ( ) ( )min min min
1 1

; ln ; , ln 1
m m

i i
i i

L T p T T m e T Tλλ λ λ−

= =

= = − − −   (S31) 

The exponent  ( )minTλ  that maximizes ( )min;L Tλ  is found as a solution to ( )min;
0

L Tλ
λ

∂
=

∂
 by the following formula:  

  ( )
( )

min

min
1

ln 1m

i
i

mT
T T

λ

=

 
 
 = +
 − 
 


 (S32) 

 

 minT  is calculated from the simulation data and adjD  obtained from equation (S30), as in the case of TP. The final value is 

  ( )minTλ λ= . 

 

Comparison of truncated power law distribution (TP) and exponential distribution (EP) 

In this section, we describe a method to determine which of the two distribution models, TP or EP, is more suitable for 

the simulation data. We use Akaike Information Criteria weights (AICw) for comparison [14]. First, the Akaike Information 

Criterion (AIC) for data in the range of min maxT T T≤ ≤  is defined as follows:  

 
( )( )
( )( )

min max

min

2 ln ; , 2

2 ln ; 2

TP

EP

AIC L T T

AIC L T

η

λ

= − +

= − +
 (S33) 

The AIC difference Δ  is then calculated as follows: 
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TP TP
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 (S34) 

Finally, AICw are calculated as follows: 

 

2

2 2

2

2 2
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TP EP
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TP EP
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ew
e e

ew
e e

−Δ

−Δ −Δ

−Δ

−Δ −Δ

=
+

=
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 (S35) 

First, using the data in the range of  
min maxT T T≤ ≤  calculated during the fitting of the TP, we find the most appropriate 

exponents η  and λ  for each model. 

Next, these exponents are used to calculate and compare AICw. Then, we change minT  to the one calculated during the fitting 

of the EP and compare. If TP EPw w>  for both data, the TP is considered to fit the simulated data better. On the other hand, if 

TP EPw w<  for both data, the EP is considered to fit the simulated data better. In case of discrepancies between the results in both 

data, the following indicators were defined and judged according to reference [10]. 

 
,

,

ln
ln
ln

ln

adj TP TP
TP

adj EP EP
EP

ND D
n
ND D

n

=

=
 (S36) 

where TPD  and EPD  are the Kolmogorov-Smirnov static calculated during the model fitting of the TP and EP, respectively. N  

is the total number of observed data points, and TPn  and EPn  are the number of observed data points used in each model 

fitting. In other words, the index considers a model that can fit more observational data to be a better model. In the case of 

, ,adj TP adj EPD D< , the TP is considered to fit the simulation data better. Conversely, when , ,adj TP adj EPD D> , EP is considered to 

be a better fit to the simulation data. If the optimal model was judged to be a TP, it is considered to be a Lévy walk if 1 3η< ≤  

was satisfied. 
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