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Abstract: Topology optimization is a modern method for optimizing the material distribution in
a given space, automatically searching for the ideal design of the product. The method aims to
maximize the design performance of the system regarding given conditions. In engineering practice,
a given space is first described using the finite element method and, subsequently, density-based
method with solid isotropic material with penalty. Then, the final shape is found using a gradient-
based method, such as the optimality criteria algorithm. However, obtaining the ideal shape is highly
dependent on the correct setting of numerical parameters. This paper focuses on the sensitivity
analysis of key formulations of topology optimization using the implementation of mathematical
programming techniques in MATLAB software. For the purposes of the study, sensitivity analysis of
a simple spatial task—cantilever bending—is performed. This paper aims to present the formulations
of the optimization problem—in this case, minimization of compliance. It should be noted that this
paper does not present any new mathematical formulas but rather provides an introduction into
the mathematical theory (including filtering methods and calculating large-size problems using the
symmetry of matrices) as well as a step-by step guideline for the minimization of compliance within
the density-based topology optimization and search for an optimal shape. The results can be used for
complex commercial applications produced by traditional manufacturing processes or by additive
manufacturing methods.

Keywords: topology optimization; optimization; filtering; method; penalization; weight factor; FEM;
MATLAB; SIMP

1. Introduction

Topology optimization is a calculation of the distribution of materials within a struc-
ture without a known pre-defined shape. This distribution calculation yields a “black
and white pattern” where black places indicate full material while white places represent
voids (i.e., places where material can be removed). Because the distribution is solved over
a general region, topology optimization allows us to acquire a unique, innovative, and
effective structure. The principle of topology optimization is presented on the example of
cantilever bending in Figure 1, where the initial geometry (given space) is depicted on the
left and the optimal shape on the right. As apparent from Figure 1, topology optimization
plays nowadays an important role in engineering practice. Usually, it allows the designer
to reduce the weight of the part without losing too much of its previous properties such as
stiffness, natural frequency, etc.
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Figure 1. Topology optimization of cantilever bending; the initial geometry (left) and the optimal
shape in the form of design variables (right).

Issues associated with topology optimization are studied by many engineers and
researchers. The Finite Elements Method (FEM) is the most widely used technique for the
analysis of discretized continuum. Femlab [1], FreeFem++ [2,3] and ToPy [4] are rapidly
growing engineering tools supporting topology optimization. The problem of topology
optimization was described, e.g., by Bendsøe and Sigmund [5–8]. Many computer tools
have been prepared, including tools in the MATLAB platform (MathWorks, Natick, MA,
United States of America). Liu et al. [9] described a three-dimensional (3D) topology
optimization using MATLAB scripts. They described the necessary steps of optimization
and provided scripts for individual steps. Their scripts are freely available and can be
modified in accordance with the authors’ instructions. It should be noted that although the
scripts have great educational value, their practical usage is limited as they are applicable
only for simple shapes and cannot work with imported meshes. The same can be said
about the paper by Sigmund et al. [7] who investigated two-dimensional optimization
and introduced sensitivity filtering. Master thesis by William Hunter [10] worked on 3D
topology optimization. The author described in depth the theoretical background as well
as its implementation in Python.

Even though topology optimization might seem novel, the first mention of structural
topology optimization dates back to 1904 [11]. However, major progress has come only
in the last 30 years due to the development of computers and the advancement of new
technological processes (in particular, additive manufacturing). Hunar et al. [12] and
Pagac et al. [13] illustrated the significance of topology optimization for designing a 3D
printed part. Currently, however, topology optimization is perceived by most users as a
“black box” producing always correct, i.e., optimal, shapes.

This is, however, largely not true and deeper understanding of the parameters and
settings is needed to yield optimal results. A thorough introduction to the problem and a
complex guideline for performing sensitivity analysis that would help researchers and en-
gineers with determining correct settings is, however, not available in the current literature.
For this reason, we decided to provide such a guideline in this paper.

Hence, the presented paper studies the effect of key formulations of the topology
optimization problem on the design performance. In addition, it recommends the values
of individual numerical parameters using a cantilever beam problem. Even though it
is demonstrated on a simple example, this insight can be used for complex problems of
engineering practice. For example, our group [14] described topology optimization of a
transtibial bed stump using a custom MATLAB script. Performing sensitivity analysis of
the key formulations is recommended for supporting the robustness of the computations
in any new problem. Failure to perform so such an analysis may lead to the production of
„false-optimal“ results. The individual steps of this study were performed in MATLAB as
well as in ANSYS Workbench 2019 R3 (ANSYS, Inc., Canonsburg, United States of America,
AWB), which helped with the evaluation of the results (assessment of the similarity in
resulting values or shapes). The preliminary results of the work are presented in the
Master’s thesis by Sotola [15].
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2. Materials and Methods

The procedure for calculating the optimal shape of the structure can be divided into
three stages: (i.) Preparative stage (ii.) Optimization, and (iii.) Postprocessing, see Figure 2.
MATLAB scripts were prepared for each of these stages to automatize the procedure.

The first step of the initiation of optimization lies in preparing the finite element
analysis. In this step, the boundary conditions and local stiffness matrices of elements
are set up. This paper does not describe this stage in depth because it has been already
described in many books; for example, Hughes [16] describes the preparation of local and
global stiffness matrices. Still, some advanced recommendations are presented in this
paper. At this stage, the global stiffness matrix is also assembled and the reference values of
the objective function are calculated. Before optimization, it is also necessary to prepare an
initial approximation of volume, i.e., the structural elements are assigned a new material
model containing individual design variables for each element. Elements are assigned new
values of elasticity modulus, which affect the global stiffness matrix and leads to a new
value of the objective function with each iteration.

Optimization itself follows, during which new values of design variables are de-
termined. Subsequently, the terminating criterion is queried and if the process is not
terminated based on the criterion being met or the maximal number of iterations exceeded,
the process is repeated with new design variables.

In the last stage, the results are recalculated and prepared in the vtk format, which can
be viewed in the open-source software ParaView (Kitware, Inc., Clifton Park, NY, USA).
This paper focuses on the first and second stages; we provide the results of the entire
process but do not describe the postprocessing in detail.

Boundary conditions

Local stiffness matrices

Initial approximation

Calculating reference
values

Assembly of global
stiffness matrix

Solving displacement Calculating objection
function and sensitivity

Finding new design
variables

Termination
criteria

Preparation Optimization

Preparing results

Export results (.vtk)

Postprocessing

Figure 2. Diagram of the procedure for topology optimization.

2.1. Description of the Optimization Problem

As mentioned already, being able to describe the problem as a mathematical input is
the key to the full understanding of topology optimization. Such understanding is needed
for proper definition of the design variables, the objective function, and the constraint
function (mostly inequality constraints). The most widely used method for solving mul-
tivariate optimization is called “Karush–Kuhn–Tucker conditions” [17] (also known as
Kuhn–Tucker conditions or just KKT conditions).

2.1.1. The Optimization Problem

The objective of the optimization presented in this paper is to minimize compliance
arising during volume reduction defined as volume fraction vfrac. The volume fraction
is calculated as the ratio of the proposed volume and the original volume. The volume
fraction ranges from 0% to 100%.

Several methods can be used for solving the problem of minimization of compliance.
For example, the homogenization method [18,19] uses microperforated composites as a
base material for shape optimization. Since the number of holes within the domain is not
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limited, it can be seen as a method of topology optimization. In another approach, the
phase-field method, the domain consists of two “phases”, the “void” and the fictional
“liquid” which interacts with loads [20,21]. One of the newer methods (meaning newly
implemented in commercial software) is the Level-set method. Optimization in this method
is solved “above” the fixed domain with a fictional velocity [22].

The density-based method is the last of the methods commonly used for solving the
topology problem. This method can be viewed as mature and is easy to implement. In this
paper, we focused on this method, which uses a continuous design variable ranging from
0% to 100%, see Figure 1. In the literature, the design variable is usually referred to as the
density; note, however, that this “density” of the element has no clear physical meaning.
In 2D space, the density can be pictured as a variable thickness of sheet metal but in 3D
space, it is not easy to assign a tangible meaning to this term. The Solid Isotropic Material
with Penalty (SIMP) model is a popular interpolation scheme for definition of material
that would be subsequently used in the density-based method. In this model, the elasticity
modulus is in a power law relation with the design variable and can be described using
the following equation.

Ee = x̃p
e · E0, x̃e ∈< 0, 1 >, (1)

where E0 is the elastic modulus of the base material, p is the penalization and x̃e is the
“modified” filtered design variable. The reasons for the “modification” are described in the
following Sections 2.1.2 and 2.1.6.

After preparation of the material model, the objective function of minimizing compli-
ance is defined as

min : c(x̃e) = { f }T · {u(x̃e)}, (2)

where c is the deformation energy, { f } is the force vector and {u} is the displacement.
One could argue that the deformation energy of the linear material should be divided by
two; however, as it is only a scalar variable, it will not affect the optimization itself. The
constraint Equation (or, rather, inequality in this case) is defined as

v(x̃e) = { x̃e}T · {ve} − vfrac ·∑{ve} ≤ 0, (3)

where {ve} is the vector containing the volume of each element. Displacement is solved
from the equilibrium equation

{ f } = [K] · {u}, (4)

where [K] is the global stiffness matrix. Assembly of stiffness matrices is described in
Section 2.1.4. The design variable is defined as

0 ≤ x̃e ≤ 1. (5)

Equation (2) can be written in a simpler form after applying SIMP

min : c(x̃e) =
n

∑
e=1

E0 x̃p
e {ue}T [k0]{ue} (6)

where {ue} is the vector of element displacement, [k0] is the stiffness matrix with unit elastic
modulus and n is the number of elements. Penalization is introduced in Section 2.1.3.

One can notice that the problem is defined as minimizing the deformation energy,
which leads to the higher stiffness of the structure. Using the KKT conditions, the La-
grange multipliers convert the constrained problem to the equivalent unconstrained
problem [17,23]. The first step is assembling the Lagrange function

L(x̃e, λ) = c(x̃e) + λ · v(x̃e), (7)

where c(x̃e) is the objective function, v(x̃e) is the constraint function and λ the Lagrange
multiplier. It is necessary to solve the derivation of the Lagrange function with respect
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to the design variables because it is necessary to find a stationary point; at that point, the
derivation is equal to 0

∇L(x̃e, λ) =
∂c(x̃e)

∂x̃e
+ λ · ∂v(x̃e)

∂x̃e
= 0. (8)

The following equation is known as the complementary slackness condition, deter-
mining whether the constraint function is active or passive

λ · v(x̃e) = 0. (9)

The next condition is that the Lagrange multiplier is not negative

λ ≥ 0. (10)

The last condition is the derivation of the Lagrange function with respect to Lagrange
multipliers. In simple terms, it determines whether or not the particular point is the KKT
point, i.e., the optimum (there are fundamental theorems proving that the solution is
automatically optimal, see more in [17]). This condition is not important for solving the
problem, it is important for results evaluation. Rearranging the equation and adding the
variable Be leads to the equation

Be = 1 =
−

∂c(x̃e)

∂x̃e

λ
∂v(x̃e)

∂x̃e

. (11)

It is obvious that the optimum of the element is met if Be = 1. Preparing the first
derivation of the objective function determined by Equation (2) with respect to the design
variables can be tricky as at the first sight, there is no evident “influence” of the design
variables. It can be solved numerically but this would require a calculation of the displace-
ment for every individual possible design variable. However, it is possible to calculate
derivation using the adjoint method [5], i.e., to add the equilibrium equation into the
objective function

c(x̃e) = { f }T{u(x̃e)}+ {η}T([K]{u(x̃e))} − { f }), (12)

where η is a vector of non-zero variables (also unknown for now). Adding the equilibrium
equation does not change the objective function because it is equal to zero. Similarly,
the vector η does not change the function. Let us assume that the exterior forces are not
independent on the design variables. Then, the first-order derivation of the objective
function is

∂c
∂{x̃e}

= { f }T ∂{u}
∂{x̃e}

+ {η}T
(

∂[K]
∂{x̃e}

{u}+ [K]
∂{u}
∂{x̃e}

)
. (13)

Rearranging the previous Equation (13) leads to factoring out the derivation of
the displacement

∂c
∂{x̃e}

=

(
{ f }T + {η}T [K]

)
∂{u}
∂{x̃e}

+ {η}T ∂[K]
∂{x̃e}

{u}. (14)

To get rid of the derivation of displacement, it is critical that the term in brackets
(adjoint equation) is equal to zero. This means that our added unknown variable has to be
equal to

{η}T = −{ f }T [K]−1 = −{u}T . (15)
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It is apparent that the vector {η} is already solved. The final form of the derivation of
the objective function (with added SIMP model) is

∂c(x̃e)

∂x̃e
= −E0 p x̃(p−1)

e {ue}T [k0]{ue}. (16)

The first order derivation of the constraint function is defined asIt should be noted
that in the literature (for example, [8]), it is possible to find another equation describing the
constraint function and its derivation

∂v(x̃e)

∂x̃e
= {ve}. (17)

It should be noted that in the literature (for example, [8]), it is possible to find another
equation describing the constraint function and its derivation

v(x̃e) =
{ x̃e}T · {ve}

∑{ve}
− vfrac ≤ 0, (18)

∂v(x̃e)

∂x̃e
=
{ve}

∑{ve}
. (19)

That form of the equation usually depends on the solver and its settings. For example,
“MMA-based” solvers prefer the constraint function defined by Equations (18).

2.1.2. Material Model

In this paper, the density-based method used the Solid Isotropic Material with Penalty
(SIMP) material model, which is a power-law relation of the design variables. The SIMP
material model is used in solvers such as ANSYS (ANSYS, Inc., Canonsburg, PA, USA),
MSC Nastran (MSC Software, Irvine, CA, USA), etc. The elastic modulus of the element is
defined as

Ee = xp
e · E0, xe ∈< 0, 1 >, (20)

where E0 is the elastic modulus of the base material, p is the penalization and xe is the
“unmodified” design variable. This definition looks very similar to Equation (1); however,
here, we use unfiltered designed variable to give a clearer picture of the need for filtering
(see below).

During topology optimization, many problems can occur. For example, the so-called
checkerboard pattern problem [24–26] is very common. This title describes the distribution
of the structural elements in a checkerboard-like arrangement in certain areas of the part.
Figure 3 shows the checkerboard patterns on the cantilever beam.

Figure 3. Checkerboard pattern problem (left) and its possible solution (right).

In our case, i.e., when discussing the problem of minimizing compliance, the com-
putation may consider such a solution to be ideal as the checkerboard pattern creates
artificial regions with higher stiffness. However, as obvious from Figure 3, this is not
true and, moreover, the part cannot be manufactured. Another common problem is the
insufficient number of connected nodes (four or more nodes are needed for the hexahedral
element), which causes the formation of possible joints in the structure and, again, makes it
impossible to manufacture.

The mesh-dependency of optimization results is a crucial problem [5,26]. As the name
suggests, this problem results from the used discretization and its refinement. In context of



Symmetry 2021, 13, 712 7 of 25

structure stiffness, the reason is quite simple—increasing the number holes in the structure
without changing its volume leads to increase of stiffness. Finer meshes facilitate this
operation—they allow us to create a higher numbers of holes and, therefore, are capable of
providing different (superior) results than coarser meshes. On the other hand, finer meshes
might result in more complex structures that are difficult to manufacture.

The last important problem of topology optimization is the non-uniqueness of solu-
tions, which makes results evaluation trickier [27]. Generally, the problem of optimization
can have a single solution or up to an infinite number of solutions depending on whether
the problem is convex or not.

One of the ways of solving the above-mentioned problems is to use a suitable filter(s).
This solution has not been mathematically confirmed, but many numerical experiments
suggest that the results could be considered optimal [7]. The description of each of the
filters used in our study is presented in Section 2.1.6.

To prevent numerical difficulties, the modulus of void (passive) elements is introduced
into the material model. This modification helps to reduce the risk of having a singular
stiffness matrix. The final equation of the material model is

Ee = Emin + x̃p
e · (E0 − Emin ),

x̃e = x̃e(xe), xe ∈< 0, 1 >,
(21)

where Emin is the elasticity modulus of passive elements and x̃e is the filtered design
variable (density).

2.1.3. Penalization

The numerical scheme should lead to a black & white design (or 1-0 design with white
to be removed). One of the possible approaches is to ignore the physical importance of
elements with intermediate density (grey areas) and consider them “black”, leading to their
preservation. However, the physical relevance is discussed a lot since many interpolation
methods can remove further parts of the grey regions. If the optimization is prematurely
terminated, the stiffness (compliance) of the grey areas plays an important role in the
evaluation of results. This issue is discussed by Bendsøe [5,6]. As mentioned above,
the SIMP material model is suitable for FEM optimization as it assigns elasticity to each
element. However, it can be used as the material model only if the penalization meets the
following criteria

p ≥ max

{
2

1− µ
,

4
1 + µ

}
, (in 2D); p ≥ max

{
15

1− µ

7− 5µ
,

3
2

1− µ

1− 2µ

}
, (in 3D) (22)

where µ is the Poisson’s ratio. This means that different values of penalization must be
calculated for each Poisson’s ratio. The resulting values of the penalization for volume
elements with the following Poisson’s ratio are

p
(

µ =
1
5

)
≥ 2, p

(
µ =

1
3

)
≥ 3, p

(
µ =

2
5

)
≥ 4.5. (23)

In this paper, the base material has a Poisson ratio of µ = 0.30; therefore, the penalization
p = 3 was chosen for the following topology optimization.

2.1.4. Finite Element Method

From our experience, it is recommended for MATLAB implementation that the stiff-
ness matrices is prepared with unit elastic modulus and saved in memory. The stiffness
matrix of the solid element is volume integrated using the stress–strain matrix of the
material [C0] with the unit elasticity modulus

[k0] =
∫∫∫

[B]T[C0][B] dV, (24)
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where [B] is the strain–displacement matrix [28]. The integral is usually solved numerically.
Before the assembly of the global stiffness matrix, every local stiffness matrix is multiplied
by the corresponding elasticity modulus (i.e., the modulus of the SIMP material model).

[ke(x̃e)] = Ee(x̃e) · [k0]. (25)

The MATLAB implementation of calculating the stiffness matrix of linear elements is
presented by Bhatti [29,30]. With some effort, the procedures were modified to the calcula-
tion of quadratic elements. The procedures use full integration of the individual elements
using Gauss points (2× 2× 2 scheme for linear elements, 3× 3× 3 for quadratic elements).

For testing purposes, meshes were prepared using the AWB software [31]. They were
constructed either of tetrahedral (TET) or hexahedral (HEX) elements (i.e., no result with
mixed mesh was evaluated in this paper). The calculation of the stiffness matrices of linear
elements is fast thanks to the low number of degrees of freedom (DOF); in effect, solving a
single load case was swift when using this approach; however, it comes with a disadvantage
in the form of locking as linear elements with full integration have a tendency to shear
and volume locking [28]. There are numerous ways of fixing this problem; nonetheless,
in this paper, the shear locking effects are “neglected” during the optimization but are
mentioned in results. Meshes are separated into three groups: coarse, normal, and fine
meshes according to the size (length) of individual elements.

2.1.5. The Optimality Criterion Algorithm

The design variable of the elements was updated using an algorithm called the
Optimality criterion (OC) [5,32]. The name indirectly refers to the used method, i.e., KKT
conditions. The algorithm is also implemented in the AWB software. To find the material
distribution of the structure, a fixed updating scheme is proposed as

xnew
e =

{max(0, xe −m), if xe · Bη
e ≤ max(0, xe −m)

min(1, xe + m), if xe · Bη
e ≥ min(1, xe + m)

xe · Bη
e otherwise,

(26)

where Be is constructed using Equation (11). As already mentioned above, the optimum
of the element is found if Be = 1. In other words, the design variable increases if Be > 1
and decreases if Be < 1. Changing the move limit m and tuning parameter η can lead to
a lower number of iterations. Bendsøe [5] recommended values of η = 0.5 and m = 0.2.
New values of design variables depend on the Lagrange multiplier, which has to be solved
in the inner loop to ensure that the constraint function is satisfied. This leads to a reduction
of the multivariate problem to one-dimensional (1D) optimization, which can be solved
by various methods, such as the bisection method, golden section search, or methods
using derivation (such as the Newton–Raphson method or secant method) [17,23]. In
this work, the bisection method obtained from the paper by Liu [9] was used as the 1D
optimization method.

A detailed description of the Optimality criterion method is presented in the disserta-
tion thesis by Munro [32] and the Master’s thesis by Hunter [4]. These theses describe the
relationships between the Optimality criterion and Sequential approximate optimization
(SAO). The SAO method can be solved using the duality principle. The purpose of this
method is to find an equivalent subproblem (dual problem) that is easier to solve than
the primary problem. The method is used for preparing a scheme (similar to the OC
fixed scheme) with only one constraint function, which can be subsequently solved. The
primary problem (in this case, minimizing compliance) is then reduced to maximizing the
Lagrange multiplier.
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2.1.6. Filtering Methods

Density filtering is one of the methods of solving the above-mentioned problems (such
as the checkerboard pattern). A common parameter of the filters, weight factor Hij, is
defined as

Hij =
{R− dist(i, j) if dist(i, j) ≤ R

0 if dist(i, j) > R,
(27)

where R is the radius of the filter, dist(i, j) is the operator calculating the distance between
the center of an element i and the center of an element j. This type of weight factor is called
linear. If the distance between elements is greater than the radius, the weight factor is equal
to zero; if the distance is equal to zero, the weight factor is equal to the size of the radius.
In Figure 4, 2D examples are presented; in 2D, the radius defines a circular neighborhood.
In a 3D problem, the radius forms a sphere.

R

dist(i,j)

j i

Figure 4. 2D Neighborhood of element (left), examples of the radius dependence on the element size
ES in 2D; R= 1.2 ES for the red circle, R= 1.5 ES for the blue circle, R= 2.0 ES for the yellow circle
and R= 3.0 ES for the purple circle.

An alternative approach is to use the normal distribution (Gauss function) [33,34].
Compared to the linear function, the Gauss function is smoother but in reality, there might
not be a real benefit in using this alternative [8]. The weight factor is defined as

Hij = e
− 1

2

(
3·dist(i,j)

R

)2

. (28)

In Figure 5, both functions are displayed. Due to the different characters of values of
the weight factor, the linear function had to be normalized by the radius to have values
ranging from 0 to 1, the same as the Gauss function. Furthermore, the distance was
normalized to the radius (i.e., divided by the radius to ensure independence on it).

Preparing a matrix of weight factors can be challenging if the mesh is imported (if the
mesh is not imported but created by additional scripts, the weight factor can be calculated
during the mesh preparation). The following should be pointed out: Firstly, the preparation
should use a function for creating sparse matrices because the matrix of weight factors
is mainly sparse. Secondly, if the distance between the i-th and j-th element is constant,
there is no need to create a “full” matrix but only the upper triangle of the matrix [Htri].
Non-diagonal components of the matrix [Htri] are multiplied by 2. The following equation
uses “symmetry” for composing the full matrix

[H] =
1
2
·
(
[Htri] + [Htri]

T
)

, (29)

where T is the operator of the transpose. Lastly, with the growing amount of elements,
the process of preparation is becoming more time-consuming even though calculating
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only “half” of the matrix. This basic approach is, up to 10 k elements, fast. However, the
time of solution is growing exponentially for meshes with over 10k elements. In such
cases, it is recommended to invest time into finding an appropriate method for speeding
up the preparation. This could be done by dividing the mesh into mutually overlapping
subzones with less than 10 k elements to ensure fast calculation. These subzones should be
solved individually using the parallel toolbox (package). Using this approach, it should be
possible to prepare the weight factors of complex meshes in a reasonable time.

Figure 5. Functions of the weight factor.

Three filters are analyzed in this paper: (i) Density filter, (ii) Sensitivity filter, and (iii)
Greyscale filter (G). The Density filter (D) and Sensitivity filter (S) use weight factors while
the greyscale filter is an addition to the OC scheme.

Density Filter

The fundamental function of density filtering is

x̃i =
∑n

j=1 Hijxj

∑n
j=1 Hij

, i = 1, ..., n, (30)

where x̃i is the filtered design variable (density) of the i-th element, Hij is the weight factor
and n is the number of elements [35–37]. Every equation containing the design variables
has to be adjusted to allow filtering (including partial derivations)

∂̂c
∂xe

=
∑n

j=1 Hij
∂c

∂xe

∑n
j=1 Hij

,
∂̂v
∂xe

=
∑n

j=1 Hij
∂v
∂xe

∑n
j=1 Hij

. (31)

In this case, the design variable of the element is averaged over its neighborhood. It
ensures the smoothing of stiffness. The filtered density is applied during the construction
of the global stiffness matrix before solving the static structural analysis. Generally, the
density tends to have a value of 0 or 1 (which could be ideal), but after applying the filter,
regions of intermediate (grey density) design variable appear, which are then penalized by
the SIMP model. Deformation energy is also averaged and shared with the neighborhood
of elements.

Sensitivity Filter

This filter is based on filtering of the sensitivity (i.e., of the first partial derivation
of Lagrange function). Experience has proven that filtering sensitivity ensures mesh
independence of results and is time-effective [7]. It is also easy to implement and does not
increase the complexity of the problem. The filter is purely heuristic but has been proven
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to yield similar results as the gradient constraint method [5]. The fundamental equation of
this filter is

∂̂c
∂xi

=
1

max(10−3, xi) ·∑n
j=1 Hij

·
n

∑
j=1

Hij · xi ·
∂c(xi)

∂xe
. (32)

Grayscale Filter

The last filter is an addition to the previous filters called the Grayscale filter [38].
Applying this filter should reduce the grey areas. The objective of the filter is also to
penalize the volume constraint in the OC algorithm. The parameter q is implemented in
the OC scheme and its value can be constant or gradually increasing by multiplication (in
our case, coefficient q was multiplied by 1.01 each iteration). The amended OC scheme is
described as

xnew
e =

{max(0, xe −m), if xe · Bη
e ≤ max(0, xe −m)

min(1, xe + m), if xe · Bη
e ≥ min(1, xe + m)

(xe · Bη
e )

q otherwise.
(33)

This filter is activated after 15 iterations of optimization. Usually, it is limited by
the maximum value of the coefficient q (in this paper, the maximum was set to 5). If
the q coefficient maximum was set to 1, the filter would be deactivated. The idea of the
filter is to underestimate the intermediate density leading to a zero value (void density).
Underestimation occurs also in the inner iteration. This leads to fewer iterations needed
for finding solutions.

2.1.7. Displacement Solver and Termination Criteria

To solve the displacement Equation (4), it is possible to use the direct solver present in
MATLAB. However, if the number of degrees of freedom is high (above sixty thousand),
the pursuit to provide an accurate result is too ambitious. In such cases, therefore, it
is appropriate to switch to the iteration solver. MATLAB includes a solver using the
conjugate gradient method with preconditioning [39]. It is recommended to use the
simplest preconditioning matrix, the diagonal (Jacobi) preconditioner. The reason is that
to ensure the best possible solving stability, assembly of the preconditioner is needed in
every iteration and, hence, the simpler is the preconditioner, the faster is the solution. Use
of a different (more complex) preconditioner, such as Incomplete Cholesky factorization
(with various settings),could reduce the number of iterations but the computing time
would be the same or higher due to a slow preconditioner assembly (we tested these in the
preliminary stage but the detailed results are not presented here). An alternative approach
would be to prepare a “universal” preconditioner from the reference matrix only once and
to use in every iteration [40]. In the presented study, however, we used the first approach
with assembling the diagonal preconditioner each iteration.

It is important to determine the termination criteria. The maximal number of iterations
is the first common criterion. Usually, the value ranges between 200 and 500. It should be
noted that a complex task (such as a complex geometry or complex loads) requires more
iterations but from our experience, 100 iterations are enough for a simple task. The second
criterion is defined as the tolerance of sufficient optimization at which the calculation is
terminated. There are two possible options.

The first option is to calculate the change in the values of design variables between the
current and previous iteration [7]. This change is compared with the chosen tolerance value
and once the change in the design variables is below the tolerance value, the calculation
is terminated. Thus, if the tolerance is set to a low value, the number of iterations will
increase. This is defined as

max |xei − xei−1 | ≤ ε, (34)

where xei are the design variables of the current iteration, xei−1 are the design variables of
the previous iteration and ε is the tolerance value.
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The other option is to calculate the ratio of the change of the objective function to the
current objective function value. It is assumed that the changes of the objective function
near the stationary point are minimal. Compared to the first option, the number of iterations
is lower (it may be reduced by as much as half). This option is defined as∣∣∣∣∣ c(xei )− c(xei−1)

c(xei )

∣∣∣∣∣ ≤ ε, (35)

where c(xei ) is the value of the objective function in the i-th iteration, c(xei−1) is the value
of the objective function of the previous iteration (i−1,) and ε is the tolerance value. This
method, however, comes with a risk of premature termination; for this reason, the first
option of terminating criterion was used.

2.2. Key Formulations

It is apparent from the previous sections that the optimization comes with many
formulations and parameters. Each parameter can be changed, which might reduce the
number of iterations, improve the values of objective functions or of the desired volume
fraction; on the other hand, the changes may also lead to solver instability, premature
termination, or ineffective shape of the part. In this paper, five key formulations are
analyzed and evaluated:

Formulation of the filter radius mentioned in Section 2.1.6 is important because the
radius defines the element’s neighborhood. If the defined range is too small, the energy is
distributed only to a few elements. However, if the neighborhood is too large, the energy is
scattered to a point where it is difficult to evaluate the optimum.

Formulation of the filter type was already mentioned in Section 2.1.6 but the theory
does not provide an answer to the question of which filter should perform best.

Formulation of the penalization was also mentioned in Section 2.1.3; the theory,
however, is able to provide only the lower boundary, not the upper one.

Formulation of the element approximation mentioned in Section 2.1.4 is a necessary
step in the initiation of optimization. The element approximations greatly affect the
accuracy of the solved displacement and the value of the objective function.

The formulation of the type of the weight factor mentioned in Section 2.1.6 is defined
by two functions. However, theory does not provide enough evidence to decide, which
function offers the better performance.

These key formulations were tested on several numerical examples including planar
and spatial problems (see Figure 6) but to ensure the clarity of this paper, only one example
is presented.

Figure 6. Results of numerical examples of topology optimization; from left to right-four point bend-
ing, L problem, two-loadcase cantilever plate, beam with square cross-section subjected to torsion.

2.3. Description of Numerical Test

The sensitivity analysis was performed using a numerical test-cantilever beam. It is a
standard problem of mechanics, well-known to every designer. As the optimal shape can
be found intuitively, results evaluation is easier.

The boundary conditions were simple. The beam was fixed on one end and the force
acted on the other end’s edge (bottom edge). The beam had a rectangular cross-section and
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was made of steel. It was assumed that the forces caused only a small displacement and
the original material model was linear isotropic. All finite element meshes were made of
solid elements, see Table 1. The authors used linear HEX elements and linear TET elements.
In addition, quadratic HEX and TET elements have been calculated and results (mesh
statistics) presented in Section 3.4. The geometry and discretization are shown in Figure 7.
The figure also contains material and force parameters. The objective of optimization was
to minimize the compliance (i.e., to maximize stiffness). In our paper, the constraint was
defined as the volume fraction of 30%.

F

L

H

t

L = 60 mm

H = 20 mm

t = 4 mm

E0 = 210 GPa

= 0.3 μ

F = 100 N

Height

Lenght

Thickness

Elasticity modulus

Poisson ratio

Force

Figure 7. Geometry, discretization and parameters of the numerical test-cantilever beam.

Table 1. Finite element mesh statistics.

TET Elements HEX Elements

Coaser mesh
Number of nodes 686 2460

Number of elements 2034 1680
Element size [mm] 1.500 2.000

Normal mesh
Number of nodes 1403 6405

Number of elements 4458 4800
Element size [mm] 1.000 1.000

Fine mesh
Number of nodes 10,850 44,650

Number of elements 38,740 38,400
Element size [mm] 0.355 0.500

3. Results

Optimization using MATLAB software was performed on multiple meshes. The
maximal number of iterations was set to 200. The maximal change of the design variable
(i.e., density) was chosen as the terminating criterion. The tolerance was set to 0.01. The
cut-off limit of the design variable for element deactivation (white in the Figures) was
0.01 unless stated otherwise. The penalty was set to a constant value of p = 3 unless
stated otherwise. Unless stated otherwise, the Density filter was used throughout the
paper. In tables, two variants of the objective function are shown. The non-normed value
indicates the deformation energy. The normed value is the objective function divided by
the reference value of the initial objective function (i.e., the objective function describing the
original structure before optimization). In other words, the normed value shows how many
times the resulting structure is more compliant than the original reference. The normed
value in the linear static analysis should be the same (or, at least, similar) regardless of
the applied force. Data and shapes presented in this chapter were prepared in Ansys
Workbench (AWB).

3.1. Formulation of Filter Radius

The radius of the filter is an important parameter since it defines the element’s neigh-
borhood. In this case, the radius is dependent on the element size (ES). For hexahedral
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elements, multipliers were set to 1.2 ES, 1.5 ES, 2.0 ES, and 3.0 ES, respectively. For clari-
fication, Figure 4 displays the mentioned radiuses. For tetrahedral elements, multipliers
were twice as high (i.e., 2.4 ES, 3.0 ES, 4.0 ES and 6.0 ES) to prevent possible inactivation
of filters.

Results for the hexahedral and tetrahedral meshes are shown in Figure 8, which is
displayed in the dominant (planar) view.

R = 2.4 ES

ES = 1.5 mm ES = 1.0 mm ES = 0.5 mm

R = 3.0 ES 

R = 4.0 ES

R = 6.0 ES

AWB

R = 1.2 ES

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm

R = 1.5 ES

R = 2.0 ES

R = 3.0 ES

AWB

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8. Final shapes for linear HEX elements (left) and linear TET elements (right) with various radii, Density filter (D).

From Table 2, it was apparent that the radius heavily affected the distortion of design
variables over the design region. This means if the radius was increased, the value of the
objective function (both deformation energy and normed value) also increased. Besides,
the volume fraction increased due to the distortion. A fine mesh with small radii yielded a
great stiffness-volume ratio, the optimized structure was approximately 2.5 times more
compliant than the original structure but the volume reduction was as high as 53%.

A few notes: Radius should never be smaller than 1.5 ES/2.4 ES. A radius such as
1.2 ES greatly limited the capability of filters. In the case of uniform mesh, the radius
should be appropriately chosen from the range between 1.5 ES and 3.0 ES. In the case
of the non-uniform (tetrahedral) mesh, the radius should be within the range of 2.4 ES
to 4.0 ES. Radii exceeding the upper value of the mentioned ranges make the structure
more compliant. In the case of a coarser TET mesh, the radius R = 6.0 ES caused an over
two-fold increase in the deformation energy than radius R = 2.4 ES. Besides, the shapes of
the coarser meshes with larger radii were not acceptable due to the high representation of
“grey” areas (see Figure 8).



Symmetry 2021, 13, 712 15 of 25

Table 2. Results of optimization with different radius, for meshes with linear HEX elements (first
multiplier) or linear TET elements (latter multiplier).

HEX Elements TET Elements
Radius Value 2.0 mm 1.0 mm 0.5 mm 1.5 mm 1.0 mm 0.355 mm

1.2/2.4 ES

Deformation energy [mJ] 6.1 4.1 3.4 8.0 5.6 3.6
Normed value [-] 4.2 2.8 2.3 5.8 3.9 2.5
Iteration 110 96 200 200 200 200
Volume fraction [%] 63.6 56.0 46.9 75.6 67.4 54.4

1.5/3.0 ES

Deformation energy [mJ] 7.2 4.6 3.7 9.8 6.7 3.9
Normed value [-] 5.0 3.1 2.5 7.1 4.8 2.7
Iteration 83 200 200 200 200 200
Volume fraction [%] 64.6 57.6 50.2 81.1 72.0 59.9

2.0/4.0 ES

Deformation energy [mJ] 9.7 5.2 4.0 12.6 9.0 4.3
Normed value [-] 6.7 3.5 2.7 9.1 6.3 3.0
Iteration 167 200 200 200 200 200
Volume fraction [%] 78.2 55.3 50.2 87.4 75.7 58.5

3.0/6.0 ES

Deformation energy [mJ] 14.5 7.2 4.5 18.4 12.4 5.1
Normed value [-] 10.1 4.9 3.1 13.3 8.7 3.5
Iteration 200 200 200 139 200 200
Volume fraction [%] 89.7 66.1 51.6 98.3 87.0 62.8

AWB

Deformation energy [mJ] 5.7 4.9 3.9 2.7 5.5 4.7
Normed value [-] 3.9 3.4 2.7 2.0 3.9 3.2
Iteration 35 42 33 31 57 33
Volume fraction [%] 51.7 51.3 40.3 78.4 58.6 58.5

3.2. Formulation of Filter Type

The importance of filters was already mentioned in the previous section. The following
effects were evaluated: the number of iterations, objective function, and volume fraction.
This particular aim of our study was to find the appropriate filter leading to a 0–1 design
(and low objective function). Five variants were calculated: No filter (NoF), Density filter
(D), Sensitivity filter (S), Grayscale filter with Density filter (G), and Grayscale filter with
sensitivity filter (SG). Figure 9 shows each filter.

S

SG

D

G

Figure 9. Results of individual filtering algorithms: Density filter (D), Sensitivity filter (S), Grayscale
filter (G),Combination of the Sensitivity and Grayscale filters (SG).

At the first look, it should be apparent that the SG combination leads in this case to a
purely 0-1 design (with the required volume fraction).

Two variants of the radius were selected: In the first variant, the radius was considered
to depend on the element size, namely, it was defined as 1.5 ES. Results of this approach
are displayed in Figure 10 and Table 3. The way of how the filters acted when the radius
was not constant over different meshes should be noted.
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NoF

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm

S

D

G

SG

AWB

R = 1.5 ES  

ES = 1.5 mm ES = 1.0 mm ES = 0.355 mm

R = 3.0 ES  

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 10. The final shape for linear HEX elements (left) and linear TET elements (right) with various filters, HEX radius
R = 1.5 ES and TET radius R = 3.0 ES.

Table 3. Results of optimization for various filters for each mesh, dependent radius, filter radius of
linear HEX mesh is R = 1.5 ES an filter radius of linear TET mesh is R = 3.0 ES.

HEX Elements TET Elements

Filter Value 2.0 mm 1.0 mm 0.5mm 1.5 mm 1.0 mm 0.355 mm

S

Deformation energy [mJ] 6.1 3.9 3.4 7.7 9.3 3.5
Norm value [-] 4.3 2.7 2.3 5.5 6.6 2.4
Iteration 117 53 200 80 26 167
Volume fraction [%] 71.2 54.1 45.5 82.4 93.4 58.8

G

Deformation energy [mJ] 7.6 4.9 3.9 10.6 7.5 4.1
Norm value [-] 5.3 3.3 2.6 7.6 5.3 2.8
Iteration 35 34 34 34 36 34
Volume fraction [%] 63.4 59.5 51.0 82.9 72.6 61.8

D

Deformation energy [mJ] 7.2 4.6 3.7 9.8 6.7 3.9
Norm value [-] 5.0 3.1 2.5 7.1 4.8 2.7
Iteration 83 200 200 200 200 200
Volume fraction [%] 64.6 57.6 50.2 81.1 72.0 59.9

SG

Deformation energy [mJ] 3.8 3.3 3.1 3.7 3.3 3.0
Norm value [-] 2.6 2.2 2.1 2.7 2.4 2.1
Iteration 74 45 47 47 51 49
Volume fraction [%] 30.0 30.0 30.1 30.0 30.0 30.0

AWB

Deformation energy [mJ] 5.7 4.9 3.9 2.7 5.5 4.7
Norm value [-] 3.9 3.4 2.7 2.0 3.9 3.2
Iteration 35 42 33 31 57 33
Volume fraction [%] 51.7 51.3 40.3 78.4 58.6 58.5

In the second variant, the radius was not considered to be dependent on the element
size and was assigned a constant value of R = 4 mm. This radius was defined as a
1.5 multiple of the element size from the coarse tetrahedral mesh. Results displayed in
Figure 11 and Table 4 demonstrate the independence of the results on the mesh (results have
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a similar shape and value of the objective function). In this variant, TET meshes performed
poorly, especially in combination with the Sensitivity filter, which acted unpredictably at
best. A coarser TET mesh could result in an acceptable shape (i.e., a shape similar to that
derived using the HEX mesh) but finer TET meshes did not lead to volume reduction, but
rather to its increase. In addition, the combination of TET mesh with Sensitivity filter often
resulted in premature termination of the computation.

ES = 1.5 mm ES = 1.0 mm ES = 0.355 mm

D

G

S

SG

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 11. The final shape for linear HEX elements (left) and linear TET elements (right) with various filters, radius
R = 4 mm.

Table 4. Results of optimization for various filters for each mesh, independent radius, filter radius
R = 4 mm.

HEX Elements TET Elements

Filter Value 2.0 mm 1.0 mm 0.5 mm 1.5 mm 1.0 mm 0.355 mm

S

Deformation energy [mJ] 9.9 9.8 9.6 7.4 8.2 5.1
Norm value [-] 6.9 6.7 6.5 5.3 5.8 3.5
Iteration 101 117 135 54 50 24
Volume fraction [%] 84.9 84.5 84.3 82.8 92.1 92.7

G

Deformation energy [mJ] 11.1 10.9 10.6 9.6 10.4 9.6
Norm value [-] 7.7 7.4 7.2 6.9 7.4 6.6
Iteration 41 35 39 36 34 36
Volume fraction [%] 78.8 79.8 79.6 80.4 80.2 80.3

D

Deformation energy [mJ] 9.7 9.6 9.5 8.7 9.0 9.7
Norm value [-] 6.7 6.6 6.44 6.3 6.3 6.7
Iteration 167 158 200 200 200 200
Volume fraction [%] 78.2 76.9 79.6 77.2 75.7 77.5

SG

Deformation energy [mJ] 3.9 3.8 3.7 3.7 4.1 3.0
Norm value [-] 2.7 2.6 2.5 2.7 2.9 2.0
Iteration 47 48 38 34 37 50
Volume fraction [%] 30 30 29.2 30.0 30.0 30.0

It should be noted that unwanted effects, such as shear locking, can occur while
solving the static structural analysis and cause an increase in the relative error of the
objective function. In case of the radius of R = 4 mm, the deformation energy of the
Density filter was slightly higher for HEX elements than for TET elements. Hence, relative
errors were small enough to justify acceptation of the results.

Our results indicate that all filters discussed in this paper are suitable for use with a
uniform mesh. The recommended filter combines the Density or Sensitivity filter with the
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Greyscale filter to ensure a low number of iterations. In the case of a fine mesh, the Density
filter without the Greyscale filter reached a maximal number of iterations while with the
Greyscale filter, only 34 iterations were needed. The deformation energies of both results
were similar. In the case of a non-uniform mesh, only the Density and Greyscale filters can
be used effectively.

One could argue that the combination of the Sensitivity and Greyscale filters got us
a perfect black and white design with the required volume fraction (volume reduction
of 70%) while increasing the compliance of the structure only approximately 2.1 times;
however, the shape was likely to be prone to buckling since compared to other results, the
parts were thin.

3.3. Formulation of Penalization

Penalization is the parameter of the SIMP material model. Its correct choice is crucial
as incorrect penalization would invalidate the model. For the Poisson ratio of µ = 1

3 , it is
recommended to use the penalization of p = 3 and higher as mentioned above.

Figure 12 demonstrates that the penalizations p = 1 and p = 2 should not be used
since the shapes are not fully optimized (due to the premature termination of optimization).
Literature, however, does not set the upper limit of this inequality. The values of defor-
mation energy grew more or less predictably up to a penalization value of p > 6, see the
values in Table 5. With high penalization values, such as p > 6, it was, nevertheless, clear
that the results were becoming mesh-dependent. This could be caused by the convergence
of the solution to a local minimum rather than a global minimum.

One could choose the continuation method with a gradual increase in the penalization
value. This approach should help in acquisition of a reasonable solution. It should be,
however, mentioned that the continuation method might not be capable of yielding a true
“black and white” design, as reported by Stolpe and Svanberg [41]. This paper does not
fully study this strategy; the risks are that a too fast increase of the penalization could lead
to numerical difficulties that only increase the number of iterations.

p = 10

p = 9

p = 8

p = 7

p = 6

p = 5

p = 4

p = 3

p = 2

p = 1

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm
AWB,

ES = 1.0 mm

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 12. The final shapes for different values of penalization p, Density filter, radius of filter
R = 2 mm.
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Table 5. Values of objection function, deformation energy c [mJ] for each values of penalization.

Penalization ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm AWB, ES = 1.0 mm

1 3.02 2.90 2.85 2.90
2 4.68 4.78 4.76 4.23
3 5.54 5.68 5.66 4.96
4 6.78 6.88 6.90 5.44
5 8.69 8.97 8.66 6.02
6 9.40 11.02 10.31 6.66
7 10.18 14.16 14.39 7.82
8 24.27 27.67 36.70 11.91
9 30.66 26.97 24.55 21.58

10 34.16 29.08 29.98 62.78

3.4. Formulation of Element Approximation

During the mesh preparation, it is necessary to choose an element approximation (usu-
ally linear or quadratic displacement approximation). Literature suggests that problems
such as the checkerboard patterns should be less common with quadratic elements [26].
The advantage is that quadratic elements are less stiff than linear ones. However, the
need to solve a larger number of unknowns (DOF) is a considerable disadvantage of this
approach. Table 6 lists the mesh statistics.

Table 6. Finite element mesh statistics for linear and quadratic elements.

Linear Elements Quadratic Elements

Number of nodes 6405 23,930
HEX Number of elements 4800 4800

Element size [mm] 1.0 1.0

Number of nodes 1391 8269
TET Number of elements 4351 4351

Element size [mm] 1.0 1.0

In our case, the optimization settings were slightly altered. Only the Density filter
with a radius of R = 1.5 ES for HEX elements and R = 3.0 ES for TET. Element size of
ES = 1.0 mm was used. The maximal number of iterations was set to 100.

Figure 13 shows that the previous statement about the checkerboard pattern being
less common with quadratic elements is only partially true. In the case of quadratic
HEX elements, a checkerboard pattern was still present in the front part of the structure
(although less than when linear elements were used). In the case of TET elements, not
even higher order approximations did reduce the checkerboard pattern. Hence, filtering is
highly recommended regardless of whether quadratic or linear elements are used. Table 7
obviates that the linear elements are stiffer, i.e., that they provide lower values of the
objective function. However, the time needed to solve the problem with quadratic elements
is up to thirty times longer than with linear elements.

a) Linear
   elements

b) Quadratic
    elements

Without �ltering With �ltering Without �ltering With �ltering
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Figure 13. The final shapes for evaluation of element approximations of HEX elements (left) and TET elements (right);
Density filter, radius R = 1.5 Es for HEX and radius R = 3.0 Es for TET.
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Table 7. Results of optimization for linear elements and quadratic elements.

Linear Elements Quadratic Elements
With Filter Without Filter With Filter Without Filter

HEX elements

Deformation energy [-] 4.6 3.63 4.79 3.73
Norm value [-] 3.16 2.49 3.22 2.51
Iteration 100 33 100 57
Volume fraction [%] 58.1 30.2 56.4 30.1
Solving time [s] 140 51.7 4820 3260

TET elements

Deformation energy [-] 6.71 2.83 10.07 4.64
Norm value [-] 4.74 2.00 4.91 2.27
Iteration 100 24 100 58
Volume fraction [%] 73.6 30.1 73.9 30.1
Solving time [s] 50 17.1 118.9 77.1

3.5. Formulation of Type of Weight Factor

In the theoretical part, two types of weight factors are mentioned—one characterized
by a linear function, the other by the Gauss function. Nevertheless, according to the
literature, there is no evidence that the Gauss function offers any advantages over the linear
one [8].

In the investigation of this formulation, only two meshes were tested. Both meshes
used linear elements with element sizes of ES = 1.0 mm and ES = 0.5 mm. Two radii
were chosen as R = 1.5 ES and R = 2.0 ES, respectively. The maximal number of iterations
was 100.

The values of the objective function and volume fraction detailed in Table 8, as well
as results shown in Figure 14, indicate a significant resemblance between values acquired
using Gaussian and linear weight factors. In the case of a normal mesh (ES = 1.0 mm),
setting the radius of the linear function to R = 1.5 Es provided similar results as in the
case of the Gauss function with a radius of R = 2.0 ES (see the highlighted values in
Table 8). In the fine mesh (ES = 0.5 mm), the similarities were more pronounced than
in the normal mesh. This means that the Gauss function does not offer any significant
advantage over the linear function as their results are very similar and shapes similar to
those produced by the Gauss function can be obtained by simply changing the radius in
the linear function/solution. As the preparation of mathematical apparatus is simpler with
linear function, we decided to prefer linear solution over the one with the Gauss function.

Table 8. Results of optimization for different weight factors.

ES = 1.0 mm ES = 0.5 mm
R = 1.5 ES R = 2.0 ES R = 1.5 ES R = 2.0 ES

Linear function

Deformation energy [mJ] 4.61 5.26 3.74 4.02
Norm value [-] 3.16 3.61 2.53 2.72
Iteration 100 100 100 100
Volume fraction [%] 58.15 56.2 50.2 50.3

Gauss function

Deformation energy [mJ] 4.11 4.67 3.61 3.91
Norm value [-] 2.82 3.2 2.44 2.65
Iteration 100 100 100 100
Volume fraction [%] 59.25 59.15 50.8 50.0
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a) Linear
    function

b) Gauss
    function

R = 1.5 ES R = 2.0 ES R = 1.5 ES R = 2.0 ES

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 14. The final shape with different weight functions, mesh with element size ES = 1.0 mm (left), mesh with element
size ES = 0.5 mm (right), Density filter.

4. Discussion

To fully understand optimization, one should possess advanced experience in math
(namely, calculus and finite element method) and computer science (for example, scripting
for iteration solvers). One should also be capable of preparing a correct mathematical
formulation of the problem, i.e., of determining the objective function of the problem,
constraints, and design variables, and of finding equivalent problems, potentially offering
an easier solution than the original one.

Five key formulations were analyzed in this paper. The results make it clear that each
formulation affects the resulting shape, number of iterations, volume of the part, etc.

The formulation of the filter radius is crucial for determining the element neighbor-
hood. Choosing too small radius might lead to the deactivation of the filter. Choosing
a too large radius leads to dissipation of energy in large areas, resulting in too much
“grey”. Choosing the filter itself can be difficult since the theory does not provide enough
knowledge from the application point of view. The SIMP model was used as a simple
material model in this study. The penalty value is a key parameter of this model. However,
the theory provides only the bottom boundary but does not inform about the upper one.
Failure to limit the upper boundary could lead to invalid results that would be highly
mesh-dependent. The maximum reasonable penalty value for the steel cantilever in our
study was p = 6.

The theory also recommends a quadratic approximation of the displacement of the
elements. However, it does not provide clear reasons behind this recommendation. Choos-
ing the right approximation might lead to a faster calculation. Lastly, neither the theory
nor practice (as demonstrated by our calculations) provide enough evidence or reason for
using the Gauss function as the weight function.

It should be noted that there are additional formulations affecting the final shape. For
example, various algorithms, described by Zuo et al., can be used in topology optimization [42].
Another approach to this problem could lie in reducing the computing efforts, as reported by
Amir et al. [40]. For larger problems, it would be better to prepare a better displacement solver
(for example, a parallel displacement solver as suggested, e.g., by Makropoulos et al. [43]. In our
paper, however, we did not study other types of structural analysis, such as the heat transfer of
flow optimization.

The algorithm used in our scripts, the Optimality Criterion (OC), was designed only
for minimizing the compliance and volume constraint. The advantages of the OC algorithm
include its simplicity and rapid updating of the design variables. The disadvantage is that
it is only capable of solving the minimizing compliance problem (in the current form, it
cannot solve the maximizing natural frequency).

Construction of the matrix of the weight factor might be tricky. Open-source scripts
usually do not support importing meshes and use a rather simple geometry. Thus, an
effective script for importing meshes usually needs to be prepared. The modification of the
weight factor calculation allowed us, due to the symmetry of the matrix, to solve only its
upper triangle, which halved the calculating time. Another possible modification would
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lie in splitting the part into sub-regions, which could be calculated in parallel. Of course,
the latter approach would come with its own limitations; overlapping would be necessary
to be able to combine the individual regions back into the full structure, and, therefore,
therefore, already solved regions would have to be calculated again.

The design performance has many criteria such as stiffness, overall solving duration,
post-processing, manufacturing, etc. Each formulation has its effect on the design per-
formance. It is difficult to pinpoint settings that are optimal for the design performance
in each formulation. However, it is easy to recommend, which settings and parameter
values should be avoided. It should be noted that the steps following the optimization (in
particular, smoothing) might heavily affect the design performance.

It should be also noted that complex problems might need their own sensitivity
analysis. However, this paper should help with the initial estimates. After finding the
optimal formulations and their parameters, one could prepare scripts for automated
designing of customized structures such as prosthetic aids [14,44] or scripts for automated
designing of mountain climbing equipment [45].

5. Conclusions

This paper focuses on the sensitivity analysis of key topology optimization formula-
tions. The novelty of this research comes from the presented results, which might be used
in the preparation of custom scripts solving the topology optimization. The solutions were
tested on various meshes with various types of elements. The paper contains important
theoretical background for the problem of minimizing compliance. To have freedom in
choosing such formulations, the authors prepared a MATLAB procedure solving such
optimization. The prepared program allows users to import the mesh and boundary condi-
tions. Scripts constructed within this study provided results comparable to the open-source
top3d script [9]. The presented paper also includes recommendations on how to choose
the parameters of topology optimization.

It is clear that uniform meshes perform generally better in this formulation; this was
particularly true during optimization as it allowed the application of multiple filters.

Radius is an important part of the filtering method and correct results depend on
the appropriate selection of its value. Too small a radius could possibly lead to difficult
manufacturing (even if using additive manufacturing). Using a large radius could produce
non-optimized shapes with grey areas. If the mesh is being refined during optimization, it
is recommended to use the same or similar radius as in the previous step (coarser mesh).

The combination of the Density and Greyscale filters performed better than the Density
filter alone as it yielded similar or even identical values of the objective function as the
Density filter in fewer iterations. The combination also performed well on non-uniform
meshes. It is obvious that the combined filter still left some grey areas but the success of
this filtering was still the best of all tested filters. If the design variable in these grey areas
is xe < 0.3, they can be removed when using penalization of p ≥ 3 since their contribution
to stiffness is negligible.

The use of a Gaussian weight factor did not bring any advantage over the linear
function as the results calculated using both functions were very similar. As constructing
the matrix for the Gaussian weight factor is more difficult, a linear function is more suitable
for these purposes.

In this paper, the authors used in most cases linear elements, which led to several
conclusions: (i) The usage of linear tetrahedral elements is not recommended in any
case. They are too stiff due to the locking effects, which greatly affects the value of the
objective function. The only advantage lies in the fast calculation of displacement because
the tetrahedral mesh usually has fewer nodes. However, a fine mesh would be needed
to get reasonable results, which negates this only advantage. (ii) The uniform mesh
provides acceptable results even if the linear approximation is used. For that reason, it is
recommended to use the “Cartesian mesher” which provides uniform meshes even for
complex geometries. A small disadvantage is represented by the differences in the shape of
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the resulting structure depending on the method of mesh creation. (iii) Quadratic elements
might be less stiff but solving them would be time-consuming. If one would like to use
only quadratic elements, it would be recommended to spend time preparing a better solver
of linear equation systems (for example, a parallel solver).

The authors recommend performing a sensitivity analysis of the key formulations
presented in the paper for each problem, regardless of whether or not the designer has
previous experience with similar problems. Without the suggested analysis, more doubts
arise and the creation of “false-optimal” shapes is not prevented.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three Dimensional
2D Two Dimensional
AWB ANSYS Workbench
KKT Karush-Kuhn-Tucker
SIMP Solid Isotropic Material with Penalty
TET Tetrahedral
HEX Hexahedral
DOF Degrees of Freedom
OC Optimality Criterion
SAO Sequential Approximate Optimization
1D One Dimensional
ES Element Size
NF No Filter
D Density filter
S Sensitivity filter
G Gray scale filter
SG Combination of Sensitivity and Gray scale Filters
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