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Abstract: We develop several formal analogies between the logistic equation and the spatially
homogeneous and isotropic relativistic cosmology described by the Einstein–Friedmann equations.
These analogies produce an effective Lagrangian and Hamiltonian and new symmetries for the
logistic equation.
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1. Introduction

The logistic equation is
ḟ (t) = r f (t)[1− f (t)] , (1)

where r is a positive constant and an overdot denotes differentiation with respect to t. The
solution is the well known sigmoid

f (t) =
f0 ert

1 + f0 ert , (2)

where f0 is a constant. If f0 < −1, the initial value at t = 0 is f (0) = f0
1+ f0

= | f0|
| f0|−1 > 1 and

ḟ < 0. This solution decreases and approaches 1 asymptotically. If instead f0 > 0, then
f (0) < 1 and the solution always satisfies f < 1. We require f ≥ 0 and we restrict to the
range 0 < f ≤ 1.

Other solutions are the constants f ≡ 1, which is a fixed point solution and a late-time
attractor, and f (t) ≡ 0 which is also a fixed point and a repellor but is not considered here
since we restrict to positive f .

The logistic equation and its applications are well known: here, we point out a novel
aspect of it, i.e., formal analogies between the logistic equation and the Friedmann equation
of spatially homogenous and isotropic cosmology in general relativity. There are two
analogs, corresponding to the two different time coordinates widely used in cosmology.
First, these analogies generate an effective Lagrangian and Hamiltonian for the logistic
equation or, in other words, solve its inverse Lagrangian problem. Second, the Fried-
mann equation admits certain symmetries which can be used to generate corresponding
symmetries on the logistic equation side of the analogy.

In the next section, we recall the basics of spatially homogeneous and isotropic cosmol-
ogy (also called Friedmann–Lemaître–Robertson–Walker (FLRW) cosmology) in Einstein’s
theory of gravity and the symmetries of the corresponding Einstein–Friedmann equations.
In the following section, we develop the formal analogies between logistic equation and
Friedmann equation, written using comoving time or conformal time, respectively. In both
cases, we write down the corresponding Lagrangian and Hamiltonian for the logistic equa-
tion, and examine whether the symmetries of the Einstein–Friedmann equations generate
new symmetries of the logistic equation. The last section contains the conclusions.
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2. Basics of FLRW Cosmology

The foundation of relativistic cosmology is the Copernican principle, according to
which the universe is spatially homogeneous and isotropic on large scales (i.e., averaging
over spatial regions of size larger than approximately 100 Megaparsecs) [1–6]. Therefore,
the relativistic spacetime manifold used to model the universe is taken to satisfy the sym-
metry requirements of spatial homogeneity and isotropy. The latter are quite stringent: in
fact, the spacetime manifold must have constant spatial curvature [7]. The spacetime ge-
ometry must then necessarily be the one described by the FLRW metric tensor. Using polar
comoving coordinates (the comoving coordinates are associated with observers comoving
with the cosmic fluid, i.e., those who see the cosmic microwave background radiation
homogeneous and isotropic around them (apart from tiny temperature perturbations of
the order δT/T ∼ 5× 10−5)) (t, r, ϑ, ϕ), the FLRW line element is [1,2]

ds2 = −dt2 + a2(t)

(
dr2

1− Kr2 + r2dΩ2
(2)

)
(3)

where dΩ2
(2) = dϑ2 + sin2 ϑ dϕ2 denotes the line element on the unit 2-sphere, while

the sign of the constant “curvature index” K characterizes the three-dimensional spatial
sections corresponding to instants of comoving time t = const. A positive curvature index
K > 0 is associated with 3-spheres; vanishing curvature K = 0 corresponds to Euclidean
spatial sections, while an index K < 0 is associated with hyperbolic three-dimensional
spatial sections.

2.1. Einstein–Friedmann Equations

Thanks to the symmetries, the entire evolution of FLRW universes is described by the
functional form of the scale factor a(t). The spacetime geometry is curved by some matter
source: in FLRW cosmology, it is customary (but not compulsory) to use as the matter
source a perfect fluid with energy density ρ(t) and pressure given by P(t) = wρ(t). Here,
w denotes a constant equation of state parameter. The evolution of the cosmic scale factor
a(t) and energy density ρ(t) is ruled by the Einstein equations, which are greatly simplified
by the high degree of symmetry of FLRW cosmology and reduce to a set of three ordinary
differential equations, the Einstein–Friedmann equations. These equations include [1–3]
the Friedmann equation

H2 =
8πG

3
ρ− K

a2 +
Λ
3

(4)

(which amounts to a first order constraint on the dynamics); the acceleration (or Raychaud-
huri) equation

ä
a
= −4πG

3
(ρ + 3P) +

Λ
3

; (5)

and the equation describing covariant conservation of energy of the cosmic fluid

ρ̇ + 3H(P + ρ) = 0 . (6)

The constants appearing in these equations are Newton’s constant G and Einstein’s
celebrated cosmological constant Λ. We use an overdot to indicate differentiation with re-
spect to the comoving time t, while H ≡ ȧ/a is the Hubble function [2,3]. The cosmological
constant Λ can be treated formally as an effective perfect fluid with energy density and
pressure ρΛ = Λ

8πG = −PΛ [2,3]. Following the notation in [2,3], we use units in which the
speed of light is unity.

For a generic cosmic fluid, only two out of the three Equations (4)–(6) are independent
and one of them can be derived from the other two, if the Einstein equations and the
expression of the Ricci scalar in FLRW space are used as extra information. Specifically:
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• Differentiating the Friedmann Equation (4) with respect to time yields

2H
(

ä
a
− H2

)
=

8πG
3

ρ̇ +
2KH

a2 ; (7)

using the acceleration Equation (5) and the Friedmann Equation (4) to substitute
for ä/a and H2 in (7) produces the conservation Equation (6). This derivation of
Equation (6) is a reflection of the more general derivation of the covariant conservation
equation ∇bTab = 0 from the Einstein equations

Rab −
1
2

gabR + Λgab = 8πGTab (8)

and the contracted Bianchi identities∇b(Rab − gabR/2) = 0 (here, gab, Rab, and Tab are
the metric tensor, its Ricci tensor, and the stress-energy tensor of matter, respectively,
and R ≡ gabRab).

• The Friedmann Equation (4) follows from the acceleration Equation (5), the Einstein
Equation (8), and the expression of the Ricci scalar in the FLRW geometry (3)

R = 6
(

Ḣ + 2H2 +
K
a2

)
. (9)

In fact, a perfect fluid stress–energy tensor

Tab = (P + ρ)uaub + Pgab (10)

(where uc is the fluid four-velocity normalized to ucuc = −1) has trace T = −ρ + 3P
and the contraction of the Einstein Equations (8) then gives

R = 8πG(ρ− 3P) + 4Λ . (11)

Equating the right-hand sides of Equations (9) and (11) yields

ä
a
+ H2 +

K
a2 =

4πG
3

(ρ− 3P) +
2Λ
3

. (12)

Using now the acceleration Equation (5) to substitute for ä/a, one obtains the Fried-
mann Equation (4).

• The acceleration Equation (5) can be derived from the Friedmann Equation (4) and
the energy conservation Equation (6). In fact, differentiating (4) with respect to time
leads to

2H
(

ä
a
− H2

)
=

8πG
3

ρ̇ +
2KH

a2 ; (13)

using Equation (6) to substitute for ρ̇ and the Friedmann Equation (4) for H2, the
acceleration Equation (5) follows straightforwardly.

By specifying a constant equation of state P = wρ, the conservation equation is
immediately integrated to

ρ(a) =
ρ0

a3(w+1)
. (14)

Analytic solutions of the Einstein–Friedmann Equations (4)–(6) with a single perfect
fluid, as well as analyses of their phase space, are well known (see [8–10] for reviews).

2.2. FLRW Lagrangian and Hamiltonian

A Lagrangian for FLRW cosmology is

L(a, ȧ) = 3aȧ2 + 8πGa3ρ− 3Ka , (15)
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where ρ = ρ(a) is specified by the barotropic equation of state P = P(ρ) and the conser-
vation equation ρ̇ + 3H(P + ρ) = 0. Since ρ = ρ(a), the Lagrangian (15) does not depend
explicitly on t and the corresponding Hamiltonian is conserved,

H =
∂L
∂ȧ

ȧ− L = 3aȧ2 − 8πGa3ρ + 3Ka = C . (16)

The Lagrangian and Hamiltonian above solve the inverse variational problem of
finding an action integral for the logistic equation, however this is not sufficient to complete
the derivation. Since the dynamics of general relativity is constrained [2,3], in the FLRW
geometry the Hamiltonian constraint (time-time component of the Einstein equations)
imposes that C = 0 and is the same as the Friedmann Equation (4) [2].

2.3. Symmetries of the Einstein–Friedmann Equations for Spatially Flat Universes

If the universe is spatially flat (K = 0) and there is a single term on the right-hand side
of the Friedmann Equation (4), corresponding to a single perfect fluid with constant equa-
tion of state P = wρ, the Einstein–Friedmann equations exhibit certain symmetries [11–13]
which are studied in the cosmological literature for the purpose of generating analytic
solutions [11–32]. In these symmetry operations, time t, scale factor a, or Hubble function H
are rescaled and the cosmic fluid is changed appropriately, leaving the Einstein–Friedmann
equations invariant in form.

Under the first symmetry [12]

a → ã =
1
a

, (17)

w → w̃ = −(w + 2) , (18)

an expanding universe changes into a contracting one and vice versa. (When it is applicable
to the logistic equation, this symmetry will change an increasing solution with f < 1 into a
decreasing one with f > 1.)

Another one-parameter group of symmetry transformations of a K = 0 universe is [13]

a → ā = as , (19)

dt → dt̄ = s a
3(w+1)(s−1)

2 dt , (20)

ρ → ρ̄ = a−3(w+1)(s−1)ρ , (21)

where the real number s 6= 0 parameterizes the transformation. These operations form a
one-parameter Abelian group.

Finally, the third type of symmetry for a spatially flat FLRW cosmology is [11,33]

ρ → ρ̄ = ρ̄(ρ) , (22)

H → H̄ =

√
ρ̄

ρ
H , (23)

P → P̄ = −ρ̄ +

√
ρ

ρ̄
(P + ρ)

dρ̄

dρ
, (24)

where the function ρ̄(ρ) has the same sign as ρ and is regular. This symmetry applies also
when the barotropic perfect fluid in the FLRW universe does not have linear or constant
equation of state.



Symmetry 2021, 13, 704 5 of 12

3. Cosmological Analogies

Dividing the logistic Equation (1) by f and squaring gives(
ḟ
f

)2

= r2 − 2r2 f + r2 f 2 . (25)

In the following, we examine analogies with the Friedmann Equation (4).

3.1. First Analogy Using Comoving Time

Equation (25) is formally analogous to the Friedmann Equation (4) with (t, a(t)) ↔
(t, f (t)), K = 0, Λ = 3r2, and energy density

ρ = ρ0a(a− 2) (26)

with ρ0 = 3r2/(8πG). (In FLRW cosmology, the scale factor can be rescaled by a constant
without affecting the physics. However, the solution f (t) of the logistic equation does
not enjoy this property, because of the quantity 1− f appearing in brackets in the right
hand side of Equation (1). By imposing the analogy between a(t) and f (t), one loses this
property of the scale factor a(t).) If the physical requirement that the energy density be non-
negative is imposed, the scale factor must satisfy the lower bound a(t) ≥ 2 ∀t. However,
one can in principle relax this assumption if one is only interested in the mathematical
properties of this formal analogy. To complete the analogy, one must impose that another
of the Einstein–Friedmann equations be satisfied. For simplicity, we choose to impose
the covariant conservation equation ρ̇ + 3H(P + ρ) = 0, which then yields the effective
equation of state of the cosmic fluid

P = −ρ− a
3

dρ

da
. (27)

Equation (26) can be sen as the quadratic a2 − 2a− ρ/ρ0 = 0; for physical reasons
only the positive root

a = 1 +
√

1 +
ρ

ρ0
(28)

is relevant in cosmology, hence, we choose the positive sign and restrict ourselves to f > 0
in the logistic equation. Substituting Equation (28) into Equation (27) yields the nonlinear
equation of state of the analogous cosmic fluid

P = −5
3

ρ− 2ρ0

3

[
1 +

√
1 +

ρ

ρ0

]
, (29)

which describes a phantom fluid (i.e., P/ρ < −1). To summarize, this analogous universe
is spatially flat, has positive cosmological constant, and is filled with an exotic phantom
perfect fluid. From a physical point of view, the energy density must be non-negative,
which implies a ≥ 2, while the sigmoid (2) is never larger than one. Therefore, ρ < 0 and
one should discard this first analogy from the physical point of view. However, if only the
mathematical properties are of interest, the formal analogy still stands.

Lagrangian and Hamiltonian. One can consider the inverse variational problem for
Equation (1). The cosmological analogy gives the Lagrangian for the logistic equation

L1
(

f , ḟ
)
= f ḟ 2 + r2 f 4( f − 2) + r2 f 3 . (30)

Since L1 does not depend explicitly on time, the corresponding Hamiltonian is conserved,

H1 =
∂L1

∂ ḟ
ḟ − L1 = f ḟ 2 − r2 f 4( f − 2)− r2 f 3 = C1 . (31)
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Setting the constant C1 = 0 yields ḟ = ±|r| f (1− f ). The negative sign corresponds to
inverting the sign of the constant r, which was stipulated to be positive from the beginning.

Symmetries. Since the equation of state is non-linear, the symmetries (17) and (18) and
(19)–(21) do not apply to this analogous FLRW universe.

The third symmetry is enjoyed by an equation of the form (4) with a single perfect
fluid or with a single fluid plus cosmological constant [33]. In the present situation, we
necessarily have two fluids plus cosmological constant because eliminating one of the
fluids necessarily implies setting r = 0, which leads to losing the logistic equation. As a
conclusion, the third symmetry does not apply to Equation (25).

3.2. Second Analogy with Comoving Time

As a second possible analogy, one can take instead a spatially flat (K = 0) universe
with Λ = 0 and energy density

ρ = ρ0(1− a)2 ; (32)

imposing the covariant energy conservation equation yields

P = −ρ +
2ρ0

3
a(1− a) (33)

and, eliminating a with Equation (32), which yields a = 1 ±
√

ρ/ρ0, one obtains the
nonlinear equation of state

P = −5
3

ρ∓ 2
3
√

ρ0ρ . (34)

This time, the energy density is automatically non-negative and this is an acceptable
analogy from the physical point of view. The FLRW universe analogous to the logistic
equation is spatially flat, has zero cosmological constant, and is filled with the exotic
fluid (34). Since P < −ρ/3, this universe is accelerated, as follows from the acceleration
equation ä

a = − 4πG
3 (ρ + 3P).

Lagrangian and Hamiltonian. The Lagrangian and Hamiltonian for this analogous
universe

L2 = 3aȧ2 + 8πGρ0a3(1− a)2 , (35)

H2 = 3aȧ2 − 8πGρ0a3(1− a)2 , (36)

reproduce (apart from an irrelevant multiplicative constant) the Lagrangian (30) and
Hamiltonian (31) for the logistic equation.

Symmetries. Since the equation of state is non-linear, the symmetries (17) and (18) and
(19)–(21) do not apply to this analogous FLRW universe. The remaining FLRW symmetry
(22)–(24) preserves the analogy (and, therefore, the logistic equation) provided that the
equation of state (34) is maintained. This requirement implies that

± ρ̄3/2 +
√

ρ̄0 ρ̄ =
(
±ρ3/2 +

√
ρ0 ρ

)dρ̄

dρ
(37)

and, consequently, ∫ dρ̄
√

ρ̄0 ρ̄± ρ̄3/2 =
∫ dρ
√

ρ0 ρ± ρ3/2 . (38)

Computing the integral, one obtains

2√
ρ̄0

ln
( √

ρ̄√
ρ̄±√ρ̄0

)
=

2
√

ρ0
ln
( √

ρ
√

ρ±√ρ0

)
, (39)
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which is conveniently rewritten as

ln

(
1±

√
ρ̄0

ρ̄

)
=

√
ρ̄0

ρ0
ln
(

1±
√

ρ0

ρ

)
. (40)

Using the fact that √
ρ̄0

ρ0
=

r̄
r

, (41)

one obtains

1±
√

ρ̄0

ρ̄
=

(
1±

√
ρ0

ρ

)r̄/r
, (42)

so that

1±
√

ρ0

ρ
=

1± 1− f
1− f

; (43)

let us adopt the lower sign first. Then, Equation (42) yields

− f̄
1− f̄

=

(
− f

1− f

)r̄/r
, (44)

which, since the argument of the parenthesis in the right hand side is negative, is well
defined only if r̄/r ≡ n is an integer. If n is even, Equation (44) has no solutions because
the left hand side is negative while the right hand side is positive. If instead n = 2k + 1,
k ∈ N, then (44) reduces to

f → f̄ =

(
f

1− f

)2k+1

1 +
(

f
1− f

)2k+1 . (45)

The sigmoid solution (2) of the logistic equation clearly enjoys this symmetry, which
corresponds to the simple rescaling

f =
f0 eβ t

1 + f0 eβ t → f̄ =
f̄0 eβ̄ t

1 + f̄0 eβ̄ t
(46)

with

f̄0 = f 2k+1
0 , (47)

β̄ = (2k + 1)β , (48)

which, alternatively, follows directly from the properties of the exponential function in
the solution.

If we instead adopt the upper sign in Equation (43), we obtain

2− f̄
1− f̄

=

(
2− f
1− f

)r̄/r
≡ γ , (49)

f̄ =
2− γ

1− γ
, (50)

from which it follows that the solution (2) is mapped into

f̄ = 1 +
1

1−
(
2 + f0eβ t

)r̄/r . (51)
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Certain symmetries of the logistic equation are hidden and made manifest by the
analogy with cosmology. Otherwise, it is not obvious how to look for such symmetries,
either in the equation or in its solutions. This is the case, for example, of the symmetries
described by Equation (45) or Equation (51), which apparently are not found in systematic
searches for symmetries.

3.3. First Analogy with Conformal Time

One can rewrite the Friedmann Equation (4) using conformal, instead of comoving, time.
The conformal time η is defined by dt ≡ adη [2]. Assume that there is a single perfect fluid
with constant equation of state P = wρ and Λ = 0. Then, the use of conformal time turns the
combined Friedmann Equation (4) and acceleration equation ä

a = − 4πG
3 (3w + 1)ρ into

aηη

a
+ (c− 1)

( aη

a

)2
+ cK = 0 , (52)

where c = (3w + 1)/2. Using the new variable u ≡ aη/a, Equation (52) is reduced to the
Riccati equation [9]

uη + cu2 + cK = 0 . (53)

This reduction is a known way of solving the Einstein–Friedmann equation for a
universe filled with a perfect fluid with constant equation of state, which is an alternative
to the more standard solution method using quadratures [9,34]. It has been used as the
basis for several applications in cosmology [35–44].

The logistic equation can also be reduced to a Riccati equation [43]. From a broader
point of view, this is not the only integrable first-order equation that connects with FLRW
universes, especially those filled with scalar fields. For example, the solution of the Riccati
Equation (53) is a hyperbolic tangent, while cosmological models based on a phantom scalar
field expressed by an hyperbolic tangent are known [45]. Another first-order equation
used to integrate a cosmological model based on a scalar field with exponential potential
appears in [46]. Another connection between scalar field cosmology and the Abel equation
of the first kind was investigated by Yurov and Yurov [47]. More generally, connections
between the Einstein–Friedmann equations and the Ermakov–Pinney equation [48] and
the Schrödinger equation are known [49,50].

Proceeding with the Riccati Equation (53) and setting

f (t) ≡ 1
2
[g(t) + 1] , (54)

Equation (1) becomes

ġ +
r
2

g2 − r
2
= 0 , (55)

which is of the form (53) with c = r/2, K = −1. We have then the formal analogy
(η, u(η)) → (t, g(t)) = (t, 2 f (t)− 1) provided that K = −1 and c = r/2 = (3w + 1)/2,
which gives w = (r− 1)/3. Two special cases correspond to classic solutions of FLRW cos-
mology [2–4,6]: r = 1 corresponds to a dust (zero pressure fluid), while r = 2 corresponds
to a radiation fluid, both of which are solved exactly [2].

The analogy implies that

aη

a
= u = g(η) = 2 f (η)− 1 ; (56)

using the solution (2) and integrating gives the scale factor of the analogous universe in
conformal time

a(η) = a0 e−η(1 + f0erη)2/r . (57)
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The comoving time t is obtained from the conformal time by integration, producing
the hypergeometric function

t =
∫

adη = −a0 e−η
2F1

(
−2

r
,−1

r
,

r− 1
r

,− f0 erη

)
+ t0 , (58)

where t0 is an integration constant. Equations (57) and (58) constitute a parametric represen-
tation of the solution a(t) in terms of comoving time with η as the parameter. Unfortunately,
this representation is too cumbersome for practical uses in most situations, and it is more
convenient to use a(η) instead.

Lagrangian and Hamiltonian. A Lagrangian for the Riccati Equation (55) is (the La-
grangian formalism for second-order Riccati equations different from the present one was
studied by Cari nena, Ra nada, and Santander [44])

LR(g, ġ) = ġ2 +
r2

4

(
g2 − 1

)2
, (59)

which does not depend explicitly on η, hence the corresponding Hamiltonian

HR = ġ2 − r2

4

(
g2 − 1

)2
(60)

is conserved. Choosing zero value for this constant and the negative sign of the root of
H = 0 reproduces Equation (55).

Symmetries. A priori, the symmetries (17) and (18) and (19)–(21) should not apply to
the equation uη + cu2 − c = 0 because this implies K = −1, However, the first symmetry
translates into

u→ ū =
1
u

, (61)

which leaves this equation invariant. As expected, the second FLRW symmetry does not
translate into useful symmetries of the Riccati equation. The third symmetry, valid for
spatially flat FLRW universes, does not apply here because K is fixed to the value −1.

3.4. Second Analogy with Conformal Time

Instead of the analogy (η, u(η)) → (t, f (t)), let us consider now the more direct
analogy (η, a(η))→ (t, f (t)). The Friedmann equation in conformal time reads

( aη

a

)2
=

Λa2

3
+

8πG
3

ρa2 − K , (62)

which is analogous to Equation (25) if we make the correspondence

K = −r2 , (63)

Λ = 3r2 , (64)

ρ = − 3r2

4πG
1
a
≡ −ρ0

a
. (65)

The energy density (65) is negative, which would lead to rejecting this analogy on
purely physical grounds.

Lagrangian and Hamiltonian. The usual Lagrangian can be used, provided that the cos-
mological constant is treated as an extra perfect fluid with energy density ρΛ = Λ/(8πG)
added to the usual perfect fluid, which yields

L3 =
a2

η

a
+

8πG
3

ρa3 − Ka +
Λa2

3
, (66)
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and the Hamiltonian

H3 =
a2

η

a
− 8πG

3
ρa3 + Ka− Λa2

3
. (67)

Using the identifications (63)–(65), the logistic equation is equivalent toH3 = 0 (with
the choice of the positive sign when taking the square root of both sides).

Symmetries. Since the spatial sections of this universe are spatially curved, the symme-
tries (17) and (18) and (19)–(21) do not apply to this analogous FLRW universe. The third
symmetry is enjoyed by an equation of the form (4) with a single perfect fluid or with a
single fluid plus cosmological constant [33]. In our case, eliminating the second fluid (or
K-fluid) by setting K = 0 means setting r = 0 and losing the logistic equation altogether.
Therefore, the third symmetry does not apply to Equation (62).

4. Discussion and Conclusions

On the basis of the previous analogies, we can extend the knowledge of solutions of
the Einstein–Friedmann equations to those of the logistic equation. In particular, certain
recent results on the analytic solutions of the Einstein–Friedmann equations [51–53] can
be immediately transposed to the logistic equation. First, the work of Chen, Gibbons, and
Yang [53] contains an explicit proof that all solutions of the Friedmann Equation (4) are
roulettes. Therefore, one concludes without effort that all solutions of the logistic equation
are also roulettes. [A roulette is the trajectory in two dimensions described by a point that
lies on a curve rolling without slipping on another given curve.]

Second, one wonders under which conditions it is possible to obtain analytic solutions
of the Einstein–Friedmann equations in terms of elementary functions. This non-trivial
question was answered by Chen,Gibbons, Li, and Yang [51] using Chebysev’s theorem of
integration [54,55]. The transposition of this result to the logistic equation does not provide
new information, since the solution of the latter is the well known sigmoid.

Third, one can deduce effective Lagrangians and Hamiltonians for the logistic equation
(and also for a special Riccati equation appearing in the cosmological analogy using
conformal time). The most important consequence of the Lagrangian formulation is
probably that these systems admit a conserved energy function. Parallel to the fact that
the dynamics of FLRW (and, in a wider context, of general relativity) is constrained,
this conserved energy is forced to have zero value. Furthermore, these Lagrangian and
Hamiltonian are obtained by squaring a first-order differential equation, thus introducing
one extra mode with respect to the original equation. Hence, a sign choice must be
made in order to reproduce the correct equation that we started from (see [56] for a
more comprehensive discussion of this procedure). Certain symmetries of the Einstein–
Friedmann equations unveil hidden symmetries of the logistic equation. It is currently not
clear whether these symmetries are useful for applications of the logistic equation.

It seems that the cosmology side of the analogy has less to gain. However, viewing
the same problem from a different angle is often interesting a priori. For example, it is
interesting to see the evolution of the scale factor a(t) for the phantom fluid examined here
on par with the evolution of a population described by Verhulst with the logistic equation.
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