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Abstract: Owing to the increased use of urban rail transit, the flow of passengers on metro platforms
tends to increase sharply during peak periods. Monitoring passenger flow in such areas is important
for security-related reasons. In this paper, in order to solve the problem of metro platform passenger
flow detection, we propose a CNN (convolutional neural network)-based network called the MP
(metro platform)-CNN to accurately count people on metro platforms. The proposed method is
composed of three major components: a group of convolutional neural networks is used on the front
end to extract image features, a multiscale feature extraction module is used to enhance multiscale
features, and transposed convolution is used for upsampling to generate a high-quality density map.
Currently, existing crowd-counting datasets do not adequately cover all of the challenging situations
considered in this study. Therefore, we collected images from surveillance videos of a metro platform
to form a dataset containing 627 images, with 9243 annotated heads. The results of the extensive
experiments showed that our method performed well on the self-built dataset and the estimation
error was minimum. Moreover, the proposed method could compete with other methods on four
standard crowd-counting datasets.

Keywords: metro platform; crowd counting; multiscale feature extraction; convolutional neural network

1. Introduction

Owing to the rapid development of urban rail transit, the lines of operation are
expanding, passenger flow continues to increase [1], and rail operators face daunting
safety-related challenges in this context. Crowd density in metro stations increases sharply
in peak periods of travel. As a large crowd gathers at metro stations and passenger
flows increase, the risk of stampedes increases. Therefore, it is important to analyze
passenger flow by monitoring videos of the metro platform, analyzing their content, and
identifying abnormalities using computer vision and artificial intelligence [2,3]. According
to information on real-time passenger flows and crowd densities in different areas, people
on a platform can be guided to avoid stampedes, improving the security and efficiency of
metro stations.

A considerable amount of research has been conducted on analyzing the flow of
passengers through metro stations based on surveillance videos [2,4,5]. In [2], passenger
flow in a given target area was detected using the background difference method, but
this method cannot be used to count the number of passengers on the metro platform.
Background difference is more suitable for the detection of continuously moving objec-
tives; passengers waiting on the metro platform are mostly stationary. The authors of [4]
proposed a strategy to detect passenger flow on a metro platform based on the bodies
of the passengers. In a sparse scene, this method performs well, but the metro platform
is highly crowded at times, as shown in Figure 1. In such cases, images captured by the
camera feature significant occlusions that cause this method to miss some targets and
incorrectly identify others. In [5], the authors proposed a crowd monitoring approach for
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metro platforms using an improved mixture of Gaussian background modeling to segment
the crowd. People in the crowd are counted by linear regression. This method regards
the crowd as a whole and uses the regression relationship between features of the image
and the crowd to count the passengers. It can solve the problem of occlusion and count
people in a large crowd. However, the accuracy of this method is low owing to the limited
population information provided by the crowd.
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Crowd counting methods aim to estimate the number of people in surveillance
videos or a single image. They can be used in a variety of scenarios, such as political
assemblies, sports events, and concerts, to ensure public safety by monitoring crowd
density. Currently available methods of crowd counting are developed from detection-
based [4,6–8] and regression-based [5,9,10] approaches and convolutional neural network
(CNN)-based [11–16] approaches. As CNN-based methods use the human head as the tar-
get of detection, the error caused by occlusion is reduced. Therefore, convolutional-neural-
network-based crowd counting methods are more suitable for use on metro platforms.

The presence of screen doors, elevators, and other small facilities on metro platforms,
as well as changes in lighting, can cause severe occlusion and reflection problems in
surveillance videos captured by monitoring probes. This seriously affects the accuracy
of crowd counting. The problems of occlusion and reflection pose significant challenges
to crowd counting at metro platforms. To solve the occlusion and reflection problem, we
propose a convolutional neural network for crowd counting called the MP-CNN. The
proposed architecture uses VGG-16 [17] as the front-end network for feature extraction.
The VGG is known to have excellent feature extraction capability and strong transfer
learning ability on classification tasks. It also has flexible architecture, which makes it easy
to connect it to the back-end network and generate a density map. Inspired by the work
in [18], we also introduce a multiscale feature extraction module to enhance the multiscale
feature extraction capability and expand the field of reception of the network. This can
improve feature extraction in remote areas of a long and narrow metro platform. We then
use a set of transposed convolutions for upsampling, instead of bilinear interpolation, to
restore the feature map to its original size and generate a high-quality density map.

We also developed a dataset that contains 627 images of a total of 9243 annotated
people for this study. It contains images of a platform at peak and normal periods on
weekdays and weekends. Owing to the long and narrow metro platform considered
and the angles of the surveillance cameras, the degrees of crowding and occlusion were
different. The data were collected from a surveillance video camera on the metro platform.
We call it the Metro Platform dataset. The representative images of the proposed dataset
are shown in Figure 1.

The main contributions of our work are as follows:
First, for the sake of public safety, in order to avoid stampede accidents, we propose

a convolutional neural network called the MP–CNN for accurate crowd counting on
metro platforms.
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Second, the proposed method, with a multiscale feature extraction module, can solve
the problem of severe occlusion and better adapt to environments with severe occlusion
and reflection compared to other methods.

Third, we developed a Metro Platform dataset; images in this dataset were gath-
ered from a video stream of a metro station. This dataset has different scenes featuring
congestion for analysis in the field of intelligent transportation.

The results of experiments on the four benchmarks show that our method can compete
with state-of-the-art crowd counting methods.

2. Related Work

In recent years, a growing number of studies have considered the problem of crowd
counting and proposed algorithms to deal with this task. They can be broadly categorized
into traditional methods and CNN-based methods.

2.1. Traditional Approach

Early work on crowd counting focused on detection-based methods [6,19–22]. Some of
them considered the crowd as a group of detected individual pedestrians by using a simple
process of detection and summation. Others tackled crowd counting as an object detection
problem and used the body, or parts of it, to locate people in images of crowds in order
to count them. However, in scenes of dense crowds, these detection-based methods were
limited by serious occlusion and background clutter. To handle images of highly congested
scenes, regression-based approaches [9,10,23,24] were proposed. They involved learning to
map from features of the image to density maps or to a given number of particular objects
directly. Using similar approaches, in [24], Idrees et al. proposed a method that fuses
the extracted features using Fourier analysis, head detection, and scale-invariant feature
transform in local patches. These regression-based methods can predict the global number
of people in a crowd but ignore the spatial information in images. A comprehensive survey
of these early studies can be found in [25].

2.2. CNN-Based Approach

Various CNN-based methods have been proposed and have achieved remarkable
success in crowd counting tasks. A majority of them are dedicated to large-scale variations
in images of crowds. The authors of [26,27] have summarized the previously proposed
CNN-based methods for crowd counting. To cope with the large-scale variation in scenes of
crowds, Zhang et al. [12] proposed a simple and effective multicolumn structure to extract
features by kernel size. Similarly, in [28], a multiscale model, hydra-CNN, was proposed
by Onoro and Sastre to extract image features at different scales. Cao et al. [13] proposed
an encoder–decoder network called SANet that employs scaled aggregation modules
as an encoder. This method can improve representation capability and the diversity of
feature scale. Recently, Wang [15] designed a network called SFCN to encode spatial
contextual information based on the VGG-16 [17] and ResNet-101 [29]. The problem of
scale variation can be solved by certain techniques, such as dilated kernels [14], multiscale
pooling layers [30], multiple decoding paths [31], and multiscale bottom-up and top-down
feature fusion [32].

The above studies show that CNN-based solutions can outperform traditional meth-
ods of crowd counting. We thus propose a CNN-based network, with pooling layers and
dilated convolution [14], to solve the problem, as applies to a metro platform.

3. Proposed Method

In this section, we first introduce the architecture of the proposed convolutional neural
network for crowd counting on metro platforms (MP-CNN), as shown in Figure 2. We then
discuss the multiscale feature extraction module (MFEM) and the method for generating
ground truth. Finally, we describe details of the training of the proposed method.
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3.1. Architecture

We use the first 13 layers of the VGG-16 [17] as the front-end network for feature
extraction and only a 3 × 3 convolution kernel. We chose the VGG as the front end for
two reasons. On the one hand, it has excellent feature extraction capability and a strong
transfer learning ability for classification tasks; on the other hand, the VGG has flexible
architecture, which makes it easy to connect to the back-end network to generate a density
map. After a series of convolution layers and pooling layers in the front-end network,
the size of the output feature map is 1/8 of the original input. If we continue to stack
more convolution layers and pooling layers, the size of the output feature map can be
further reduced, and it becomes difficult to generate a high-quality density map. Therefore,
after processing at the front end, we introduced the MFEM, which can extract deeper
information while maintaining the resolution of the output density map. The dilated
convolution shown in Figure 3b is used in this module. Dilated convolutional layers are
known to significantly improve predictive accuracy on semantic segmentation tasks [33,34].

Symmetry 2021, 13, x FOR PEER REVIEW 5 of 14 
 

 

Convolution,
kernal size=3×3

(a)

Dilated Convolution,
Ratio = 3

(b)

Transposed Convolution,
Stride=2,Padding=1

(c)  
Figure 3. Comparison of three convolutions. 

3.2. Multiscale Feature Extraction Module 
Owing to the complex distribution of passengers waiting on a metro platform, the 

perspective of the camera, and other problems, the head size of passengers in the captured 
images varies. In addition, reflections from screen doors on the platform, elevators, and 
other small facilities cause complex changes in background information. These problems 
pose daunting challenges to the crowd counting task on the metro platform. Previously 
proposed methods, such as the L2SM [35] and S-DCNet [36], have focused on fusing fea-
ture maps from different CNN layers to acquire multiscale information through a feature 
pyramid network structure. In this paper, we introduce a multiscale feature extraction 
module to solve this problem. This is the first time we have applied this method to the 
crowd counting task of a metro platform. The proposed MFEM improves multiscale fea-
ture extraction to enhance the information in each layer of the feature map. 

As shown in Figure 4, the MFEM first compresses the channel of the feature map via 
a 1 × 1 convolution and then processes the compressed feature map by dilated convolu-
tion, with different dilated ratios of 1, 2, 3, and 4 to handle the multiscale features and 
variations in head sizes in the images. The size of the fixed Gaussian kernel in this paper 
is set to 15. In the generated density map, the size of each annotated head is 15 × 15; pad-
ding the image with some 0 s does not affect the counting result. Dilated convolution ex-
pands the receptive field of the convolution kernel while keeping the number of parame-
ters unchanged; the operation speed can be accelerated by doing this. The diagrammatic 
sketch of dilated convolution is shown in Figure 3b, of which the dilated ratio is 3. The 
extracted multiscale feature maps are fused by the concatenation as operation and a 3 × 3 
convolution; the size of the processed feature images is the same as that of the input im-
ages. 

The key component of this design is the dilated convolution layer. A dilated convo-
lution can be as defined as follows: 

1 1
( , ) ( , ) ( , )

L W

i j
Y l w x l d i w d j f i j

= =

= + × + ×  (1)

( , )Y l w  is the output as of the dilated convolution from as input ( , )x l w . Filter 
( , )f i j  has the length and width L  and W , respectively. Parameter d  represents 

the rate of dilation. When 1d = , a dilated convolution turns as into a normal convolution. 

Figure 3. Comparison of three convolutions.

Because of the downsampling of the image in the feature extraction process, the
resolution of the output feature is reduced, and it loses considerable detail. To obtain a
high-resolution density map, we use a set of transposed convolutions to upsample the
image after the MFEM has been used. A transposed convolution is not a completely inverse
process of a normal convolution but a special convolution. The image size is first expanded
by padding the image with 0 s according to a certain ratio. The convolution kernel is then
rotated, and forward convolution is performed, as shown in Figure 3c. Unlike previous
methods, we chose a learnable transposed convolution instead of a bilinear interpolation
algorithm for upsampling. Transposed convolution is different from bilinear interpolation
in that it has parameters that can be learned, which means that it can learn more feature
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information than bilinear interpolation. The transposed convolution layers are used to
restore the spatial resolution of the image. Each transposed convolution layer doubles the
size of the feature map, corresponding to the previous max-pooling layer. Three transposed
convolution layers are used in the network to generate a high-resolution density map of
the same size as the input image. This provides detailed spatial information to facilitate
feature learning while training the model.

3.2. Multiscale Feature Extraction Module

Owing to the complex distribution of passengers waiting on a metro platform, the
perspective of the camera, and other problems, the head size of passengers in the captured
images varies. In addition, reflections from screen doors on the platform, elevators, and
other small facilities cause complex changes in background information. These problems
pose daunting challenges to the crowd counting task on the metro platform. Previously
proposed methods, such as the L2SM [35] and S-DCNet [36], have focused on fusing
feature maps from different CNN layers to acquire multiscale information through a feature
pyramid network structure. In this paper, we introduce a multiscale feature extraction
module to solve this problem. This is the first time we have applied this method to the
crowd counting task of a metro platform. The proposed MFEM improves multiscale feature
extraction to enhance the information in each layer of the feature map.

As shown in Figure 4, the MFEM first compresses the channel of the feature map via a
1 × 1 convolution and then processes the compressed feature map by dilated convolution,
with different dilated ratios of 1, 2, 3, and 4 to handle the multiscale features and variations
in head sizes in the images. The size of the fixed Gaussian kernel in this paper is set to
15. In the generated density map, the size of each annotated head is 15 × 15; padding
the image with some 0 s does not affect the counting result. Dilated convolution expands
the receptive field of the convolution kernel while keeping the number of parameters
unchanged; the operation speed can be accelerated by doing this. The diagrammatic sketch
of dilated convolution is shown in Figure 3b, of which the dilated ratio is 3. The extracted
multiscale feature maps are fused by the concatenation operation and a 3 × 3 convolution;
the size of the processed feature images is the same as that of the input images.

Symmetry 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

C(1×1) D-Conv,d=1

C(1×1) D-Conv,d=2

C(1×1) D-Conv,d=3

C(1×1) D-Conv,d=4

Concat

Multi-scale Feature Extraction Module（MFEM）

Dilated Conv,ratio=d

C(k×k)

D-Conv

Conv,kernal=k

 
Figure 4. Structure of the multiscale feature extraction module. 

3.3. Ground Truth Generation 
In research on crowd counting, the dataset used is typically composed of original 

images and annotated files. Annotations for images of crowds include points at the center 
of each passenger’s head, which record the two-dimensional (2D) coordinates of each 
head and the total number of heads. This is required to convert these discrete coordinate 
points into a density map to predict passenger density. 

The ground-truth density map is generated by convolving as each delta function 
( )ix xδ −  with a normalized Gaussian kernel Gσ : 

1
( )

N

i
i

F x x Gσδ
=

= − ∗  (2)

where x  represents each pixel in a given image, ix is the thi  annotated point, and N  
is the set of all annotated as points. The integral of the density map is equal to the number 
of people in the image. Instead of using geometry-adaptive kernels, as in [12], we use a 
fixed Gaussian kernel to generate the ground-truth density maps; the spread parameter 
σ  of the Gaussian kernel is set to 15. 

The sum of all pixel values gives the number of people in the crowd in the input 
image. P  denotes the number of passengers and is defined as follows: 

,
1 1

L W

l w
l w

P Z
= =

=  (3)

where L  represent the length of the density map and W  represents the width of the 

density map. Moreover, ,l wZ  is the pixel at ( , )l w  in the generated density map. 

3.4. Training Details 
We trained the proposed MP-CNN in an end-to-end manner. The weight parameters 

of the VGG net, trained on as ImageNet, were used for pretraining. We perform our exper-
iments on an NVIDIA Quadro P4000 GPU, with batch size = 1. An Adam optimizer [37] 
with a low learning rate of 1 × 10−5 was used to train the model; all experiments are trained 
for 500 epochs. The Euclidean distance was used to measure estimation error at the pixel 
level, as in [12,14,28]. The loss function was defined as follows: 

2

2
1

1( ) ( ; )
2

N

i i
i

L F X F
N

θ θ
=

= −  (4)

Figure 4. Structure of the multiscale feature extraction module.

The key component of this design is the dilated convolution layer. A dilated convolu-
tion can be defined as follows:

Y(l, w) =
L

∑
i=1

W

∑
j=1

x(l + d× i, w + d× j) f (i, j) (1)

Y(l, w) is the output of the dilated convolution from input x(l, w). Filter f (i, j) has the
length and width L and W, respectively. Parameter d represents the rate of dilation. When
d = 1, a dilated convolution turns into a normal convolution.
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3.3. Ground Truth Generation

In research on crowd counting, the dataset used is typically composed of original
images and annotated files. Annotations for images of crowds include points at the center
of each passenger’s head, which record the two-dimensional (2D) coordinates of each head
and the total number of heads. This is required to convert these discrete coordinate points
into a density map to predict passenger density.

The ground-truth density map is generated by convolving each delta function δ(x− xi)
with a normalized Gaussian kernel Gσ:

F =
N

∑
i=1

δ(x− xi) ∗ Gσ (2)

where x represents each pixel in a given image, xi is the ith annotated point, and N is
the set of all annotated points. The integral of the density map is equal to the number of
people in the image. Instead of using geometry-adaptive kernels, as in [12], we use a fixed
Gaussian kernel to generate the ground-truth density maps; the spread parameter σ of the
Gaussian kernel is set to 15.

The sum of all pixel values gives the number of people in the crowd in the input
image. P denotes the number of passengers and is defined as follows:

P =
L

∑
l=1

W

∑
w=1

Zl,w (3)

where L represent the length of the density map and W represents the width of the density
map. Moreover, Zl,w is the pixel at (l, w) in the generated density map.

3.4. Training Details

We trained the proposed MP-CNN in an end-to-end manner. The weight parameters of
the VGG net, trained on ImageNet, were used for pretraining. We perform our experiments
on an NVIDIA Quadro P4000 GPU, with batch size = 1. An Adam optimizer [37] with a
low learning rate of 1 × 10−5 was used to train the model; all experiments are trained for
500 epochs. The Euclidean distance was used to measure estimation error at the pixel level,
as in [12,14,28]. The loss function was defined as follows:

L(θ) =
1

2N

N

∑
i=1
‖F(Xi; θ)− Fi‖2

2 (4)

In the above equation, θ denotes a set of parameters in the proposed MP-CNN, N is the
number of training images, Xi represents the input image, and Fi denotes the ground-truth
density map of image Xi. F(Xi; θ) stands for the estimated density map generated by the
MP-CNN, parameterized with θ for the sample, and L is the loss between the estimated
density map and the ground-truth density map. Our method was implemented on the
Pytorch [38] framework.

4. Experiments

In this section, we first introduce the datasets and evaluation metrics used. The
experiments conducted on the Metro Platform dataset are then detailed. They verify that
the proposed method can be used for counting passengers on a metro platform. We then
compare our method with state-of-the-art methods on four standard datasets to prove its
generalization capability. Finally, we report ablation studies to prove the effectiveness of
the proposed MFEM used in our method.
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4.1. Datasets

We evaluated our method on four publicly available crowd counting benchmark
datasets as well as the dataset collected for this paper (Metro Platform): ShanghaiTech [12]
Part A and Part B, UCF-QNRF [39], and UCF-CC-50 [24].

ShanghaiTech. The ShanghaiTech dataset was developed by [12] and contains 1198
images, with 330,165 annotated people. Each image in this dataset has a different perspec-
tive. This dataset consists of two parts: Part A with 482 images and Part B with 716 images.
The crowd density varies significantly between Part A and Part B, making the accurate
estimation of the crowd more challenging. Images in Part A were randomly collected from
the internet, and Part B contains images captured from street views. We used the training
and testing set splits provided by the authors; in this way, we had 300 images for training
and 182 images for testing in Part A and 400 images for training and 316 images for testing
in Part B.

UCF-QNRF. As we all know, UCF-QNRF is the largest and most widely distributed
dataset in the domain of crowd counting, reported in [39] in 2018. This dataset contains
1535 images featuring 1,251,642 people, with the centers of their heads annotated, including
1201 images in the training set and 334 images in the test set. A wide variety of scenes
are contained, including a diverse set of viewpoints, densities, and variations in lighting.
The resolution is higher than in the ShanghaiTech dataset. This makes this dataset more
realistic as well as more difficult when counting the number of people in the image.

UCF-CC-50. The UCF-CC-50 dataset [24] contains 50 annotated images of extremely
dense crowds. The images were collected mainly from concerts, protests, and marathons,
with different crowd densities and perspectives. There is a large variation in crowd
numbers, ranging from 94 to 4543. The limited number of images makes it a challenging
dataset for deep learning methods. We followed the standard protocol in [24] and used five-
fold cross-validation to evaluate the performance of the proposed method on this dataset.

Metro Platform. Crowd counting is important, but the available counting datasets
are not specifically designed for metro transportation. Therefore, we collected and labeled
a dataset that is specific to metro platforms in order to count the waiting passengers in
such areas. The images were captured from a video from a camera at a certain perspective
on a metro platform, including the peak and normal periods on weekdays and weekends.
The Metro Platform dataset consists of 627 images and 9243 annotations; the resolution of
the images is 576 × 768. For the evaluation, we used 465 images from the dataset as the
training set and 162 as the testing set. A comparison between the Metro Platform dataset
and the other datasets used is shown in Table 1.

Table 1. Comparison between the Metro Platform dataset and the other datasets used in this study:
Num is the number of images, Total is the total number of labeled people, Ave is the average crowd
count, and Max is the maximal crowd count.

Dataset Num Average
Resolution

Annotations

Total Ave Max

ShanghaiTech_PartA [12] 482 589 × 868 241,677 501 3139
ShanghaiTech_PartB [12] 716 768 × 1024 88,488 123 578

UCF-QNRF [39] 1535 2013 × 2902 1,251,642 815 12,865
UCF-CC-50 [24] 50 2101 × 2888 63,974 1279 4633
Metro Platform 627 576 × 768 9243 15 43

4.2. Evaluation Metrics

In accordance with previous studies [12–14], we used mean absolute error (MAE) and
mean squared error (MSE) as metrics to evaluate the accuracy of the methods in terms of
counting members of a crowd:

MAE =
1
N

N

∑
i=1

∣∣∣∣Zi −
∧
Zi

∣∣∣∣ (5)
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MSE =

√√√√ 1
N

N

∑
i=1

(Zi −
∧
Zi)

2
(6)

In the above equation, N is the number of test samples; Zi and
∧
Zi are the estimated

and ground-truth crowd numbers corresponding to the ith sample, which is given by the
integration of the density map. Roughly speaking, the MAE indicates the accuracy of the
predicted result and the MSE measures its robustness. As the MSE is sensitive to outliers,
its value will be large when the model performs poorly on a few samples.

4.3. Experiments on the Metro Platform Dataset

The Metro Platform dataset was designed specifically for metro platforms. Due to
the angle of the camera, the characteristics of the crowd close to the camera are clear,
while those at a long distance from it are blurred, as shown in Figure 1. In addition, the
background in the image is more complex, and background information accounts for a
large part of the image. The screen door of the metro platform also produces significant
reflection. The position of the crowd in each image changes, and the adverse background
caused by the reflection also changes. The above problems pose significant challenges
for the counting task. To solve the problem of changeable background, we introduced
the model trained on the dense crowd datasets as a pretrained model in the experiments.
We used the model trained on ShanghaiTech Part A as the pretrained model to evaluate
network performance. The results of the comparison are shown in Table 2. Figure 5 shows
the density map obtained using the different methods. We adopted memory access cost
(MAC) to evaluate the computational complexity. In the same experimental environment,
the MAC values of different methods are shown in Table 2. Our method achieves the
highest counting accuracy on metro platform scenes, but the network is also more complex.
In future work, we will try to lightweight the network.

Table 2. Comparing performances of different methods on the Metro Platform dataset. MAC is the
memory access cost.

Method MAE MSE MAC (GB)

MCNN [12] 2.6 3.3 1.351
CSRNet [14] 3.2 4.1 20.737
SANet [13] 2.9 4.1 4.559

Ours (with MFEM) 1.6 2.2 26.771

The proposed method was superior to the other methods in the metro platform
scenario as it was more accurate in terms of counting the number of passengers in crowds
and generated a higher-quality density map. The distribution of passengers on the metro
platform can be obtained from the generated density map, and subway staff can dredge the
crowd in the crowded area according to the actual situation so as to avoid safety accidents
caused by overcrowding in a certain area.

In the future, we will further explore the influence of occlusion and reflection on
the counting task of metro platforms. We will try to improve the estimation accuracy
in two different ways. First, use hybrid supervised–unsupervised machine learning ap-
proaches [40,41] in an attempt to extract more relevant features. Second, preprocess the
monitoring video to cut or cover the screen door of the metro platform that had a serious
problem of reflection.

4.4. Comparisons with State of the Art

The proposed method delivered outstanding performance on all benchmarks. The
results of quantitative comparisons with the state-of-the-art methods on four datasets are
presented in Tables 3 and 4. A visual comparison is also provided in Figure 6.



Symmetry 2021, 13, 703 9 of 14

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

the crowd in the crowded area according to the actual situation so as to avoid safety acci-
dents caused by overcrowding in a certain area. 

In the future, we will further explore the influence of occlusion and reflection on the 
counting task of metro platforms. We will try to improve the estimation accuracy in two 
different ways. First, use hybrid supervised–unsupervised machine learning approaches 
[40,41] in an attempt to extract more relevant features. Second, preprocess the monitoring 
video to cut or cover the screen door of the metro platform that had a serious problem of 
reflection. 

Table 2. Comparing performances of different methods on the Metro Platform dataset. MAC is the 
memory access cost. 

Method MAE MSE MAC (GB) 
MCNN [12] 2.6 3.3 1.351 
CSRNet [14] 3.2 4.1 20.737 
SANet [13] 2.9 4.1 4.559 

Ours (with MFEM) 1.6 2.2 26.771 

Est Count:7

GT Count:6 GT Count:12 GT Count:23 GT Count:35

Est Count:17 Est Count:26 Est Count:33

Est Count:6 Est Count:13 Est Count:21 Est Count:28

Est Count:8 Est Count:15 Est Count:23 Est Count:31

Est Count:6 Est Count:13 Est Count:23 Est Count:35

Input Image Input Image Input Image Input Image

 
Figure 5. Visualization of estimated density maps on the Metro Platform dataset. First row: input images. Second row:
ground truth. Third row: density maps estimated by MCNN. Fourth row: density maps estimated by SANet. Fifth row:
density maps estimated by the proposed method without MFEM. Sixth row: density maps estimated by the proposed
method with MFEM.

ShanghaiTech. We compared the proposed method with multiple classic methods on
ShanghaiTech Part A and Part B datasets and found that it yielded a significant improve-
ment in performance. In Part A, our method was superior by 39.2% in terms of the MAE,
34.9% in terms of the MSE to the MCNN, and, respectively, by 1.8% and 2.1% to CSRNet.
In Part B, our method was superior by 62.5% in terms of the MAE, 64.6% in terms of the
MSE compared to the MCNN, and by 6.6% and 8.8% to CSRNet, respectively.

UCF-QNRF. As we all know, UCF-QNRF is the largest and most widely distributed
crowd counting dataset. The proposed method achieved significant improvement over
existing methods on this dataset. For instance, RANet [42] achieved a score of 111 in terms
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of the MAE and 190 in terms of the MSE, whereas our method improved these results by
3.3% in terms of the MAE and 4.3% in terms of the MSE.

UCF-CC-50. We also conducted experiments on the UCF-CC-50 dataset. The crowd
numbers in the images varied from 96 to 4633. According to the standard protocol in [24],
the dataset was randomly divided into five subsets. We used five-fold cross-validation to
evaluate our method. With a small number of training images, our network still converged
well on this dataset. Compared with RANet [42], it was better by 5.5% in terms of the MAE
and 4.3% in terms of the MSE.
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ground truth. Third row: estimated density generated maps by MCNN. Fourth row: estimated density maps generated
by CSRNet. Fifth row: estimated density maps generated by the proposed method without MFEM. Sixth row: estimated
density maps generated by the proposed method with MFEM.
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Table 3. Comparing results of different methods on the ShanghaiTech Part A and Part B datasets.

Method
Part A Part B

MAE MSE MAE MSE

MCNN [12] 110.2 173.2 26.4 41.3
Switch-CNN [43] 90.4 135.0 21.6 33.4

L2R [44] 73.6 112.0 13.7 21.4
IG-CNN [45] 72.5 118.2 13.6 21.1
CSRNet [14] 68.2 115.0 10.6 16.0
CP-CNN [46] 73.6 106.4 20.1 30.1
ic-CNN [47] 68.5 116.2 10.7 16.0

Ours (with MFEM) 67.0 112.6 9.9 14.6

Table 4. Comparing results of different methods on UCF-QNRF and UCF-CC-50 datasets.

Method
UCF-QNRF UCF-CC-50

MAE MSE MAE MSE

MCNN [12] 277 426 377.6 509.1
Switch-CNN [43] 228 445 318.1 439.2

Encoder-Decoder [31] 113 188 249.4 354.5
RANet [42] 111 190 239.8 319.4
CSRNet [14] - - 266.1 397.5

Composition Loss [39] 132 191 - -
Ours (with MFEM) 107.3 181.8 226.5 305.6

4.5. Ablation Experiments

In this section, we report the results of ablation studies on the different datasets used
to verify the effectiveness of the proposed MFEM. The experimental results show that while
considering the balance of training speed and estimation accuracy, the structure setting of
MFEM in Figure 4 is the best choice.

To verify the effectiveness of the MFEM, we used the proposed network structure with
MFEM and without it in the training process on different datasets. The results showed that
the performance of the proposed method improved when the MFEM was introduced, as
shown in Table 5. On the ShanghaiTech Part B dataset, the proposed MFEM improved the
performance by 21.4% in terms of the MAE and 25.9% in terms of the MSE. On the UCF-
CC-50 dataset, the introduction of MFEM improved the performance by 12.7% and 5.6% in
terms of the MAE and MSE, respectively. On the Metro Platform dataset proposed in this
paper, the MAE and MSE improved by 33.3% and 29%, respectively, with the introduction
of MFEM. This shows that the MFEM can improve counting performance in dense and
relatively sparse scenes.

Table 5. Ablation study on the multiscale feature extraction module.

Dataset
Without MFEM With MFEM

MAE MSE MAE MSE

ShanghaiTech Part A [12] 67.2 119.0 67.0 112.6
ShanghaiTech Part B [12] 12.6 19.7 9.9 14.6

UCF-QNRF [39] 110.5 182.1 107.3 181.8
UCF-CC-50 [24] 259.5 323.7 226.5 305.6
Metro Platform 2.4 3.1 1.6 2.2

5. Conclusions

In this paper, we propose a novel method to count the number of people in crowds on
metro platforms, called the MP-CNN. We introduced an MFEM to enhance the multiscale
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feature extraction capability of the network and solved the problems of diverse occlusion
and varying head sizes of passengers in the images. This method is of great significance to
the public safety of metro platforms; metro staff can guide and drain the flow according
to the number of passengers. The effectiveness of the proposed MFEM was verified by
comparative experiments. To evaluate its effectiveness on metro platforms in particular,
we collected and labeled a new dataset, called the Metro Platform dataset, consisting of
627 images of 9243 annotated people. The results of extensive experiments show that our
method delivers excellent results on the proposed Metro Platform dataset and can compete
with state-of-the-art methods in four major crowd counting benchmarks.
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