
symmetryS S

Article

Acoustic Plasmons in Graphene Sandwiched between Two
Metallic Slabs

Luca Salasnich 1,2,3

����������
�������

Citation: Salasnich, L. Acoustic

Plasmons in Graphene Sandwiched

between Two Metallic Slabs.

Symmetry 2021, 13, 684. https://

doi.org/10.3390/sym13040684

Academic Editor: V.I. Yukalov

Received: 14 March 2021

Accepted: 13 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, CNISM and INFN,
Via Marzolo 8, 35131 Padova, Italy; luca.salasnich@unipd.it

2 Padua Quantum Technologies Research Center, Università di Padova, Via Gradenigo 6/b, 35131 Padova, Italy
3 Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche (CNR), Via Nello Carrara 1,

50019 Sesto Fiorentino, Italy

Abstract: We study the effect of two metallic slabs on the collective dynamics of electrons in graphene
positioned between the two slabs. We show that if the slabs are perfect conductors, the plasmons
of graphene display a linear dispersion relation. The velocity of these acoustic plasmons crucially
depends on the distance between the two metal gates and the graphene sheet. In the case of generic
slabs, the dispersion relation of graphene plasmons is much more complicated, but we find that
acoustic plasmons can still be obtained under specific conditions.
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1. Introduction

In 2004, Graphene, a single layer of carbon atoms arranged in a two-dimensional
honeycomb lattice, was isolated and characterized [1]. Since then, many electrical, ther-
mal, chemical, optical, and mechanical properties of graphene have been studied, both
experimentally and theoretically [2–5]. Quite remarkably, under appropriate conditions,
the electrons in graphene behave as viscous fluids, exhibiting peculiar hydrodynamic
effects [6]. In particular, it has been shown that the plasmons of graphene display a linear
dispersion relation when, in the proximity of the graphene, a metallic slab screens the
Coulomb potential of electrons in graphene [7,8].

In this brief communication, we extend the predictions obtained in [7] by considering
a graphene sheet sandwiched between two metallic slabs. We find that, in this case, the
electrons of graphene are characterized by acustic modes whose dispersion relation is
linear in the long-wavelength regime. We obtain a simple analytical formula for the speed
of these acustic modes.

2. Graphene Sandwiched between Two Materials

The monolayer graphene is a honeycomb lattice of carbon atoms in two spatial dimen-
sions. Quasiparticles in graphene have the dispersion relation

Ek = ±vF h̄|k| − µ , (1)

where vF is the Fermi velocity, k is the two-dimensional (2D) quasiparticle wavevector, and
µ the chemical potential. The Fermi wavenumber kF depends on the chemical potential
µ through the relation kF = µ/(h̄vF). Note that, in 2D, kF =

√
4πn/g, with n as the

electron number density and g as the degeneracy. In graphene, g = 4: 2 for spin and 2, for
inequivalent valleys in the Brillouin zone, and the chemical potential µ = h̄vFkF is usually
µ ' 102 meV, while the Fermi velocity is vF ' 106 m/s [2,3,9].

We initially assume that the graphene is sandwiched between two slabs made of
generic materials, where L is the distance between the two slabs and d the distance between
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the lower slab and the graphene sheet. The Coulomb potential of charges in graphene is
influenced by the the two slabs. We choose the z axis perpendicular to the graphene sheet,
such that z = 0 fixes the position of graphene sheet. It follows that the lower slab is located
at z = −d and the upper slab at z = L− d.

Within the Random Phase Approximation (RPA) [10], the relative dielectric function
of graphene is given by

εg(q, ω) = 1− Ṽ(q, ω) Π0(q, ω) , (2)

where Ṽ(q, ω) is the Fourier transform of the screened (by the presence of the two slabs)
Coulomb potential between quasiparticles of graphene and Π0(q, ω) is the first-order
dynamical polarization of non-interacting quasiparticles in graphene. Note that, for a very

small wavenumber, q =
√

q2
x + q2

y and a frequency ω, such that vFq � ω � 2µ/h̄ the
dynamical polarization reads [11,12]

Π0(q, ω) =
µ

πh̄2
q2

ω2 . (3)

The collective mode of plasmons in graphene is then obtained from the resonance
condition [10]

εg(q, ω) = 0 . (4)

3. Perfect Conductors

Let us suppose that the two slabs are perfect conductors. A straightforward application
of the method of image charges [13] gives the screened Coulomb potential between two
particles, with electric charge e located in the plane z = 0 at distance x2 + y2 as

V(x, y) = e2
+∞

∑
j=−∞

[ 1√
(x2 + y2) + (2jL)2

− 1√
(x2 + y2) + (2d− 2jL)2

]
, (5)

where x and y are Cartesian coordinates in the plane of graphene. Performing the Fourier
transform, we obtain

Ṽ(q) =
2πe2

q

+∞

∑
j=−∞

[
e−2q|j|L − e−2q|d−jL|

]
(6)

with q =
√

q2
x + q2

y. The series can be calculated explicity because is the sum of geometric
series. After straightforward calculations, we obtain

Ṽ(q) =
2πe2

q

(
1− e−2qd − 2e−2qL + e−2q(L−d)

1− e−2qL

)
. (7)

From Equations (2)–(4) the dispersion relation of plasmons in graphene can be
written as

ω2 =
µ

πh̄2 q2Ṽ(q) , (8)

or explicitly

ω =

√
2µe2

h̄2 q1/2

(
1− e−2qd − 2e−2qL + e−2q(L−d)

1− e−2qL

)1/2

. (9)

Thus, we have found an analytical formula for the dispersion relation of plasmons in
the graphene sheet.

It is important to observe that, for small q, one obtains

Ṽ(q) = 4πe2d
(

1− d
L

)
− 4πe2

3
d2L
(

1− 2
d
L
+

d2

L2

)
q2 + ... (10)
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Consequently, taking into account Equations (8) and (10), we finally obtain, for small
q, the linear dispersion relation

ω = cp q , (11)

where

cp =

√
4µe2d

h̄2

(
1− d

L

)
(12)

is the speed of sound of acustic plasmons in graphene sandwiched between two ideal
metal gates. Equation (12) is the main result of this brief paper. The velocity cp can be
controlled by varying the chemical potential µ but also the two distances d and L. In the
limit L→ +∞ from Equation (12), one finds

cp =

√
4µe2d

h̄2 (13)

which is the result of Reference [7], namely, the velocity of acustic plasmons in graphene
coupled to a single ideal metal gate.

4. Real Materials

For a generic material, the relative dielectric function εm depends on frequency ω and
wavevector q. We set εm,1(q, ω) and εm,2(q, ω) as the relative dielectric functions of lower
and upper materials, respectively. In this case, the derivation of the screened Coulomb
potential is slightly more complicated but still analytically possible [13,14]. We obtain

Ṽ(q, ω) = 2πe2

q

(
1− r1(q,ω) e−2qd+r2(q,ω) e−2q(L−d)

1−r1(q,ω) r2(q,ω) e−2qL

+ 2 r1(q,ω) r2(q,ω) e−2qL

1−r1(q,ω) r2(q,ω) e−2qL

)
,

(14)

where

r1(q, ω) =
εm,1(q, ω)− 1
εm,1(q, ω) + 1

and r2(q, ω) =
εm,2(qω)− 1
εm,2(q, ω) + 1

. (15)

Note that for two perfect metal gates, where r1 = r2 = 1, Equation (14) exactly
becomes Equation (7).

4.1. Materials Sticked to Graphene

Setting L = 2d, in the limit d→ 0 Equation (14) gives

Ṽ(q, ω) =
2πe2

εm(q, ω) q
, (16)

where
εm(q, ω) =

1
2
(εm,1(q, ω) + εm,2(q, ω)) . (17)

Equation (16) is the screened Coulomb potential in a graphene sheet between two
materials stuck onto it.

We adopt Equation (3) again, which is valid for q→ 0 and vFq� ω � 2µ/h̄ [11,12],
and Equation (4). Then, for small q and assuming that εm is constant, we obtain

ω =

√
2e2µ

h̄2εm

√
q , (18)

which is the typical dispersion relation of plasmons in graphene exposed to two polar
substrates [8].
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4.2. Single Material Slab

In the absence of the upper slab, i.e., setting r2 = 0, from Equation (14), we find

Ṽ(q, ω) =
2πe2

q

(
1− r(q, ω) e−2qd

)
(19)

removing the subindex 1 from r1(q, ω). Then, for small q and assuming that r is constant,
we obtain

Ṽ(q, ω) =
2πe2(1− r)

q
+ 4πe2rd− 8πe2rd2 q + . . . (20)

Clearly, only if r = 1 (perfect conductor), the 1/q term drops out and one again finds
acoustic plasmons with the speed of sound given by Equation (13). More generally, the
small-q dispersion relation of plasmons reads

ω =

√
2µe2(1− r)

h̄2 q +
4µe2rd

h̄2 q2 , (21)

which becomes acoustic-like under the condition

q� (1− r)
2dr

. (22)

For a real metal gate, the functional dependence of r(q, ω) is crucial. In this case, the
relative dielectric function εm can be approximated as [15]

εm(q, ω) = 1 +
q2

TF
q2 −

ω2
p

ω2 + iΓ ω
, (23)

where qTF is the Thomas–Fermi wavenumber, ωp is the plasma frequency, and Γ the
damping constant. Notice that the relative dielectric constant of a perfect conductor is
εm = −∞.

5. Conclusions

We have derived a simple formula for the speed of sound of the acustic modes of
electrons in a graphene sheet. The existence of these hydrodynamic effects is due to the
presence of metallic slabs, which induce a screening the Coulomb potential of electrons
in graphene. Our formula for the graphene sandwiched between two metallic slabs
generalizes the one obtained in Reference [7] in the case of graphene coupled to a single
metallic slab. In conclusion, it is important to stress that, very recently, acoustic plasmons
have been observed, with a real-space imaging, in single graphene sheet over a dielectric-
metal slab [14]. This graphene-dielectric-metal configuration is quite different with respect
to the one considered in the present paper. However, for the sake of completeness, in the
last section of our paper, we have also considered the effect of two generic slabs of the
screened Coulomb potential of two electrons in graphene.
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