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Abstract: Background: The main purpose of this research is to describe the mathematical asymmetric
patterns of susceptible, infectious, or recovered (SIR) model equation application in the light of
coronavirus disease 2019 (COVID-19) skewness patterns worldwide. Methods: The research mod-
eled severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) spreading and dissemination
patterns sensitivity by redesigning time series data extraction of daily new cases in terms of deviation
consistency concerning variables that sustain COVID-19 transmission. The approach opened a new
scenario where seasonality forcing behavior was introduced to understand SARS-COV-2 non-linear
dynamics due to heterogeneity and confounding epidemics scenarios. Results: The main research
results are the elucidation of three birth- and death-forced seasonality persistence phases that can
explain COVID-19 skew patterns worldwide. They are presented in the following order: (1) the
environmental variables (Earth seasons and atmospheric conditions); (2) health policies and adult
learning education (HPALE) interventions; (3) urban spaces (local indoor and outdoor spaces for
transit and social-cultural interactions, public or private, with natural physical features (river, lake,
terrain). Conclusions: Three forced seasonality phases (positive to negative skew) phases were
pointed out as a theoretical framework to explain uncertainty found in the predictive SIR model
equations that might diverge in outcomes expected to express the disease’s behaviour.

Keywords: COVID-19 seasonality; S.I.R. models; mathematical modeling; forced seasonality; con-
founding variables; uncertainty

1. Introduction

This research’s main focus is to point, as noted in Grassly and Fraser [1], to the
consequences of seasonality for endemic R0 stability in order to understand and obtain an
endemic equilibrium for coronavirus disease 2019 (COVID-19) involving mixing patterns
such as environmental driving factors, policy interventions, and urban spaces [2–8]. These
latter three variables might pose challenges for the outcomes of the SIR (susceptible,
infectious, or recovered) predictive analysis [9] of severe acute respiratory syndrome
coronavirus 2 (SARS-COV-2) spreading and dissemination patterns. This can be verified
in the time series data regarding daily new COVID-19 cases where the type of spreading
patterns in daily quantitative outcomes present a high degree of uncertainty (skewness
asymmetric patterns) expressed by fluctuations and mainly random distributions [8].

By observing time series data of daily new COVID-19 cases worldwide [10], the
epidemics birth and death persistence present different probabilistic distributions for each
sample (country) of observation, with many delays and fluctuations for the outbreak,
peak and control phases due to no initial predefined conditions within the overall samples
(countries). These data with distinct outcomes among countries originate false phenomenon
observations in terms of positive and negative skew to allow predictive analysis based on
SIR models and derivations [11]. This is due to these models relying upon a predefined
type of health policies interventions, pre-assumed human behavior and predefined spatial
or temporal analysis towards outbreaks, peak and control phases. These pre-assumptions
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were investigated theoretically although stability to instability patterns generated by the
variables that sustain the disease occurrence.

The research divided data of daily new COVID-19 cases into three phases of forced
seasonality, demonstrated by a mathematical model of skewness presented in the phe-
nomenon derived from a brief topological analysis and the confounding variables that
sustain the disease transmission. Consequently it suggests specific data extraction from
time series in order to make predictive analysis with SIR models. This approach aims to
provide a more robust understanding of the scientific results concerning these topics of
study and worldwide strategies to reduce SARS-COV-2 dissemination patterns of daily
new COVID-19 cases to control infection spreading and dissemination patterns. The three
main birth and death seasonality persistence (ε′) phases found in this research are in the
following order: (1) the environmental variables (Earth seasons and atmospheric condi-
tions); (2) health policies and adult learning education (HPALE) interventions; (3) urban
spaces (local indoor and outdoor spaces for transit and social-cultural interactions, public
or private, with natural physical features (river, lake, terrain).

2. Materials and Methods
2.1. Earth Seasons: From Stable Mean to Asymptotic Patterns of Susceptible, Infectious, or
Recovered (SIR) Modeling Equation

To better understand the terms used in this article, spreading patterns is considered as
the type of transmission that COVID-19 may assume, be it airborne or physical contact. In
contrast, dissemination patterns are understood as the cumulative daily new COVID-19
cases worldwide caused by the existent transmission forms.

To set COVID-19 dissemination patterns under the Earth seasonality aspect of analysis,
the endemic free-equilibrium of COVID-19 needs to be applied to Floquet Theory, currently
employed in many other infectious diseases with a defined time period (T) of Earth
seasonality (ε). To perform this task from a mathematical view of the problem, it is
necessary to meet an oscillation to predict endemic R0 under periodic and defined A(t)
criteria, even for time-varying environments with no heterogeneity forces, thus assuming a
linear force of infection with homogeneity as F(T) = B(t) I

N . This would allow stablishing
a reasonable Rτ

0 periodical stability for COVID-19 worldwide, as observed by Bacaër [12].
The stability point pre-assumed, if COVID-19 worldwide would be seasonal in win-

ter as flu, could be defined as p(t + 1) = (A(t) + B(t))p(t) [12], with p representing
the spectral matrix of periodicity A(t) and B(t) the environment of compartments S, I,
and R of the SIR model (ecological variables such as biotic and abiotic of each country).
Following this definition, the seasonality of COVID-19 at S, I, and R compartments are
assumed to be dependent on deterministic outcomes for immunity, forms of transmission,
healthcare interventions, and public policies under atmospheric triggering conditions
(Earth seasons ε) as found, for example, in common flu. Considering this condition,
the ODE (ordinary differential equations) could be easily observed in linear time series,
as pointed in Sietto [13] as y(t) = a + bt + ∑m

i=1 ci cos θ + ∑m
i=1 di sin θ + e(t), where the

proposition of periodicity θ as linear in time as B(t + T) = B(t) would be possible and
consistent in its fluctuations in terms of daily new infections with seasonal sinusoidal
patterns as θ(t) = θ0[1± ε sin(2πt)] [14]. This could also be considered for stochastic
expressions over time, considering seasonal fluctuations defined as hidden Markovian
chains as P(Y(t) = y(t)|Y(t− 1) = y(t− 1), Y(t− 2) =y(t− 2), . . . , Y(1) = y(1)) [13] and
its many derivations, found in many studies [15–17]. This deterministic approach for the
worldwide event would lead to the seasonal Fourier transform fluctuations of COVID-19
outbreaks, control, and over determined periodic cycles with no confounding scenarios.
Fourier analysis would then be possible to perform considering time-periodic fluctuations
as noted in Mari et al. [14]. Therefore, the use of Markovian chains to obtain the phase
shifts of regularities would be a true approach to predict how SARS-COV-2 dissemina-
tion patterns are formed, regardless of spreading patterns. The main issue is when the
stochastic process Y(t) assumes a lack of synchrony due to random worldwide delays and
uncertainty [8,18,19] due to spreading patterns and characteristics of each country, region,
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and place. This situation generates a stochastic form with unknown seasonality of infection,
defined as R′0 = D

∫ 1
0 B(t)dt [18], and thus not assuming seasonality dissemination for ε

and the outbreak of local epidemics. At this point, it was observed that there are several
discrepant (heterogeneous) time series of daily new infection cases in countries during
2019 and 2021 that were entering winter in the southern hemisphere and summer in the
northern hemisphere. No great difference was verified at Earth dissemination seasonality
influencing those localities [2,8,9,11].

The lack of dissemination pattern formation for COVID-19, as not found in common
flu [20,21], creates an undefined T over defined A(t), as well as, a mean µ over periodicity
θ criteria as a pre-assumption of analysis in Fourier’s perspective transform. This confirms
an unexpected seasonality forcing behavior ε′ in which each sample (countries, regions,
places) presents a different SARS-COV-2 dissemination pattern not only concerning the
Earth seasonality but other components included in ε′.

2.2. Skewness Validation and SIR Model Limitation

What can be observed in many results [2] is an asymptotic unstable behavior of SARS-
COV-2 dissemination patterns towards atmospheric conditions (temperature, humidity,
ultraviolet (UV), and wind speed), policies and urban spaces that for this latter feature,
differ greatly around the globe; and therefore not following only the Earth environmental
seasonal forces as found in common flu [22–24]. The asymptotic feature of the phenom-
ena relies on how virus transmission can be associated with a mixture of variables that
sustain an indeterminate pattern of growing or reduction among countries. Worldwide,
countries are facing daily new COVID-19 cases and the reason for countries to reduce
its dissemination patterns are caused mainly due to HPALE on population [2–8] than a
well-defined Earth seasonal period of COVID-19 transmission, as it is known that indi-
vidual behavior and government policies are a major determinant for the pandemic peak
reduction. This overall pandemic scenario could be observed in late March and starting in
April 2020 when China and South Korea were the unique countries with the lowest rates of
exponential growth of infection cases due to the type and strength of adopted HPALE [3,6],
while Europe was in its fully active growing pattern. However, this does not mean that
environmental variables such as atmosphere properties or Earth seasonality do not present
causation of the event. It implies that HPALE influences the phenomenon at its beginning
and end with a persistent pattern [2–8] rather than what was expected to be addressed
only by the environmental factors as the main driving force of seasonality during winter
periods. For this reason, constant COVID-19 dissemination is expected during all Earth
seasons and HPALE can be one of the main seasonality driven force observed worldwide.

To add to this scenario, it is possible to identify one more important feature of pan-
demics, the urban spaces found in every city which present specific potential to influence
local epidemics and mathematical simulations of SIR equations, namely the S and R com-
partments. This impact is due to the effects on each country/city/locality’s capability
to deal with the outcomes of susceptibility, immunity, spreading patterns, and public
health control measures, thus making COVID-19 predictive models assume data that do
not correspond to reality. For each predictive model that fails to address urban spaces
heterogeneity, HPALE interventions subjectivity, and environmental non-homology of
data, the uncertainty degree grows. This leads to SARS-COV-2 emerging under unknown
contagion patterns as observed in Billings et al. [19] and with a similar example of measles
in Grenfell et al. [25].

2.3. Mathematical Framework of Three Seasonality Forcing Behavior of Coronavirus Disease 2019
(COVID-19) Worldwide and SIR Model Variants Needed

The unexpected seasonality ε′ under heterogeneity forcing behavior explain the ex-
ponential behavior of infection spreading patterns among countries an unpredictable
sinusoidal expression such as β(t) = β0(1 + ε∅(t)), as modelled by Buonuomo et al. [26]
with a possibility of using Fourier transforms use, considering finite time lengths of analysis
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(seasons) equally distributed over the period T within samples (countries). This mathe-
matical framework of analysis applies to the data series of daily new cases when these
data present high-amplitude noise, often related to the lower spectral density and lower
frequency that makes the analysis imprecise as a sinusoidal stable behavior in the basis
form of Earth dissemination seasonality as

∫ +∞
−∞ | f (ε)|d(t). In this sense, the sinusoidal

behavior does not exist regarding how countries might present default oscillations within
seasonal periods of Earth, as represented schematically in Figure 1.
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Figure 1. General framework of coronavirus disease 2019 (COVID-19) seasonality under the view of
Fourier transform use limitations.

Considering the aspects mentioned before, it is possible to observe that each sample
can be understood as the lack of spreading and dissemination patterns towards the confi-
dent interval and standard deviation under default periods T from 31 December 2019, to
3 March 2021, resulting in a stochastic maximum exponential form of daily new infections
as Y(t) changes over time, as already observed in the literature [2,8,27,28].

However, despite this scheme pointing to the weaker Earth seasonality forcing be-
havior of SARS-COV-2 dissemination patterns, it can still influence the overall hidden
transmission patterns due to HPALE interventions, environmentally driven seasonality,
and urban spaces. This point can be addressed as a pattern formation ε′, of each sample, of
confounding forced seasonality that dismantles S and R compartments of SIR predictive
model over time [1,27–34], caused by environmental driven factors, urban spaces [35–37],
and health HPALE intervention [2–8]. Then, it is possible to observe that each country
might respond differently to the same initial conditions [8], influenced by the three com-
ponents mentioned above, thus generating multiple patterns formation over time T for
SARS-CoV-2 forms of transmission and periodicity.

2.4. SIR Model Redefinition from the Original Equation to Skewness Patterns and
Global Sensitivity

Concerning a theoretical desired worldwide SIR model normal distribution that
most mathematical models imply for infection spreading and dissemination patterns
with shape behavior k = 1 or k > 1 (Weinbull parameterization) of the exponential
“regular” distributions of SARS-CoV-2 infection within time intervals t and with defined
periodicity T (possible seasonality forms among countries) [38], the original defined form
of I compartment of SIR modeling equation is given as dI

dt = β SI
N − gI. However, the high

asymptotic instability [27–34] of infected individuals (I) and the confounding scenario lead
to redefining the equation’s basic fundaments to make the skewness analysis. Following
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this sense, the I compartment of the SIR model was modeled to support confounding
data as

I =
(ω

λ

)k
(1)

where the infected I is influenced by the unpredictable scale of infection λ (N) for each
sample with inconsistent behavior of variables for S term of the equation, thus influencing
the transition rate (βSI) defined as ω dissemination patterns (no global solution). Also it is
not assumed for gI in the original form of R compartment, that there is a normal distribution
output for this virus spreading and dissemination patterns. This new dissemination pattern
formation of the epidemic behavior was also described by Duarte et al. [39] when the
contact rate does not encompass weather conditions and time-varying aspects of epidemics.
Therefore, an unpredictable shape k of probabilistic outcomes (close to reality shapes)
was used, mainly defining this shape caused λ and ω asymptotic instabilities generated
by S and R compartments over time [1,27–34], among the environmental- and urban
space-driven factors [35–37] and HPALE interventions [2–8]. This equation represents the
presence of confounding and heterogeneous environmental variables ω with an unknown
predictive scale of expλ or maximum likelihood estimator for λ due to non-linear inputs
for S and R compartments over time as a global proposition (urban spaces, HPALE, and
environmental conditions influence), thus generating nonlinear outputs k (asymptotic
instability) [40,41]. If it is considered that most models are searching for a normality
behavior among countries, hence, implying that the k distributions are non-complex and
not segmented by its partitions, thus resulting in linearity for the virus infection I over
Y and t, then the overall equation as described by Dietz β(t) = βm(1 + A cos(ωt)) [40]
would not be reachable for any given period of analysis considering the seasonality forcing
behavior of SARS-CoV-2.

The outputs with heteroscedasticity and non-homologous form for k and λ can be mod-
ified to reach stable points of analysis, as modelled by Dietz β(t) = βm(1 + A cos(ωt)) for
each of the three seasonality forces influencing SARS-CoV-2 spreading patterns. These three
stable points of the asymptotic structure mentioned before can be observed in Figure 2.
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Figure 2. Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) spreading and dissemina-
tion patterns filtered and stated as expressing within the three phases of the epidemic: environmental
spreading and dissemination patterns, health policies and adult learning education (HPALE), and
the urban spaces dissemination patterns.

To remove heteroscedasticity and non-homologous form for k and λ from occurring
in the three phases mentioned in Figure 2, as far as the κ < 1 Weibull parameterization
aspect [42] (Bell curve shape) of distribution is chosen as the most reliable region of analysis
(attractive orientation) for any given T periods within any sample (countries daily new
cases time series), it is necessary to modify the first Equation (1) to

I = I =
(

Y(t)
T

)k<1
−
(ω

λ

)k
(2)
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hence with the new SIR model proposition as I = I′ − (S + R), where I is asymptotic
stable to I′ and S and R considered in its original form θ(t) = θ0[1± ε sin(2πt)] [14]. This
is a mandatory redesign since many scientific breakthroughs point to health policies as
the best approach to reduce COVID-19 [2–8]. Starting with this redesign of the equation,
it is possible to find one of the first regions of analysis and stability that is health policy
intervention, found in the slope (peak) of daily cases over time.

2.5. Birth and Death Persistence of COVID-19 Dissemination Patterns: From Positive to
Negative Skew

Considering the new scope of analysis regarding time-series data mentioned before, it
is now necessary to uncover the graphic regions in which confounding scenarios can be
dismantled with a more robust relation of cause and effect according to Equation (2). It is
important to address this birth and death persistence homology for this research, in which
the desired mean function Y(t) of topological space X→ R over β(t) = βm(1 + A cos(ωt))
indicated at (2) can be found as a persistence diagram existence [43] by mapping each
adjacent pair to the point ( f (Y), f (t)) local minimum and maximum observations, due to
worldwide epidemic growth behaviour and subtle reduction due to HPALE measures. This
step results in critical points of Y function over time t, not in adjacent form globally but
regionally triangularly space as d(D(Yt), D(t)) ≤ ‖Yt − t‖∞ [44] with a given mean region,

thus expressing random critical values (dissemination patterns) defined by I′ =
(

Y(t)
T

)k<1

in the real-life form of the event. However, since it is necessary to filter f (Yn)− f (tn) = yn
unstable critical points (oscillatory instability of seasonality for S and R, HPALE, environ-
mental driven variables, and urban spaces) to an attractive minimum behavior with normal
distribution, these regions of analysis must be situated between π < yn < π

2 for every
A(t)→ T asymptote period. Following this path, and roughly modelling it, the mean
µ(A(t)) is obtainable as the size of birth and death persistence diagram and triangulable
diagonal (∆) like D(Yt, t− ∆) = ∑π<yn<

π
2

µYt
t with multiplicity pairing regions (t, Yt) for

each desired triangulation as 0 ≤ t < Yt ≤ n + 1, resulting in the general equation for

any assumed region as µYt
t = β(t)

εYt
εt−1 − β(t)

εYt
εt + β(t)

εYt−1
εt − β(t)

εYt−1
εt−1 [44]. Note that each

mean function µYt
t will be given by regions defined as β(t) = βm(1 + A cos(ωt)), being β(t)

the covariance function of seasonality forcing behavior of dissemination patterns formed
by µ(A(t)) under each β(t) form with ε′ partitions, hence without a global mean value for
the event in terms of infection and time, or in other words, spreading and dissemination
patterns. Further derivations and formulations regarding this persistence diagram will
not be addressed for this research. However, it is recommended that future research keep
this formulation defined for predictive and monitoring analysis of epidemic seasonality
forcing behavior.

It is necessary to understand that this new design of seasonality regions can now be
adapted adequately to Fourier transform analysis under the amplitude of waves with the
equation e−iωt = cos(2πt) + i sin(2πt) where angular momentum was drawn in the limits
of β(t) = βm(1 + A cos(ωt)), giving ω = π < yn < π

2 and generally defining it with
sinusoidal reduced form as f (ε′) =

∫ +∞
−∞ Y(t)e−2πiωtdω to reach a sinusoidal approach of

time series data extraction and analysis over periods ε′ and given analysis regions.
Beyond the limitation of periods for predictive analysis and monitoring as a Gaussian

process in the overall data of the given epidemics, the design in this article introduces one
main point of analysis that is the lack of a global mean and covariance function µ(Y(t)) over
fluctuations as a global homomorphism and a decomposition form of wave signals similar
to Fourier transforms. This occurs since spreading patterns of infection find heterogeneity
within the type of HPALE interventions influenced by the confounding scenario created by
the environment and urban spaces where persistent homology and homotopy cannot be
found for t ∴ κ < 1 Weibull reliability to be situated globally for the overall times series
data of epidemics in the oscillation-pairing regions of sin (π) = 1 and cos (π) = 0 for T
desired coordinates of persistent fluctuations in ( f (Yn), f (tk<1)) = yn of stability can differ
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over an extended time of analysis. HPALE range of influence is no longer stable (weak
boundaries points of persistence), and therefore assuming t + 1 discrete form, defined as
yn = f ( f (Yn), f (tk<1))

∫ π
π
2

µ ∑(Y0, . . . , Yn)dt. However, by contrast, it can be found with

continuous form as δ = f (Yt, t)
∫ π

π
2

µ ∑(Y0, . . . , Yn)dµ [9], thus assuming the shape and

limit to κ < 1 as small partitions ε′ to the desired analysis or without a derivative form
for the overall analysis within the whole epidemics behavior observed. Considering the
new partitions ε′, for the discretized view of Yt, t as pointed out in the results of Roberts
et al. [9], it is now possible to obtain a sample mean as a mode like µ = 1

n ∑n
i Yt, t. Further

results of this approach can be visualized at [9] Roberts et al. reference.
By rejecting the persistence diagram’s unstable critical points generated globally, a

local minimum of the event as an average mean ε′ can be obtained by having Y(t) with
the higher number of samples Y (daily infections) that finds a condition roughly described
in the nonlinear oscillations within the exponential growth epidemic behavior of event
as limited between maximum local growth defined by π

2 by its half curvature oscillations
π as a local minimum being non-periodic as 2π in a global homomorphism sense due to
κ < 1. In this sense, the new sinusoidal approach offers a new mean function as an angular
momentum of = π < yn < π

2 , hence the wave-signal necessary to perform the Fourier
transforms in each ε′ of data. This scheme can be observed for HPALE intervention on
SARS-CoV-2 spreading and dissemination patterns [27] in Figure 3.
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Therefore, Y(t), t assumes the desired oscillations samples and region conditions
ε′ as π < yn < π

2 where birth and death persistent homology can be found for t ∴
κ < 1 to be situated in the oscillations pairing region of sin (π) = 0 and cos (π) =
Y(t) for Y(t), t desired coordinates ( f (Y(t)), f (t)) of stability with discrete form as t + 1
as Y(t) = f (Y(t))

∫ π
π
2

µ ∑(Y0, . . . , Yn)dt or vice-versa for t = f (t)
∫ π

π
2

µ ∑(t0, . . . , tn)dYt,
thus assuming the shape and limit to κ < 1. Considering samples’ time lengths, it is
designed as t(δ + 1) ≤ f (Y(t))µ ∑(Y0, . . . , Yn)dt starting from t0, . . . , tn ≤ sin

(
π
2
)

results
in the desired data distribution with a conditional shape of Weibull parameterization
κ < 1 for the analysis with a normal distribution, thus rejecting any critical value beyond
cos (π) = ε′p and under sin (π) = ε′p, being ε′p the seasonality forcing behavior of HPALE
intervention over SARS-CoV-2 among countries’ data sets. Concerning time lengths of
samples, designed as t(yn + 1) ≤ f (Yn)µ ∑(Y0, . . . , Yn)dt starting from t0, . . . , tn ≤ sin(π)
results in the desired data distribution, thus rejecting any critical value beyond cos (π) = 0
and under sin (π) = 1. The main reason to ignore S and R local solutions, or to not use
SIR models globally, is also the same reason to adopt a region of analysis in the time series
data for I′ and HPALE.This also remains for the other two important inputs of the system
derivatives (environmental factors that influence COVID-19 dissemination and urban
spaces) of which for each country the aforementioned confounding scenario of analysis is
shown in Figure 4.
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Figure 4. Considering the observation COVID-19 confounding scenario, it is presented the asymptotic
strong seasonality force of HPALE (ε′ p) intervention and the narrow and unstable region (outbreak
and control) of analysis for environmental and urban driving factors of seasonality (ε′e, ε′u ).

Noting that the S and R compartments of the SIR model are needed for predictive
analysis of infection dissemination patterns, these compartments might work properly
under the third region of time series data: urban spaces ε′u seasonality. To achieve results
with a high uncertainty reduction, it is necessary to conceive S and R as in its most
stable region of analysis, which should be influenced in a posterior scenario where ε′p
(HPALE) and ε′e (environmental seasonality) already took effect. This is mandatory since,
as far as policies are assumed in models or estimated with unreal quantitative parameters,
uncertainty growth is promoted along with limitations to track real patterns within an
urban space feature for S and R as a causation relation. For urban spaces seasonality forcing
behavior, it is considered that inside and outside urban spaces promote limitations to
HPALE due to the limiting action that it can face within these urban spaces (not all HPALE
can reach some urban spaces features properly as it was designed to be). Environmental
seasonality can also be present at this phase by influencing urban spaces limitations of
taken HPALE actions. Therefore, ε′e might find a growing point inside and outside urban
spaces beyond ε′p normalization (more explanation of this causation effect will be given
in the Results section), which can be the cause of worldwide second waves or posterior
waves.

Considering unexpected seasonal forcing ε′p roughly defined as ∂(t) = ∂0 [1± ε0
cos π < ε′ < sin π

2 ] [9] in a complex network model, where no periodic oscillation (si-
nusoidal) are to be found in a discrete form with f

(
ε′e,p,u

)
=
∫ +∞
−∞ Y(t), te−2πiωtdω, as-

sume now a rupture of the sin(2πt), leaving the region the pre-assumed linearity θ(t) =
θ0[1± ε sin(2πt)] for S and R in the overall metrics of time series data T within one sample
or among countries and understanding each iteration of the event as unconnected to the
previous and future data if considering multiple time-series comparisons (among coun-
tries) or even in the same time series if considering long-term analysis. Since the I′ is an
asymptote to ε′p, then ε′u is limited by ε′p on I′, but not necessarily fully stable in terms of
ε′p present total control over environmental seasonality due to urban space features.

It is possible to verify that most of these SIR models are constructed based on ε′p
seasonality behaviors [45–48]. Following this phase, urban spaces and HPALE interventions
might present a strong influence on the outcomes due to the unpredictability of S and R
patterns to design appropriate contact rates, which still represents a limitation for the SIR
model methods [27–34]. Nonetheless, it is still the most desirable region of analysis for
data extraction.

3. Results

The overall scenario of spreading and dissemination patterns skewness concerning
the environment, HPALE and urban spaces can be visualized in Figure 5, where season-
ality forcing behavior assumes the following topological metric space. Considering all
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the possible seasonality types, f
(
ε′e,p,u

)
=
∫ +∞
−∞ Y(t), te−2πiωtdω, in continuous form of

observation, with the need to discretize within causal roots of analysis due to hetero-
geneity and confounding scenario of analysis, HPALE seasonality can be understood as
f ε′p = g ◦ f (Yt, t) = g

(
f
(
ε′p
))

, hence it can also be written as, f ε′p = h ◦ (g ◦ f (Yt, t)) =
h
(

g
(

f
(
ε′p
)))

as a control phase of local epidemics. However, this phase might present
high instability (spreading patterns fluctuations) at a worldwide level due to heterogeneity
and confounding behavior of f ε′u and f ε′e. Since SIR models require stable points for
S and R, there is f ε′u = h ◦ g(Yt, t) = h(g(ε′u)), resulting in a stable asymptotic conver-
gence only if f ε′p = h ◦ (g ◦ f (Yt, t)) = h

(
g
(

f
(
ε′p
)))

. Since the outbreak might incur
in unknown spreading and dissemination patterns for f ε′p, f ε′e and f ε′u, this region
needs to be carefully considered. Therefore, environmental seasonality can be found as
f ε′e = (h ◦ g(Yt, t)) ◦ f = f (h(g(ε′e))) or it is also possible to assume f ε′e = (ε ◦ g(Yt, t), be-
ing ε the undefined patterns of environmentally driven new infections for Earth seasonality
or atmospheric factors, which was not fully resolvable in this research.
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Figure 5. Schematically representation of the COVID-19 skewness properties: during epidemics
evolution, HPALE influences the environment and urban spaces seasonality until a limit defined by its
type and strategy of application; compartmental models during peak phase are influenced by HPALE,
environment and urban spaces and present high uncertainty; at control phase, policies/HPALE finds
its limitation by the environment and the type of urban spaces and finally, at outbreak, environmental
factors present outcomes caused by the existing HPALE and urban spaces.

4. Discussion

Concerning urban spaces’ spreading patterns, due to the vast diversity of public
health infrastructure buildings design, outdoor and indoor building designs within natural
physical features such as rivers, lakes, snow, culture, and urbanization developments,
they exert influence on the region of environmental driven pattern and not only policies.
Therefore, it is reasonable to understand that any assumption on S and R during the
epidemic phase in its initial curvature is much more closed to uncertainty measures than
ever due to several possible confluences. Countries may then diverge greatly in the urban
space and environmental scenarios, and thus S and R compartments face calculation
limitations during peak curvature, being uncertain how to predict virus spreading and
dissemination patterns since policies/HPALE are not even fully developed or had adequate
time to take effect while most of the models use policies as the basis of modeling the
dissemination patterns. For this reason, the most reliable region of analysis for these
compartments and where most of the models are currently situated/functioning remains
at the control phase of epidemics. However, fluctuations may still occur worldwide due to
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the type of HPALE and urban space features. Therefore, urban spaces and environmental
seasonality drivers are the main cause of aperiodic and unstable behavior for SARS-COV-2
spreading patterns worldwide. It is likely that environmental driven seasonality results
found in many studies are, in truth, HPALE and urban spaces results, representing a need
for further detailed research [48].

This was addressed in the research [49], where despite the vast review made, and
the observation of confounding scenarios for each sample of analysis and type of climate
conditions that influence COVID-19 spreading patterns, authors [49] have understood that
there are homogeneity and heterogeneity in the statistical results and conclusions about the
environmental influence on the virus dissemination patterns. This was addressed correctly
in a systematic review [49] and further developed in this present study through a careful
observation that environmental influence can be better understood in outbreaks and urban
spaces by using graph analysis. Also, despite the analysis made in [49] considering only
policies and climate conditions, further scenario need to be evaluated that is urban spaces,
where human lifestyles are directly connected with a risk behaviour over contamination of
infectious diseases, such as COVID-19, hence human behaviours also have great impact in
the preventive measures efficacy.

Also, concerning evolutionary and game of life algorithms [50,51], predefined param-
eters and initial inputs are crucial for the machine learning analysis. However, beyond
biological features as described in the last paragraph, unpredictable scale of infected indi-
viduals are found worldwide without vaccination or social isolation. The article aimed to
analyze the problem without these predefined parameters being the basis and sensitivity
of analysis. This can be mandatory since many countries are facing problems with vacci-
nation speed and availability as well as social isolation as well as a severe lack of citizen
compliance in many countries. Similarly, in Bateman SIZ analysis, this approach can be
observed [52] regarding the uncertainty of models without using predefined parameters
for sensitivity and robustness. These uncertain parameters lead the calculations to include
new panoramic idea of how to combat COVID-19 without proper pre assumptions, thus
giving for the real world skewness observed in predictive methods, a degree of uncertainty
worldwide. This can be useful due to the lack of correlation between the sensitivity of
models and real life complexity.

Concerning uncertainty and sensitivity, the article presents some references that
address this point [8,30,33,45]. This research’s main objective was to analyse the SIR model
equation without pre-defined data input in terms of formulating a specific SIR model to
perform predictive analysis with numerical results. For this reason, theoretical observations
were made, considering references findings and the global sensitivity model used (policies
and ALE, environment and urban spaces). Despite not considering numerical solutions of
the problem, due to complexity issues for data collection in real life and chaotic behaviour of
some events, the theoretical model proposed can be helpful to understand how pandemics
should be investigated for future SIR model equations and also for the basic interpretation
of epidemiological behaviour of SARS-COV-2. This is mandatory nowadays since many
countries present unfitted vaccination prediction, unfitted social isolation prediction and
unfitted SARS-COV-2 variants appearance. The validation of the data subject can be found
in Section 2.2. Skewness validation and SIR model limitation. Since the model proposed in
this article is not developed to numerical data or results, the theoretical basis of analysis
was retrieved from references that already performed these numerical solutions of the
problem. Therefore, compiling these findings, it was possible to observe how skewness
properties of the issue express how the virus behaves worldwide without predefined
spreading and dissemination patterns. This concept of an absence of predefined spreading
and dissemination patterns was supported in the results section, aiming to describe how
uncertainty and predictive constraints can be found based on the SIR model equation and
its variants developed worldwide.

In the research results section, it is possible to observe that the most reliable region
to investigate environmental seasonality remains at the outbreak and control phases. In
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contrast, best urban space seasonality observations remain at the control phase. This
feature can be very useful for HPALE approaches since the actual fluctuations/instability
in the region mentioned above are mainly caused by these two posterior forcing behaviors.
Therefore, new strategies and measurements need to be adopted to keep the economy and
prevention with similar power, which was already initially investigated by Sajadi et al. in
June 2020 [46].

Note that there is a great difference between environment-driven seasonality caused
by urban spaces influenced by HPALE limitations or otherwise caused by Earth and other
natural (atmospheric) seasonality forcing behavior at outbreaks. This characteristic should
be carefully considered when studying Earth seasonality among countries. The compart-
mental models are mostly in the control phase region and lose efficacy at outbreaks where
no specific parameters are given, and environmental seasonality is not yet discovered in
its true patterns. Another point regarding the control phase is that in which instabilities
can occur, as far as urban spaces create a scenario where HPALE faces limitations, envi-
ronmental seasonality finds a suitable place to grow its patterns [47]. Due to uncertainty
growth over time and the lack of mean for defined intervals of t over T normal distribution
shape for the whole data, Earth season ε gradually loses its effect with the possibility of
random delays observed for each country of analysis (sample) being attributed by different
patterns in which an outbreak occurs since existing HPALE are found within worldwide
cultures, science, and education.

5. Conclusions

This research modeled SARS-COV-2 spreading and dissemination patterns sensitivity
by defining and redesigning time series data extraction to SIR model equations. The
approach opened a new scenario where seasonality forcing behavior was introduced to
understand SARS-COV-2 skewness expressions due to heterogeneity and confounding
epidemics scenarios where actual SIR models might find a high degree of uncertainty
caused by oscillatory conditions found in the input of variables of the event.

The main research results are the elucidation of three birth and death forced seasonality
phases that can explain how COVID-19 spreading and dissemination patterns skewness
occurs worldwide. It can be understood in the following order: (1) the environmental
variables (Earth seasons and atmospheric conditions); (2) health policies and adult learning
education (HPALE) interventions; (3) urban spaces (local indoor and outdoor spaces for
transit and social-cultural interactions, public or private, with natural physical features
(river, lake, terrain).

These three forced seasonality phases were pointed to as the most effective explanation
concerning uncertainty found in the predictive SIR model equations that might diverge in
outcomes expected to express the disease’s behaviour. Therefore, many distinct models
were generated to cover COVID-19 confounded scenarios.

Regarding the forced seasonality model the following pattern was observed: HPALE
can be the strongest stable point of seasonality during the epidemic peak phase and com-
partmental models are influenced mainly by HPALE, while environmental and urban
spaces present a low or hidden influence on it. However, HPALE can still be limited at the
control phase, depending on urban spaces and existing environmental conditions demand-
ing SIR models to adapt to these new features. Finally, at outbreak and control phases,
environmental factors present outcomes caused by the existing HPALE and urban spaces
of a given sample, thus producing high uncertainty to predictive SIR model equations.

6. Limitations

ALE was considered in the view of effective practice mainly based on adequate
policies adopted by countries. Nonetheless, it should be carefully addressed in the view
of infodemics practices, in which ALE can assume one more seasonal force in epidemics,
disrupting the peak and control phase and promoting new spreading and dissemination
patterns during ε′p seasonality. It can also enforce posterior waves and confirm spreading



Symmetry 2021, 13, 676 12 of 14

pattern fluctuations at outbreaks and urban spaces’ stability and. therefore. demanding
new modifications in SIR models.
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