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Abstract: In this paper we introduce a generalized Laplace transform in order to work with a very
general fractional derivative, and we obtain the properties of this new transform. We also include
the corresponding convolution and inverse formula. In particular, the definition of convolution
for this generalized Laplace transform improves previous results. Additionally, we deal with the
generalized harmonic oscillator equation, showing that this transform and its properties allow one to
solve fractional differential equations.

Keywords: fractional derivative; convolution; generalized Laplace transform

1. Introduction

Differential and integral calculus provide numerous tools for solving modeled prob-
lems, but there are many phenomena whose formulations are far more precise if fractional
calculus is used. Fractional calculus is as old as calculus itself, and extends derivation and
integration to arbitrary non-integer orders.

Liouville gave two definitions of derivative [1], treating the fractional order deriva-
tive as an integral, albeit with certain limitations. Anton Karl Grünwald, in 1867 [2],
and Aleksey Vasilievich Létnikov, in 1868 [3], proposed a new definition of fractional
derivative based on the definition of iterated derivative, known as the Grünwald–Létnikov
differo-integral operator. Later, in 1898, the definition given by Liouville was improved by
Riemann in a posthumously published manuscript [4]. In 1969, Michele Caputo gave a new
definition that allowed the physical interpretation of many problems, since it has ordinary
initial conditions unlike the derivative of Riemann, so it is usually used in application
problems [5].

The concept of the conformable fractional derivative was introduced in [6]; then [7–12]
proposed derivatives of local character, which opened up a new horizon in fractional
calculus.

Fractional calculus is now successfully used in a wide range of models in physics,
economics and biology. Of particular importance are the physical applications in the theory
of viscoelasticity, in the study of anomalous diffusion phenomena and in electromagnetic
theory. There is currently a growing interest in other very different fields, such as circuit
theory and the physics of the atmosphere. Additionally, among economists, the use of
fractional calculus concepts is increasing. There are well-known fractional models such
as that of the change of heat load intensity on the walls of a furnace, the Bagley–Torvik
equation, the neural fractional order model, the deformation law and the model of the
spread of Dengue fever, where the advantage of using a non-integer formulation of the
derivative is evident [13–29].
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As far as classical calculus is concerned, ordinary and partial differential equations
describe how certain quantities vary in time, such as the current in an electric circuit,
the oscillations in a vibrating membrane or the heat flow through an insulated conductor.
These equations usually have initial conditions that describe the state of the system at time
t = 0. The Laplace transform method solves most of these problems, by transforming the
original equation into an elementary algebraic expression, which can then be transformed
back into the solution of the original problem [30,31]. The Laplace transform was useful
used in the study of fractional differential equations; see, e.g., [29,32,33].

Therefore, it is interesting to extend the Laplace transform to differential equations
with non-integer orders, for the generalized fractional derivative exposed in [12]. Fur-
thermore, earlier works dealing with the Laplace transform for fractional derivatives
introduced some convolutions that have some drawbacks. We introduce here a new con-
cept of convolution that avoids the problems of the previous definitions; in particular, this
convolution uses a symmetric operator; see Theorem 8. We also include the corresponding
inverse formula in Theorem 9. Finally, we solve the generalized harmonic oscillator as an
exemplary application to show the reliability of the generalized Laplace transform method:

Gα
T(G

α
T f )(t) + c2 f (t) = u(t),

where Gα
T f (t) is the conformable fractional derivative operator of order α ∈ (0, 1], and c is

a constant.

2. Preliminaries

Let us recall the definition of a local generalized fractional derivative in [12].
Given s ∈ R, we denote by dse the upper integer part of s, i.e., the smallest integer

greater than or equal to s.

Definition 1. Given an interval I ⊆ R, f : I → R, α ∈ R+ and a positive continuous function
T(t, α) on I for each α, the derivative Gα

T f of f of order α at the point t ∈ I is defined by

Gα
T f (t) = lim

h→0

1
hdαe

dαe

∑
k=0

(−1)k
(
dαe

k

)
f
(
t− khT(t, α)

)
. (1)

If a = min{t ∈ I} (respectively, b = max{t ∈ I}), then Gα
T f (a) (respectively, Gα

T f (b))
is defined with h→ 0− (respectively, h→ 0+) instead of h→ 0 in the limit.

If we choose the function T(t, α) = tdαe−α, then we obtain the following particular
case of Gα

T , defined in [6]. Note that T(t, α) = tdαe−α = 1 for every α ∈ N.

Definition 2. Let I be an interval I ⊆ (0, ∞), f : I → R and α ∈ R+. The conformable derivative
Gα f of f of order α at the point t ∈ I is defined by

Gα f (t) = lim
h→0

1
hdαe

dαe

∑
k=0

(−1)k
(
dαe

k

)
f
(
t− khtdαe−α

)
. (2)

We know from the classical calculus that if f is a function defined in a neighborhood
of the point t, and there exists Dn f (t), then

Dn f (t) = lim
h→0

1
hn

n

∑
k=0

(−1)k
(

n
k

)
f (t− kh).

Therefore, if α = n ∈ N and f is smooth enough, then Definition 2 coincides with the
classical definition of the n-th derivative.

In [6], a conformable derivative is defined in the following way.
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Definition 3. Given f : (0, ∞)→ R and α ∈ (0, 1], the derivative of f of order α at the point t is
defined by

Tα f (t) = lim
h→0

f (t)− f (t− ht1−α)

h
. (3)

It is clear then that Tα is a particular case of Gα when α ∈ (0, 1] and T(t, α) = t1−α.
See [9,34,35] for more information on Tα.

The following results in [12] contain some basic properties of the derivative Gα
T .

Lemma 1. Let I be an interval I ⊆ R, f : I → R and α ∈ R+.

(1) If there exists Ddαe f at the point t ∈ I, then f is Gα
T-differentiable at t and Gα

T f (t) =

T(t, α)dαeDdαe f (t).
(2) If α ∈ (0, 1], then f is Gα

T-differentiable at t ∈ I if and only if f is differentiable at t; in this
case, we have Gα

T f (t) = T(t, α) f ′(t).

Lemma 2. Let I be an interval I ⊆ R, f , g : I → R and α ∈ R+. Assume that f , g are
Gα

T-differentiable functions at t ∈ I. Then the following statements hold:

(1) a f + b g is Gα
T-differentiable at t for every a, b ∈ R, and Gα

T(a f + b g)(t) = a Gα
T f (t) +

b Gα
T g(t).

(2) If α ∈ (0, 1], then f g is Gα
T-differentiable at t and Gα

T( f g)(t) = f (t)Gα
T g(t) + g(t)Gα

T f (t).
(3) If α ∈ (0, 1] and g(t) 6= 0, then f /g is Gα

T-differentiable at t and Gα
T(

f
g )(t) =

g(t)Gα
T f (t)− f (t)Gα

T g(t)
g(t)2 .

(4) Gα
T(λ) = 0, for every λ ∈ R.

(5) Gα
T(t

p) = Γ(p+1)
Γ(p−dαe+1) tp−dαeT(t, α)dαe, for every p ∈ R \Z−.

(6) Gα
T(t
−n) = (−1)dαe Γ(n+dαe)

Γ(n) t−n−dαeT(t, α)dαe, for every n ∈ Z+.

Lemma 3. Let α ∈ (0, 1], g be a Gα
T-differentiable function at t and f be a differentiable function

at g(t). Then f ◦ g is Gα
T-differentiable at t, and Gα

T( f ◦ g)(t) = f ′(g(t)) Gα
T g(t).

3. On the Generalized Laplace Transform

In this section, we assume that the function T is positive and continuous on (0, ∞),
and satisfies for some ε > 0∫ ε

0

dω

T(ω, α)
< ∞, and

∫ ∞

0

dω

T(ω, α)
= ∞,

for each 0 < α ≤ 1.
Let us define for each 0 < α ≤ 1 and c, t ∈ R

Eα(c, t) = exp
(

c
∫ t

0

dω

T(ω, α)

)
.

Note that Eα(c, t) is an eigenfunction for the operator Gα
T , since

Gα
T(Eα(c, t)) = T(t, α)

(
exp

(
c
∫ t

0

dω

T(ω, α)

))′
= T(t, α) exp

(
c
∫ t

0

dω

T(ω, α)

) c
T(t, α)

= c Eα(c, t).

Thus, (
Eα(c, t)

)′
= c Eα(c, t)

1
T(t, α)

.
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Given 0 < α ≤ 1 and a measurable function f : [0, ∞)→ R, we define its generalized
Laplace transform as

Lα
T [ f ](s) =

∫ ∞

0
Eα(−s, t) f (t)

dt
T(t, α)

,

if Lα
T [ | f | ](s) < ∞, i.e., Eα(−s, t) f (t)/T(t, α) ∈ L1([0, ∞)). If we consider complex-valued

functions instead of real-valued functions, then we can obtain similar results.
The following properties of the generalized Laplace transform are elementary.

Proposition 1. Let c, k ∈ R, 0 < α ≤ 1 and f , g : [0, ∞)→ R be functions such that there exist
Lα

T [ f ](s) and Lα
T [g](s) for some s.

(1) Then
Lα

T [ c f + k g ](s) = cLα
T [ f ](s) + kLα

T [g](s).

(2) If there exists Lα
T
[
Eα(c, t) f (t)

]
(s), then

Lα
T
[
Eα(c, t) f (t)

]
(s) = Lα

T [ f ](s− c).

The following results summarize the main properties of the generalized Laplace
transform.

Theorem 1. Let f : [0, ∞) → R be a function such that there exists Lα
T [ f ](s) for some s and

0 < α ≤ 1. Then
Lα

T [ f (t)](s) = L[ f (u(x))](s),

where L denotes the usual Laplace transform, and u(x) is the inverse function of

x(t) =
∫ t

0

dω

T(ω, α)
.

Proof. Since T(t, α) is a positive continuous function on (0, ∞), and it satisfies for some
ε > 0 ∫ ε

0

dω

T(ω, α)
< ∞,

∫ ∞

0

dω

T(ω, α)
= ∞,

the function x : [0, ∞)→ [0, ∞) given by

x(t) =
∫ t

0

dω

T(ω, α)

is continuous and strictly increasing, x(0) = 0 and limt→∞ x(t) = ∞. Thus, x(t) is a
homeomorphism on [0, ∞) and so is its inverse function.

The change of variable

x =
∫ t

0

dω

T(ω, α)
, dx =

dt
T(t, α)

, t = u(x),

allows one to obtain

Lα
T [ f ](s) =

∫ ∞

0
Eα(−s, t) f (t)

dt
T(t, α)

=
∫ ∞

0
e−sx(t) f (t)

dt
T(t, α)

=
∫ ∞

0
e−sx f (u(x)) dx = L[ f (u(x))](s).
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Corollary 1. Let f : [0, ∞) → R be a function such that there exists L[ f ](s) for some s and
0 < α ≤ 1. Then there exists the generalized Laplace transform at s of

f
( ∫ t

0

dω

T(ω, α)

)
and

Lα
T

[
f
( ∫ t

0

dω

T(ω, α)

)]
(s) = L[ f ](s).

Corollary 1 has the following consequence.

Proposition 2. There exists the generalized Laplace transform of the following functions for
0 < α ≤ 1:

(1) If s > 0, then

Lα
T [1](s) =

1
s

.

(2) If a ∈ R and s > a, then

Lα
T
[
Eα(a, t)

]
(s) =

1
s− a

.

(3) If b > −1 and s > 0, then

Lα
T

[( ∫ t

0

dω

T(ω, α)

)b ]
(s) =

Γ(b + 1)
sb+1 .

(4) If b > 0 and s > 0, then

Lα
T

[
sin
(

b
∫ t

0

dω

T(ω, α)

)]
(s) =

b
s2 + b2 .

(5) If b > 0 and s > 0, then

Lα
T

[
cos

(
b
∫ t

0

dω

T(ω, α)

)]
(s) =

s
s2 + b2 .

(6) If a ∈ R, b > −1 and s > 0, then

Lα
T

[
Eα(a, t)

( ∫ t

0

dω

T(ω, α)

)b ]
(s) =

Γ(b + 1)
(s− a)b+1 .

(7) If a ∈ R, b > 0 and s > a, then

Lα
T

[
Eα(a, t) sin

(
b
∫ t

0

dω

T(ω, α)

)]
(s) =

b
(s− a)2 + b2 .

(8) If a ∈ R, b > 0 and s > a, then

Lα
T

[
Eα(a, t) cos

(
b
∫ t

0

dω

T(ω, α)

)]
(s) =

s− a
(s− a)2 + b2 .

(9) If a > 0 and s > a, then

Lα
T

[
sinh

(
a
∫ t

0

dω

T(ω, α)

)]
(s) =

a
s2 − a2 .
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(10) If a > 0 and s > a, then

Lα
T

[
cosh

(
a
∫ t

0

dω

T(ω, α)

)]
(s) =

s
s2 − a2 .

The following result gives a sufficient condition for the existence of the generalized
Laplace transform.

Theorem 2. Let f : [0, ∞)→ R be a measurable function and 0 < α ≤ 1. If there exist constants
k > 0 and c ∈ R such that

| f (t)| ≤ k Eα(c, t)

for every t > 0, then there exists Lα
T [ f ](s) for every s > c and

∣∣Lα
T [ f ](s)

∣∣ ≤ k
s− c

.

Proof. If s > c, then Proposition 2 gives

∣∣Lα
T [ f ](s)

∣∣ ≤ ∫ ∞

0

∣∣∣ Eα(−s, t) f (t)
T(t, α)

∣∣∣ dt ≤ k
∫ ∞

0

Eα(−s, t)Eα(c, t)
T(t, α)

dt

= kLα
T
[
Eα(c, t)

]
(s) =

k
s− c

,

and there exists Lα
T [ f ](s).

The following result shows that Lα
T is the appropriate Laplace transform in order to

work with the fractional derivative Gα
T .

Theorem 3. Let f : [0, ∞)→ R be a locally absolutely continuous function such that there exist
Lα

T [ f ](s) and Lα
T [G

α
T f ](s) for some s and 0 < α ≤ 1. Then

Lα
T [G

α
T f ](s) = sLα

T [ f ](s)− f (0).

Proof. If we apply integration by parts to the integral

Lα
T [G

α
T f ](s) =

∫ ∞

0
Eα(−s, t) Gα

T f (t)
dt

T(t, α)
=
∫ ∞

0
Eα(−s, t) f ′(t) dt,

with
u = Eα(−s, t), du = −s Eα(−s, t)

dt
T(t, α)

,

dv = f ′(t) dt, v = f (t),

we obtain

Lα
T [G

α
T f ](s) =

[
Eα(−s, t) f (t)

]t=∞

t=0
+ s

∫ ∞

0
Eα(−s, t) f (t)

dt
T(t, α)

= lim
t→∞

Eα(−s, t) f (t)− f (0) + sLα
T [ f ](s).

Note that there exists limt→∞ Eα(−s, t) f (t) and it is finite, since there exist Lα
T [ f ](s)

and Lα
T [G

α
T f ](s).

When seeking a contradiction, assume that limt→∞ Eα(−s, t) f (t) = k 6= 0. Thus,

Eα(−s, t) f (t)
1

T(t, α)
≈ k

T(t, α)
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as t→ ∞. Since∫ ∞ dω

T(ω, α)
= ∞ ⇒ Eα(−s, t) f (t)

1
T(t, α)

/∈ L1([0, ∞))

and Lα
T [ f ](s) does not exist, there is a contradiction. Hence, limt→∞ Eα(−s, t) f (t) = 0 and

the conclusion holds.

We can iterate this formula.

Theorem 4. Let f : [0, ∞)→ R be a C1 function such that f ′ is a locally absolutely continuous
function and there exist Lα

T [ f ](s), Lα
T [G

α
T f ](s) and Lα

T [G
α
T(G

α
T f )](s) for some s and 0 < α ≤ 1.

Then
Lα

T [G
α
T(G

α
T f )](s) = s2Lα

T [ f ](s)− s f (0)− Gα
T f (0)

= s2Lα
T [ f ](s)− s f (0)− T(0, α) f ′(0).

Proof. Theorem 3 and Lemma 1 give

Lα
T [G

α
T f ](s) = sLα

T [ f ](s)− f (0),

Lα
T [G

α
T(G

α
T f )](s) = sLα

T [G
α
T f ](s)− Gα

T f (0) = sLα
T [G

α
T f ](s)− T(0, α) f ′(0),

and these equalities give the conclusion.

Theorem 5 below shows that the following integral operator plays an important role
in our study.

Jα
T( f )(t) =

∫ t

0

f (ω)

T(ω, α)
dω.

Theorem 5. Let f : [0, ∞) → R be a function such that there exist Lα
T [ f ](s) and Lα

T [J
α
T( f )](s)

for some s and 0 < α ≤ 1. Then

Lα
T [J

α
T( f )](s) =

1
s
Lα

T [ f ](s).

Proof. Since there exists Lα
T [ f ](s), we have that there exists Jα

T( f )(t) for every t > 0.
Additionally, Jα

T( f )(t) is locally absolutely continuous on [0, ∞) and

(Jα
T( f ))′(t) =

f (t)
T(t, α)

, Gα
T(Jα

T( f ))(t) = f (t),

for almost every t ∈ [0, ∞). Thus, Theorem 3 applied to the function Jα
T( f ) gives

Lα
T [ f ](s) = Lα

T [G
α
T(Jα

T( f ))](s) = sLα
T [J

α
T( f )](s)− Jα

T( f )(0) = sLα
T [J

α
T( f )](s).

Let us prove some regularity properties of the generalized Laplace transform.

Theorem 6. Let f : [0, ∞)→ R be a function such that there exists Lα
T [ f ](s0) for some s0 ∈ R,

and 0 < α ≤ 1. Then:

(1) There exists Lα
T [ f ](s) for every s ∈ C with real part Re s ≥ s0.

(2) Lα
T [ f ](s) is continuous on the closed halfplane {s ∈ C : Re s ≥ s0}.

(3) Lα
T [ f ](s) is analytic on the open halfplane H(s0) = {s ∈ C : Re s > s0}.

(4) If s ∈ H(s0) and n is a positive integer, then

dnLα
T [ f ]

dsn (s) = (−1)n
∫ ∞

0
Eα(−s, t) f (t)

( ∫ t

0

dω

T(ω, α)

)n dt
T(t, α)

.
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Proof. If Re s ≥ s0, then∣∣∣ Eα(−s, t) f (t)
T(t, α)

∣∣∣ = Eα(−Re s, t) | f (t)|
T(t, α)

≤ Eα(−s0, t) | f (t)|
T(t, α)

. (4)

Since Eα(−s0, t) f (t)/T(t, α) ∈ L1([0, ∞)), we conclude that Eα(−s, t) f (t)/T(t, α) ∈
L1([0, ∞)), and so, there exists Lα

T [ f ](s).
Since (4) holds for every s with Re s ≥ s0 and Eα(−s0, t) f (t)/T(t, α) is an integrable

function on [0, ∞) which does not depend on s, the dominated convergence theorem gives
that Lα

T [ f ](s) is a continuous function on this closed halfplane.
Let γ : [a, b] → C be a closed curve contained in the open halfplane H(s0). Fubini’s

theorem gives ∫
γ
Lα

T [ f ](s) ds =
∫

γ

∫ ∞

0
Eα(−s, t) f (t)

dt
T(t, α)

ds

=
∫ ∞

0

∫
γ

Eα(−s, t) ds f (t)
dt

T(t, α)
.

Since Eα(−s, t) is an analytic function in the variable s for each fixed t, Cauchy’s
theorem gives

∫
γ Eα(−s, t) ds = 0 and so,

∫
γ
Lα

T [ f ](s) ds =
∫ ∞

0

∫
γ

Eα(−s, t) ds f (t)
dt

T(t, α)
=
∫ ∞

0
0 · f (t)

dt
T(t, α)

= 0.

Since γ is an arbitrary closed curve contained in the open halfplane H(s0), Morera’s
theorem gives that Lα

T [ f ](s) is analytic on H(s0).
Fix s1 > s0 and a positive integer n. If s ∈ H(s1), then∣∣∣ Eα(−s, t) f (t)

T(t, α)

( ∫ t

0

dω

T(ω, α)

)n ∣∣∣ = Eα(−Re s, t) | f (t)|
T(t, α)

( ∫ t

0

dω

T(ω, α)

)n

≤ Eα(−s1, t) | f (t)|
T(t, α)

( ∫ t

0

dω

T(ω, α)

)n

=
Eα(−s0, t) | f (t)|

T(t, α)
Eα(−(s1 − s0), t)

( ∫ t

0

dω

T(ω, α)

)n
.

It is well-known that there exists a positive constant cn such that e−x ≤ cnx−n for
every x ≥ 1. As in Theorem 1, denote by u(x) the inverse function of

x(t) =
∫ t

0

dω

T(ω, α)
.

If we define
t0 = u

( 1
s1 − s0

)
and t ≥ t0, then∫ t

0

dω

T(ω, α)
= x(t) ≥ x(t0) =

1
s1 − s0

⇒ (s1 − s0)
∫ t

0

dω

T(ω, α)
≥ 1

⇒ Eα(−(s1 − s0), t) = exp
(
− (s1 − s0)

∫ t

0

dω

T(ω, α)

)
≤ cn

(s1 − s0)n

( ∫ t

0

dω

T(ω, α)

)−n
.
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Thus, we obtain∣∣∣ Eα(−s, t) f (t)
T(t, α)

( ∫ t

0

dω

T(ω, α)

)n ∣∣∣ ≤ Eα(−s0, t) | f (t)|
T(t, α)

Eα(−(s1 − s0), t)
( ∫ t

0

dω

T(ω, α)

)n

≤ cn

(s1 − s0)n
Eα(−s0, t) | f (t)|

T(t, α)

for every t ≥ t0. Additionally, we have for every 0 ≤ t ≤ t0∣∣∣ Eα(−s, t) f (t)
T(t, α)

( ∫ t

0

dω

T(ω, α)

)n ∣∣∣ ≤ ( ∫ t0

0

dω

T(ω, α)

)n Eα(−s0, t) | f (t)|
T(t, α)

.

If we define

M = max
{ cn

(s1 − s0)n ,
( ∫ t0

0

dω

T(ω, α)

)n }
,

then ∣∣∣ Eα(−s, t) f (t)
T(t, α)

( ∫ t

0

dω

T(ω, α)

)n ∣∣∣ ≤ M
Eα(−s0, t) | f (t)|

T(t, α)

for every t ≥ 0.
Since Eα(−s0, t) f (t)/T(t, α) ∈ L1([0, ∞)), the function

Eα(−s, t) f (t)
T(t, α)

( ∫ t

0

dω

T(ω, α)

)n

is bounded by an integrable function on [0, ∞) which does not depend on s ∈ H(s1).
Therefore, the dominated convergence theorem gives that

dnLα
T [ f ]

dsn (s) =
dn

dsn

( ∫ ∞

0
Eα(−s, t) f (t)

dt
T(t, α)

)
=
∫ ∞

0

∂n

∂sn

(
Eα(−s, t)

)
f (t)

dt
T(t, α)

= (−1)n
∫ ∞

0
Eα(−s, t) f (t)

( ∫ t

0

dω

T(ω, α)

)n dt
T(t, α)

.

Since this formula holds for s ∈ H(s1) and every s1 > s0, it holds for every s ∈
H(s0).

Theorem 7. Let f : [0, ∞) → R be a function such that there exists Lα
T [ f ](s0) for some s0 ∈ R

and 0 < α ≤ 1. Then
lim
s→∞
Lα

T [ f ](s) = 0.

Proof. Since there exists Lα
T [ f ](s0), we have

∫ 1

0

| f (t)|
T(t, α)

dt < ∞.

Thus, for each ε > 0 there exists δ > 0 with∫ δ

0

| f (t)|
T(t, α)

dt <
ε

2
.

If s > s0, then∣∣∣ Eα(−s, t) f (t)
T(t, α)

∣∣∣ = Eα(−s0, t) | f (t)|
T(t, α)

Eα(−(s− s0), t).
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Hence,

∣∣Lα
T [ f ](s)

∣∣ ≤ ∫ δ

0

Eα(−s, t) | f (t)|
T(t, α)

dt +
∫ ∞

δ

Eα(−s, t) | f (t)|
T(t, α)

dt

<
ε

2
+
∫ ∞

δ

Eα(−s0, t) | f (t)|
T(t, α)

Eα(−(s− s0), t) dt

≤ ε

2
+
∫ ∞

δ

Eα(−s0, t) | f (t)|
T(t, α)

Eα(−(s− s0), δ) dt

=
ε

2
+ Lα

T [ | f | ](s0) Eα(−(s− s0), δ).

Since lims→∞ Eα(−(s− s0), δ) = 0, there exists N with

Lα
T [ | f | ](s0) Eα(−(s− s0), δ) < ε/2

for s > N. Thus,
∣∣Lα

T [ f ](s)
∣∣ < ε for s > N and lims→∞ Lα

T [ f ](s) = 0.

Let f , g : [0, ∞) → R be measurable functions and 0 < α ≤ 1. Recall that we
have defined

x(t) =
∫ t

0

dω

T(ω, α)

and u(x) as the inverse function of x(t). Let us define the generalized convolution of f and
g as

( f ∗ g)(t) =
∫ t

0
f
(
u
(
x(t)− x(ω)

))
g(ω)

dω

T(ω, α)
.

If T(t, α) = t1−α, then

x(t) =
∫ t

0

dω

T(ω, α)
=
∫ t

0
ωα−1 dω =

1
α

tα

and u(x) = (αx)1/α. Thus, we have in this case

( f ∗ g)(t) =
∫ t

0
f
(
u
(
x(t)− x(ω)

))
g(ω)

dω

T(ω, α)

=
∫ t

0
f
(
(tα −ωα)1/α

)
g(ω)ωα−1 dω.

Our definition of convolution has the advantage that it is symmetric, unlike the one
in [32] (Theorem 3). Another symmetric convolution is defined in [33] (Theorem 3.8), but
this result contains a mistake (in the proof of Theorem 3.8 it is shown that the Laplace
transform of the convolution is the product of two functions which are not the Laplace
transform of the factors, since the integrals involve the functions φ(ξω/ω) and ψ(vω/ω)
instead of φ(ξ) and ψ(v), respectively).

Theorem 8. Let f , g : [0, ∞)→ R be functions such that there exist Lα
T [ f ](s) and Lα

T [g](s) for
some s and 0 < α ≤ 1. Then

Lα
T [ f ∗ g](s) = Lα

T [ f ](s)Lα
T [g](s).
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Proof. By applying Fubini’s theorem, we obtain

Lα
T [ f ∗ g](s) =

∫ ∞

0
e−sx(t)( f ∗ g)(t)

dt
T(t, α)

=
∫ ∞

0
e−sx(t)( f ∗ g)(t) x′(t) dt

=
∫ ∞

0
e−sx(t)

∫ t

0
f
(
u
(

x(t)− x(ω)
))

g(ω) x′(ω) dω x′(t) dt

=
∫ ∞

0

∫ ∞

ω
e−sx(ω)e−s(x(t)−x(ω)) f

(
u
(
x(t)− x(ω)

))
g(ω) x′(t) dt x′(ω) dω.

The change of variable x(z) = x(t)− x(ω), x′(z) dz = x′(t) dt, gives

Lα
T [ f ∗ g](s) =

∫ ∞

0

∫ ∞

0
e−sx(ω)e−sx(z) f

(
u(x(z))

)
g(ω) x′(z) dz x′(ω) dω

=
∫ ∞

0
e−sx(z) f (z) x′(z) dz

∫ ∞

0
e−sx(ω)g(ω) x′(ω) dω

= Lα
T [ f ](s)Lα

T [g](s).

4. A Mellin’s Inverse-Type Formula

The classical Mellin inverse formula gives

f (t) = L−1(L[ f ](s)
)
(t) =

1
2πi

lim
T→∞

∫ a+iT

a−iT
estL[ f ](s) ds,

where L denotes the usual Laplace transform, and the integration is done along the vertical
line {<s = a} if this line is contained in the region of convergence of L[ f ](s).

We present here a Mellin inverse-type formula for the generalized Laplace transform:

Theorem 9. Let f : [0, ∞) → R be a function such that there exists Lα
T [ f ](s) for some s and

0 < α ≤ 1. Then

f (t) =
1

2πi
lim

T→∞

∫ a+iT

a−iT
Eα(s, t)Lα

T [ f ](s) ds,

where the integration is done along the vertical line {<s = a} if this line is contained in the region
of convergence of Lα

T [ f ](s).

Proof. Theorem 1 gives that

Lα
T [ f (t)](s) = L[ f (u(x))](s),

where u(x) is the inverse function of

x(t) =
∫ t

0

dω

T(ω, α)
.

Mellin’s inverse formula gives

f (u(t)) =
1

2πi
lim

T→∞

∫ a+iT

a−iT
estL[ f (u(x))](s) ds =

1
2πi

lim
T→∞

∫ a+iT

a−iT
estLα

T [ f ](s) ds,

where the integration is done along the vertical line {<s = a} if this line is contained in the
region of convergence of Lα

T [ f ](s). Hence,
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f (t) = f (u(x(t))) =
1

2πi
lim

T→∞

∫ a+iT

a−iT
esx(t)Lα

T [ f ](s) ds

=
1

2πi
lim

T→∞

∫ a+iT

a−iT
Eα(s, t)Lα

T [ f ](s) ds.

5. Generalized Harmonic Oscillator

We want to study the equation of the generalized harmonic oscillator:

Gα
T(G

α
T f )(t) + c2 f (t) = u(t), f (0) = a, Gα

T f (0) = b,

with a, b, c ∈ R, c 6= 0.
By applying the generalized Laplace transform to this equation and using the fact that

it is a linear operator, we have:{
Lα

T [G
α
T
(
Gα

T
)

f (t)](s) + c2Lα
T [ f (t)](s) = Lα

T [u(t)](s),
f (0) = a, Gα

T f (0) = b.

Using Theorem 4, this equation transforms into

s2Lα
T [ f (t)](s)− s f (0)− Gα

T f (0) + c2Lα
T [ f (t)](s) = Lα

T [u(t)](s),

s2Lα
T [ f (t)](s)− as− b + c2Lα

T [ f (t)](s) = Lα
T [u(t)](s),

Lα
T [ f (t)](s) =

as + b
s2 + c2 + Lα

T [u(t)](s)
1

s2 + c2 .

Finally, Proposition 2 and Theorem 8 give

f (t) = a cos
(

c
∫ t

0

dω

T(ω, α)

)
+

b
c

sin
(

c
∫ t

0

dω

T(ω, α)

)
+

1
c

u ∗ sin
(

c
∫ t

0

dω

T(ω, α)

)
.

6. Conclusions

In this paper, we developed the theory of a generalized Laplace transform on frac-
tional differential equations with a generalized fractional derivative Gα

T , and we prove its
properties. We also included the corresponding convolution and inverse formula. In partic-
ular, our definition of convolution for this Laplace transform has the advantage that it is
symmetric, unlike the one in [32] (Theorem 3); another symmetric convolution is defined
in [33] (Theorem 3.8), but this result contains a mistake (in the proof of Theorem 3.8 it
is shown that the Laplace transform of the convolution is the product of two functions
which are not the Laplace transform of the factors, since the integrals involve the functions
φ(ξω/ω) and ψ(vω/ω) instead of φ(ξ) and ψ(v), respectively). Additionally, we dealt
with the generalized harmonic oscillator equation, showing that this generalized Laplace
transform and its properties allow one to solve fractional differential equations.

Author Contributions: Investigation, P.B., H.J.C.G., J.M.R. and J.M.S. All authors contributed equally
to the work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the referees for their comments, which have im-
proved the paper. The research of José M. Rodríguez and José M. Sigarreta was supported by a
grant from Agencia Estatal de Investigación (PID2019-106433GB-I00/AEI/10.13039/501100011033),



Symmetry 2021, 13, 669 13 of 14

Spain. The research of José M. Rodríguez is supported by the Madrid Government (Comunidad de
Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University
Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and
Technological Innovation).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces

questions. J. L’éCole Polytech. 1832, 13, 1–69.
2. Grünwald, A. Über “begrenzte” Derivation und deren Anwendung. Zangew. Math. Phys. 1867, 12, 441–480.
3. Letnikov, A.V. Theory of differentiation of an arbitrary order. Mat. Sb. 1868, 3, 1–68.
4. Riemann, B. Oeuvres Mathématiques de Riemann, 1st ed.; Gauthier-Villars et fils: Paris, France, 1898.
5. Caputo, M. Elasticitá e Dissipazione, 1st ed.; Zanichelli: Bologna, Italy, 1969.
6. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014,

264, 65–70. [CrossRef]
7. Karci, A. Chain rule for fractional order derivatives. Sci. Innov. 2015, 3, 63–67. [CrossRef]
8. Almeida, R.; Guzowska, M.; Odzijewicz, T. A remark on local fractional calculus and ordinary derivatives. Open Math. 2016,

14, 1122–1124. [CrossRef]
9. Katugampola, V.N. A new fractional derivative with classical properties. J. Math. Anal. Appl. 2014, 6, 1–15.
10. Vanterler da C Sousa, J.; Capelas de Oliveira, E. A new truncated M-fractional derivative unifying some fractional derivatives

with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96.
11. Guzman, P.; Langton, G.; Motta, P.; Lugo, L.; Medina, J.; Valdes, N. A new definition of a fractional derivative of local type.

J. Math. Anal. 2018, 9, 88–98.
12. Fleitas, A.; Nápoles Valdés, J.E.; Rodríguez, J.M.; Sigarreta, J.M. Note on the generalized conformable derivative. Rev. Unión Mat.

Argent. 2015, in press. (stage of publication)
13. Oldham, K.; Spanier, J. The Fractional Calculus, Theory and Applications of Differentiation and Integration of Arbitrary Order, 1st ed.;

Academic Press: New York, NY, USA, 1974.
14. Miller, K. An Introduction to Fractional Calculus and Fractional Differential Equations, 1st ed.; John Wiley and Sons: New York, NY,

USA, 1993.
15. Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: New York, NY, USA, 1999.
16. Kilbas, A.; Srivastava, H.; Trujillo, J. Fractional Differential Equations; Elsevier: New York, NY, USA, 2006; Volume 204.
17. Gómez, J. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations.

Phys. A Stat. Mech. Appl. 2018, 494, 52–75. [CrossRef]
18. Fleitas, A.; Gómez, J.; Nápoles, J.; Rodríguez, J.M.; Sigarreta, J.M. Analysis of the local Drude model involving the generalized

fractional derivative. Opt. Int. J. Light Electron. Opt. 2019, 193, 163008. [CrossRef]
19. Anastasio, T. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 1994, 72, 69–79. [CrossRef]
20. Gerasimov, A.N. A generalization of linear laws of deformation and its application to problems of internal friction. Akad. Nauk

SSSR. Prikl. Mat. Meh. 1948, 12, 251–260.
21. Torvik, P.; Bagley, R. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984,

51, 294–298. [CrossRef]
22. Hammad, M.A.; Khalil, R. Abel’s formula and wronskian for comformable fractional differential equation. Int. J. Differ. Equ. Appl.

2014, 13, 177–183.
23. Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [CrossRef]
24. Baleanu, D.; Asad, J.H.; Jajarmi, A. The fractional model of spring pendulum: New features within different kernels. Proc. Rom.

Acad. Ser. A 2018, 19, 447–454.
25. Hammad, M.A.; Khalil, R. Total fractional differentials with applications to exact fractional differential equations. Int. J. Comput.

Math. 2018, 95, 1444–1452.
26. Baleanu, D.; Jajarmi, A.; Asad, J.H. Classical and fractional aspects of two coupled pendulums. Rom. Rep. Phys. 2019, 71, 103.
27. Baleanu, D.; Sadat, S.; Jajarmi, A.; Asad, J.H. New features of the fractional Euler-Lagrange equations for a physical system within

non-singular derivative operator. Eur. Phys. J. Plus 2019, 134, 181. [CrossRef]
28. Bosch, P.; Gómez-Aguilar, J.F.; Rodríguez, J.M.; Sigarreta, J.M. Analysis of Dengue fever outbreak by generalized fractional

derivative. Fractals 2020, 28, 12. [CrossRef]
29. Wei, Y.; Chen, Y.; Wang, Y.; Chen, Y.Q. Some Fundamental Properties on the Sampling Free Nabla Laplace Transform. In Proceed-

ings of the 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Anaheim, CA,
USA, 18–21 August 2019.

30. Schiff, J. The Laplace Transform: Theory and Applications, 1st ed.; Springer: New York, NY, USA, 1999.
31. Widder, D. Laplace Transform, 6th ed.; Princeton University Press: Princeton, NJ, USA, 2015.
32. Eroglu, B.I.; Avci, D.; Ozdemir, N. Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol.

A 2017, 132, 658–662. [CrossRef]

http://doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/10.11648/j.si.20150306.11
http://dx.doi.org/10.1515/math-2016-0104
http://dx.doi.org/10.1016/j.physa.2017.12.007
http://dx.doi.org/10.1016/j.ijleo.2019.163008
http://dx.doi.org/10.1007/BF00206239
http://dx.doi.org/10.1115/1.3167615
http://dx.doi.org/10.1515/math-2015-0081
http://dx.doi.org/10.1140/epjp/i2019-12561-x
http://dx.doi.org/10.1142/S0218348X20400381
http://dx.doi.org/10.12693/APhysPolA.132.658


Symmetry 2021, 13, 669 14 of 14

33. Khan, N.A.; Razzaq, O.A.; Ayaz, M. Some properties and applications of conformable fractional laplace transform. J. Fract. Calc.
Appl. 2018, 9, 72–81.

34. Abdejjawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [CrossRef]
35. Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 247, 1–16.

[CrossRef]

http://dx.doi.org/10.1016/j.cam.2014.10.016
http://dx.doi.org/10.1186/s13662-017-1306-z

	Introduction
	Preliminaries
	On the Generalized Laplace Transform
	A Mellin's Inverse-Type Formula
	Generalized Harmonic Oscillator
	Conclusions
	References

