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Abstract: The problem of determining the position of the lidar with optimal accuracy is relevant in
various fields of application. This is an important task of robotics that is widely used as a model
when planning the route of vehicles, flight control systems, navigation systems, machine learning,
and managing economic efficiency, a study of land degradation processes, planning and control
of agricultural production stages, land inventory to evaluations of the consequences of various
environmental impacts. The paper provides a detailed analysis of the proposed parallelization
algorithm for solving the problem of determining the current position of the lidar. To optimize the
computing process in order to accelerate and have the possibility of obtaining a real-time result,
the OpenMP parallel computing technology is used. It is also possible to significantly reduce the
computational complexity of the successive variant. A number of numerical experiments on the
multi-core architecture of modern computers have been carried out. As a result, it was possible to
accelerate the computing process about eight times and achieve an efficiency of 0.97. It is shown that
a special difference in time of execution of a sequential and parallel algorithm manages to increase the
number of measurements of lidar and iterations, which is relevant in simulating various problems of
robotics. The obtained results can be substantially improved by selecting a computing system where
the number of cores is more than eight. The main areas of application of the developed method are
described, its shortcomings and prospects for further research are provided.

Keywords: optimization task; parallel algorithm; robotics; the performance indicator; iterative
algorithm; parallelization according to the data

1. Introduction

One of the most interesting areas of study of algorithms is to solve optimization and
modeling problems using artificial intelligence systems. To date, a large number of scientific
works on this topic was written [1–6]. Of these, you can draw a proper understanding of
the search algorithms used for a variation of the desired parameters with high accuracy.
The purpose of such algorithms consists in predicting the end coordinates, which will
find an object. Machine learning algorithms to a certain extent allow you to localize the
work and classify the obstacles with which it may be faced. In detecting obstacles, such
algorithms allow that this is a new obstacle, that is, states will not be linked.

In this paper, we assume that the environment is unchanged and the object is the
only moving. To avoid collisions, it is desirable not only to know the location of the
obstacles, but also be able to predict the coordinates of the object for the near future. To
solve this task will help a genetic algorithm. But computation speed has been optimized
by parallelizing this algorithm, making the proposal suitable for real-time applications.
As you know [1], the genetic algorithm is a search procedure based on the mechanisms
of natural selection and succession. It uses the evolutionary principle of survival of the
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most adapted individuals. It differs from traditional optimization methods by several basic
elements. In particular, the genetic algorithm:

• Processes the value of the parameters of the task itself, and their encoded form;
• Searches a solution to leave not from a single point, but with their some population;
• Uses only target function, not its derivatives or other additional information;
• Applies probabilistic rather than deterministic selection rules.

In the paper [7] the authors presented a parallel implementation of genetic algorithm
using map/reduce programming paradigm. Hadoop implementation of map/reduce
library is used for this purpose. The model described here for parallelization of the genetic
algorithm has a significant disadvantage—low quality of solution because of species
problem.

The article [8] performed a survey of different deep learning techniques applied to
various agricultural problems. So, the paper analyzed the specific employed models,
the source of the data, the performance of each study, the employed hardware, and the
possibility of real-time application to study eventual integration with autonomous robotic
platforms.

The problem of finding the current coordinates of the lidar with optimal accuracy
can be accomplished through a range of methods that are inherently computationally
cumbersome.

This paper aims to develop an approach of finding the lidar position with optimal
accuracy based on environment information, optimizing the proposed algorithm using the
genetic algorithm, and parallelizing certain parts of it.

The main contribution of this paper can be summarized as follows:

1. We have proposed a simple yet accurate and computationally efficient approach to
finding the lidar position based on a genetic algorithm and the OpenMP parallel
computing technology. It provides the possibility of significant optimization of the
computing process by its parallelization; the ability to solving the task for the case of
an extensive data processing;

2. We have developed the algorithmic implementation of the proposed method. It
is especially relevant in the development of the multi-core architecture of modern
computers.

3. We have demonstrated the reduction in computational complexity using the proposed
method; we have received an acceleration that goes to the number of cores of the
appropriate computing system (we have achieved the parallel efficiency of about 1 in
this case).

The rest of this article is organized as follows: analysis of literary sources are presented
in Section 2. The formulation of the problem, descriptions of the classic genetic algorithm,
and designed approaches are shown in Section 3. Section 4 comprises the results of
numerical experiments of the proposed algorithmic implementation of the developed
method. The results of the discussion are presented in Section 5. Conclusions and prospects
for further research are presented in the last section.

2. Analysis of Literary Sources

At the moment, the world is increasingly investigating a variety of robotics prob-
lems [9–12]. One of the most interesting is to determine the current position of the lidar. In
manufacturing and life, such a task is widely used as a model in many spheres, such as
planning a route of vehicles, machine training, economic efficiency management.

Several literary sources that were relevant to the parallelization of the lidar’s finite
coordinate algorithm are analyzed. However, most of them were not useful, because they
did not provide the results of practical implementation and contained mainly a general
overview of the problem.

Latest studies use such algorithms for investigating the problems of finding coordi-
nates: a genetic algorithm, an simulated annealing algorithm, an ants colony algorithm,
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and an algorithm of a neural network. Among them, the genetic algorithm has advantages
in greater stability and stronger global search capabilities, and therefore applies to the
problem of planning trajectories.

Also was found a work where was investigated the parallelization of the genetic
algorithm with CUDA [1]. It presents a new method of parallelization of the genetic
algorithm for solving a traveling salesman problem. The solution provides information on
routes, except for all services required by autonomous vehicles in transport clouds.

In the article [3], a method of genetic search is developed to solve the problem of
navigation. Here the search node or the path is represented by a row of integers, each
of which represents a cell on the terrain. The results of simulation, which compare the
proposed genetic algorithm and a sequential navigation algorithm are presented.

The article [13] presented an efficient implementation of the Extended Kalman filter
for Simultaneous localization and mapping algorithm on a multi-processor architecture.
The overall accuracy of the algorithm depends on the number of the landmarks in the state
vector and the matched observations.

To optimize computing processes in order to accelerate and avoid numerical instability
in works [14–18], the use of various technologies of parallel calculations such as OpenMP,
Java Threads, Java Forkjoin, AMIDST and CUDA is analyzed. A method to detect and
classify landing sites from lidar data in parallel on multi- and manycore systems using
OpenMP is presented in the work [19]. Technologies of parallelizing are widely used in
ensemble models based on artificial neural networks [19,20]. This practice is especially
characteristic of the stacking models, where it is necessary to carry out a prediction based
on a given set of data with a large number of members of the stacking neural network
ensemble. The parallelization in this case is necessary to minimize time resources to
perform procedures as training as well as the use of such ensembles [20,21].

The disadvantages of analyzed works are: insufficient number of numerical experi-
ments conducted, high computational complexity of algorithms, inconsistency of input
data with expected results. That is why we have been decided to develop its algorithm, to
conduct a detailed analysis of a speed based on a number of numerical experiments and
optimize it with parallel computing.

3. Materials and Methods

In a general task, the definition of the current position of the lidar can be described in
this way. Let, we have a lidar that is inside the room. It sequentially performs the following
steps:

• Scans space around itself with a particular error.
• Moves on some vector {dx, dy} also with a particular error.

It is necessary to accurately estimate the possible position of the lidar after several
iterations based on the data obtained from the first step.

In order to solve the problem, let us suppose without reducing the universality that the
room will be depicted in the form of a plane (in our case a polygon), which is represented
by a set of points (x, y) (see Figure 1). By connecting these points consistently we will
receive the model of our room. The lidar is presented in the form of a point that will be
located in the middle of our plane and the size of which we can neglect.

When applying a genetic algorithm for the problem, it is encoded in such a way
that its solution can be represented as an array of composition of the chromosome com-
position [22–24]. Randomly in an array there is a certain number of initial elements of
“persons,” or an initial population. Individuals are evaluated using the bumping function,
as a result of which each person is assigned a certain value of binding, which determines
the possibility of survival of a person. After that, with the use of the received impairment
values, persons admitted to cross (breeding) are selected. The persons are used “Genetic
Operator” (in most cases it is a crossover (crossover) and mutation operator), thus creating
the next generation of persons. The next generation persons are also evaluated by the use
of genetic operators and selection and mutation are performed. It is so modeled by the
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evolutionary process that continues several life cycles (generations) until the algorithm
stop criterion will be performed.
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Figure 1. Visual representation of a problem model.

As a result, it is possible to distinguish the following steps of the genetic algorithm:

1. Creating an initial population.
2. Calculation of bumping function for populations (evaluation).
3. Repeat to perform the algorithm stop criterion:

a. Choosing Individuals from current population (selection);
b. Crossing or/and mutation;
c. Calculation of bumping function for all persons;
d. Formation of a new generation.

3.1. Modeling Sequential Algorithm Support

• Creating an initial population

In order to predict where our lidar shifts we need to create an initial population–a set
of points that correspond to the possible starting position of the lidar.

This task has two possible cases:

1. The initial point is known.
2. The initial point is not specified.

For the first option, everything is quite unambiguous. Let us create an initial popula-
tion of a certain size and fill in its starting point. For the second case we need to generate
arbitrary points and choose them as candidates for possible initial placement. Over time
they will evolve and accumulate around the right placement. In order to generate a certain
number of points inside the polygon, you need to perform certain actions.

We find the size of a square that describes our room. To do this, you need to calculate
the maximum and minimum coordinate values for our municipality. I portray the points in
Figure 2 and we specify that they will be the points of a rectangle that describes our room.
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In Figure 3 it is shown at the extreme points of our plane rectangle. With information about
it arbitrarily generating points within its limits to check whether they belong to our polygon.
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Figure 3. Built a rectangle based on the extreme points of the room.

To verify whether the point within the multipourer is used, we use the method
described below. Generate an arbitrary point that does not lie inside our rectangle. Through
the point we check out and the one that generated outside the plane is directly conducted.
It is believed that if such a direct crosses the odd number of sides of the polygon, then,
respectively, the point lies within its limits (inside).

Let us prove this pattern. Let the point that lies inside the polygon (checking point)
should cross the line with a generated point that is outside the plane. In this regard, the
line must cross the rectangle side and be beyond it.

In the future, if the line crosses the side, it means that it again is inside the plane and
it needs to go out to reach the generated point. From this it can be concluded that direct,
which combines our two points should cross the odd number of sides (see Figure 4).
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Figure 4. Line connecting the point checking (is in a multi-tape) and generated.

Let us also check the point that lies outside our municipality (see Figure 5). With
Figure 5 we can see that in this case, the direct that connects our points crosses the number
of parties.
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With this method we can generate an arbitrary number of points for the initial population.
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• Lidar’s Space Scanning Process

In the scanning process, our lid produces to lasers and finds the distance to the nearest
obstacle in a certain direction (see Figure 6). It is allowed that ours K = 36, the lidar will
release a ray, and do a turn on 360/K = 10 degrees. Thus, the liberus, using the laser return
time, will be able to evaluate its relative distance to obstacles.
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With the help of this assessment, in the future we will conduct a selection and evolution
of certain possible states of placement of lidar, because not all of the states are selected in
this iteration corresponds to this received during scanning.

Each time, after scanning, the lidar moves to a certain vector. The problem is that there
is a certain error, and the lidar is at the point [(x− exp, x + exp), (y− exp, y + exp)]. Let
us make it concluded that the possible location of the lidar extends in all directions, and
after scanning the environment, on the contrary, is centrifuged around the most suitable
states.

• Data analysis received from lidar after scanning

During each iteration, we have a set of possible states of placement of lidar. However,
it is obvious that not all of them are equally optimal. Some are better and some are worse.
In order to evaluate their importance, we use the following algorithm:

1. Save all k lidar measurements.
2. By approaching the states of the placement represented by a certain point, for each of

them, we find a possible point of collision with an obstacle. Since we know on which
angle of the laser sends a laser, and the distance it has passed we can find a point of
collision (x1, y1)(see Figure 7):

x1 = x + L ∗ cos(
ϕ

π
∗ 180); y1 = y + L ∗ cos(

ϕ

π
∗ 180).

3. For each such point we find its deviation—a minimum among the distances to all
sides of the polygon. We argue that the closest wall and will be able to go to the lidar
laser, so we can estimate the deviation of this state as the amount of deviations of all
measurements of the lidar:

G(x, y) =
n

∑
i=0

f (xi, yi),

where f (xi, yi) is the minimum among the distances to the walls of our polygon.
4. Transfer an estimate of deviation in a probability using a function of normal distribu-

tion

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where, mathematical expectation µ and standard deviation σ are given by the lidar
parameter.
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With such an analysis and transformation, we have been able to obtain a probability
for each state that when these are the indicators of the lidar, this state can be correct.

• The process of evolution and development of states

An important part of the evolution process is that the conditions that have a small
probability can also be correct, so to adhere to the greedy method and to leave only the
states with great probability is not a right approach, so we need to mix the indicators of
certain states (one of the main rules of genetic algorithms).

To do this, we use the method of normalization of intervals, which consists in selecting
the next set of possible states, depending on the probability of current.

1. We find the probability of each state.
2. Normalize their likelihood so that the amount is equal to 1.
3. Convert a set of probabilities into an interval amount. For example:

0.15, 0.4, 0.2, 0.25
↓

0, 0.15, 0.55, 0.75, 1

4. Generate N arbitrary numbers with a normal distribution of the gap [0, 1]. Then, if
the generated number lies on the interval corresponding to the state with the number,
we add this state into a set of newly formed ones.

Thus, in a rather large number of generated numbers, we argue that in a new set of
states, those that have a high probability will be more widespread, about both states with
low probability have a chance for survival.

3.2. Parallel Algorithm

Consider the computational complexity of the sequential algorithm. Let:

n—the number of iterations of our lidar,
k—the number of measurements of lidar on each iteration,
m—number of vertices in our room,
q—number of generated initial states.

Then this complexity can be estimated as O(n ∗ (k + m) ∗ q), and it is obvious that it
grows quite quickly.

Therefore, one of the methods of optimizing this algorithm is the parallelization of
certain parts. Since genetic algorithms are mostly iterative and develop on the basis of past
iteration, we cannot make iterations in parallel, however, you can parallel the iteration itself.

In this algorithm there are two parts that can be optimized:

1. Analysis of data from lidar;
2. Evolutionary process.
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It is also obvious that these parts of the algorithm are performed independently
for each measurement of the lidar and the state of possible placement, which allows its
apparatus effectively.

With this optimization, the complexity of the algorithm is reduced to O(n ∗m), that
provides a great advantage in time. To organize the parallelization of programs in order to
increase the efficiency of their computer implementation on multi-core processors with the
general memory, you can use the OpenMP software (Open Multiprocessing).

In order to paralyze some logic, it needs to be carried out in a separate function
(callback) and cause it for a new stream. OpenMP creates the so-called task, which is a
wrapper to create a new stream [15].

Based on the #pragma omp parallel and #pragma omp tast functions, the analysis
of lidar measurements was paralleled and a new population was created. The #pragma
omp parallel directive tells the compiler that the following code uses a lot of streaming,
and ensures that threads work safely if they share information. #pragma omp tast–tells
the compiler that the next block of code should be wrapped in omp tast and run in a
separate thread.

Sometimes significant benefits cannot be achieved through false sharing. Simultaneous
updates of individual items in the same cache line coming from different cores of processor
invalidate entire lines of the cache, although these updates are logically independent of
each other. Each update of an individual cache line item marks the line as invalid. Other
processors that access another item on the same line see the string marked as invalid. They
have to get a newer copy of the string from memory or elsewhere, even if the item they
accessed has not been changed. This is because cache coherence is maintained based on
the cache line, not for individual elements.

As a result, there will be an increase in the relationship between traffic and overhead
costs. Also, while the cache line is being updated, access to items in the line is denied. This
situation is called false exchange. If this happens often, the performance and scalability
of OpenMP will be significantly affected. Therefore it is necessary to use various ways of
distribution of iterations: schedule(type, chunk_size) [15].

4. Research Results

Then we give the results of the proposed parallel algorithm. To visualize the results,
the dependencies and diagrams of the display of achieved efficiency and acceleration will
be depicted. Tables 1 and 2 show the results of performance of iterations with parallelized
data at different amounts of measurement of the lidar at 4-core and 8-core processors.
Figure 8 shows a graph of the dependence of the time of execution of a parallel algorithm
from various measurements of the lidar at the 8-core processor in variation in the number
of threads. These measurements mean how many rays the lidar emits. It should be noted
that the more of these rays, the more precisely determines the current position of the lidar.
That is, at 100 dimensions, the algorithm works faster, but issues a fairly large inclination.
It is also necessary to take into account that if the number of such measurements will be
more than 500, then the error will be minimal. If you take into account 1000 measurements,
then the error will be almost the same as at 500, but the time on the calculation will be
exposed more. It should also be taken into account that the number of such measurements
of the lidar depends on the area of the room, that is, it is larger, the more necessary rays
to save an error. Then the usual sequential algorithm can be long or calculations will be
too large to fit in RAM. Denote ts—time of sequential algorithm, a tp—the time of parallel
algorithm, n—the number of iterations, k—the number of measurements of lidar on each
iteration, S—parallel acceleration, E—efficiency.
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Table 1. Results of performance of iterations with parallel data in different measurements of lidar at 4-core processor.

k

4-Core Processor

ts, ms
2 Threads 4 Threads 8 Threads

tp, ms S E tp, ms S E tp, ms S E

100 375 337 1.3274 0.2781 290 1.3923 0.3232 370 1.4082 0.25325

200 703 562 1.4761 0.3252 504 1.5312 0.37022 478 1.7361 0.418

500 1325 974 1.694 0.3314 793 1.7837 0.38308 713 2.0863 0.43312

1000 2172 1873 1.8431 0.3908 1418 1.9658 0.4238 1256 2.3595 0.5259

Table 2. Results of performance of iterations with parallel data in different measurements of lidar at 8-core processor.

k

8-Core Processor

ts, ms
2 Threads 4 Threads 8 Threads

tp, ms S E tp, ms S E tp, ms S E

100 367 133 1.6738 0.34492 175 1.9857 0.262 167 1.223 0.1529

200 424 184 1.9741 0.345 172 2.3463 0.3641 156 3.426 0.42825

500 621 237 2.7459 0.3389 204 2.9746 0.3655 193 3.774 0.4717

1000 1230 445 3.0735 0.34112 436 3.8735 0.37512 405 4.103 0.53662
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Figure 8. Dependence of the time of execution of the sequential and the parallel algorithms from
various measurements of the lidar at the 8-core processor in variation in the number of threads.

Next in Table 3 and in Figures 9–11 shows the overall results of the parallelization of
the algorithm proposed.

Table 3. Results of the implementation of the parallel algorithm for determining the current position of the lidar at different
amounts of iterations on the 8-core processor.

n

8-Core Processor

ts, ms
4 Threads 8 Threads 16 Threads

tp, ms S E tp, ms S E tp, ms S E

367 109.807 26.151 4.0445 0.506 20.738 5.297 0.6621 14.107 7.7883 0.97354

982 214.007 60.913 3.513 0.4391 40.888 5.234 0.65424 27.468 7.791 0.973875

1854 335.25 84.8734 3.95 0.49375 62.986 5.323 0.6653 42.9917 7.798 0.97475
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5. Discussion

For the correct analysis of the results obtained in the work it is also necessary to take
into account the computing capacity of computers on which numerical experiments were
carried out. Such information will help us better understand how many threads should be
processed to achieve maximum performance.

To implement a parallel algorithm for determining the current position of the lidar, an
OpenMP library was used. Investigating and analyzing the results of parallel performance
of iterations at different amounts of measurement of the lidar, you can make several
conclusions. After reviewing the dependencies shown for parallelization of iterations at
different amounts of measurement of the lower lidar, it is noteworthy that the time of the
parallel and serial algorithm on the first 100 measurements is almost different, but after the
dimension 200 we begin to observe a significant difference.

Regarding the general results of our algorithm, it is noticeable that the results of a se-
quential algorithm and results obtained during comprehensive work on the parallelization
of the algorithm for determining the current position of the lidar are significantly different.
Most of our results were obtained by parallelizing according to the data from our decades.
As a result, it was possible to achieve efficiency ~0.97 (with 16 flows on the 8-core processor
for 1854 iterations). It is already evident from the schedules of the dependence of the time
of parallel execution that for the 8-core processor, the time of execution of a sequential
algorithm and paralleled begins to be rapidly different from the 367th iteration.

The obtained results indicate the importance of using parallel computations based on
OpenMP technology when solving certain problems for processing large data in order to
obtain results in real time. It should also be taken into account the rapid development of
multi-core architecture of computing systems, which will obviously afford to significantly
improve the results.

6. Conclusions

This article proposes a parallel algorithm for determining the current position of the
lidar by using the OpenMP technology and such a property as a lot of gaining based on the
genetic algorithm. A detailed analysis of the problem solved is given. The computational
complexity, acceleration and efficiency indicators are estimated. The parallelization is
carried out. This property is investigated as multithreading. As a result, it was possible
to accelerate the computing process about eight times and to take efficiency—0.97. With
this optimization, the complexity of the algorithm is reduced to O(n ∗ m), where n–the
number of iterations of our lidar, m–number of vertices in our room. The problem of
erroneous exchange is investigated, which often has a negative effect on acceleration
during parallelization using OpenMP. It should be noted that this study can be substantially
optimized in the future by prospects for the development of multi-core architecture. That
is, the software product developed in the work can afford better results with a larger
number of cores of the corresponding computer. The prospects for further development of
this study are the maximum optimization of the computational process based on CUDA
technology by using graphic processors and consider the more complex spatial region that
is the more difficult to assess the spatial parameters [25].
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