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Abstract: This manuscript determines the set of Pareto optimal solutions of certain multiobjective-
optimization problems involving continuous linear operators defined on Banach spaces and Hilbert
spaces. These multioptimization problems typically arise in engineering. In order to accomplish
our goals, we first characterize, in an abstract setting, the set of Pareto optimal solutions of any
multiobjective optimization problem. We then provide sufficient topological conditions to ensure the
existence of Pareto optimal solutions. Next, we determine the Pareto optimal solutions of convex
max–min problems involving continuous linear operators defined on Banach spaces. We prove that
the set of Pareto optimal solutions of a convex max–min of form max ‖T(x)‖, min ‖x‖ coincides
with the set of multiples of supporting vectors of T. Lastly, we apply this result to convex max–min
problems in the Hilbert space setting, which also applies to convex max–min problems that arise in
the design of truly optimal coils in engineering.

Keywords: multioptimization; Pareto optimality; linear operators; adjoint operators; normed spaces;
matrix norms

MSC: 47L05; 47L90; 49J30; 90B50

1. Introduction

Multiobjective optimization problems (MOPs) appear quite often in all areas of pure
and applied mathematics, for instance, in the geometry of Banach spaces [1–3], in operator
theory [4–7], in lineability theory [8–10], in differential geometry [11–14], and in all areas
of Experimental, Medical and Social Sciences [15–20]. By means of MOPs, many real-life
situations can be modeled accurately. However, the existence of a global solution that
optimizes all the objective functions of an MOP at once is very unlikely. This is were Pareto
optimal solutions (POS) come into play. Informally speaking, a POS is a feasible solution
such that, if any other feasible solution is more optimal at one objective function, then
it is less optimal at another objective function. Pareto optimal solutions are sometimes
graphically displayed in Pareto charts (PC). In this manuscript, we prove a characterization
of POS by relying on orderings and equivalence relations. We also provide a sufficient
topological condition to guarantee the existence of Pareto optimal solutions.

This work is mainly motivated by certain MOPs appearing in engineering, such as the
design of truly optimal transcranial magnetic stimulation (TMS) coils [18–23]. The main
goal of this manuscript is to characterize (Theorem 6) the set of Pareto optimal solutions
of the MOPs that appear in the design of coils, such as (3). In the case of MOPs in which
operators are defined on Hilbert spaces, this characterization is improved (Corollary 1).
Under this Hilbert space setting, we also study the relationships between different MOPs
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involving different operators, but which are defined on the same Hilbert space. These
operators can be naturally combined to obtain a new MOP. The set of Pareto optimal
solutions of this new MOP is compared (Corollary 2) to the set of Pareto optimal solutions
of the initial MOPs.

2. Materials and Methods

In this section, we compile all necessary tools to accomplish our results. We also
develop new and original tools, such as Theorem 1 and Corollary 2, which contribute to
enriching the literature on optimization theory.

2.1. Formal Description of MOPs

A generic multiobjective optimization problem (MOP) has the following form:

M :=


max fi(x) i = 1, . . . , p,
min gj(x) j = 1, . . . , q,
x ∈ R,

(1)

where fi, gj : X → R are called objective functions, defined on a nonempty set X, andR is
a nonempty subset of X called the feasible region or region of constraints/restrictions. The
set of general solutions of the above MOP is denoted by sol(M). In fact,

sol(M) := {x ∈ R : ∀y ∈ R∀i ∈ {1, . . . , p}∀j ∈ {1, . . . , q} fi(x) ≥ fi(y), gj(x) ≤ gj(y)}.

It is obvious that

sol(M) = sol(P1) ∩ · · · ∩ sol(Pp) ∩ sol(Q1) ∩ · · · ∩ sol(Qq) (2)

where

Pi :=
{

max fi(x),
x ∈ R,

and Qj :=
{

min gj(x),
x ∈ R,

are single-objective optimization problems (SOPs) and sol(Pi), sol(Qj) denote the set of
general solutions of Pi, Qj for i = 1, . . . , p and j = 1, . . . , q, respectively. The set of Pareto
optimal solutions of MOP M is defined as

Pos(M) := {x ∈ R : ∀y ∈ R, if there exists i ∈ {1, . . . , p} with fi(y) > fi(x)

or j ∈ {1, . . . , q} with gj(y) < gj(x), then there exists

i′ ∈ {1, . . . , p} with fi′(y) < fi′(x) or j′ ∈ {1, . . . , q}
with gj′(x) < gj′(y)}.

To guarantee the existence of general solutions, it is usually asked for X to be a
Hausdorff topological space, R is a compact subset of X, fis are upper semicontinuous,
and gjs are lower semicontinuous. This way, at least we make sure that the SOPs Pis and
Qjs have at least one solution (Weierstrass extreme value theorem). Even more, solution
sets sol(Pi) and sol(Qj) are closed and thus compact, which makes sol(M) also compact.
Nevertheless, even under these conditions, sol(M) might still be empty, as we can easily
infer from Equation (2).

2.2. Characterizing Pareto Optimal Solutions

A more abstract way to construct the set of Pareto optimal solutions follows. Let X be
a nonempty set, fi, gj : X → R functions and R a nonempty subset of X. In R, consider
the equivalence relation given by

S :=
{
(x, y) ∈ R2 : ∀i = 1, . . . , p ∀j = 1, . . . , q fi(x) = fi(y), gj(x) = gj(y)

}
.
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Next, in the quotient set ofR by S , RS , consider the order relation given by

[x]S ≤ [y]S ⇔ ∀i = 1, . . . , p ∀j = 1, . . . , q fi(x) ≤ fi(y), gj(y) ≤ gj(x).

Theorem 1. Consider MOP (1). Then,

Pos(M) =

{
x ∈ R : [x]S is a maximal element of

R
S endowed with ≤

}
and

sol(M) :=
{

x ∈ R : [x]S is the maximum of
R
S endowed with ≤

}
.

As a consequence, sol(M) ⊆ Pos(M). If there exists i1 ∈ {1, . . . , p} or j1 ∈ {1, . . . , q} such
that sol(Pi1) or sol(Qj1) is a singleton, respectively, then sol(Pi1) ⊆ Pos(M) or
sol(Qj1) ⊆ Pos(M), respectively.

Proof. Fix an arbitrary x0 ∈ Pos(M). Let us assume that there is y ∈ R, so that [x0]S < [y]S .
Then, fi(x0) ≤ fi(y) for all i = 1, . . . , p and gj(x0) ≥ gj(y) for all j = 1, . . . , q. However,
[x0]S 6= [y]S ; therefore, there exists i0 ∈ {1, . . . , p} or j0 ∈ {1, . . . , q} such that fi0(x0) <
fi0(y) or gj0(x0) < gj0(y), respectively. Since x0 ∈ Pos(M) by assumption, there exists
i1 ∈ {1, . . . , p} or j1 ∈ {1, . . . , q}, such that fi1(x0) > fi1(y) or gj1(x0) < gj1(y), respectively,
which is a contradiction. Therefore, [x0]S is a maximal element of RS endowed with ≤. The
arbitrariness of x0 ∈ Pos(M) shows that

Pos(M) ⊆
{

x ∈ R : [x]S is a maximal element of
R
S endowed with ≤

}
.

Conversely, fix an arbitrary x0 ∈ R, such that [x0]S is a maximal element of RS en-
dowed with≤. Take y ∈ R satisfying that there exists i0 ∈ {1, . . . , p} or j0 ∈ {1, . . . , q}with
fi0(y) > fi0(x0) or gj0(y) < gj0(x0), respectively. If fi(x0) ≤ fi(y) for all i ∈ {1, . . . , p} \ {i0}
and gj(x0) ≥ gj(y) for all j ∈ {1, . . . , q} \ {j0}, then [x0]S < [y]S , reaching a contradiction
with the maximality of [x0]S in RS endowed with ≤. This shows that

Pos(M) =

{
x ∈ R : [x]S is a maximal element of

R
S endowed with ≤

}
.

Next, fix an arbitrary x0 ∈ sol(M). For every y ∈ R, fi(x0) ≥ fi(y) and gj(x0) ≤ gj(y)
for all i = 1, . . . , p and all j = 1, . . . , q. Then, [x0]S ≥ [y]S . The arbitrariness of y ∈ R
ensures that [x0]S is a maximal element of RS endowed with ≤. Conversely, fix an arbitrary
x0 ∈ R, such that [x0]S is a maximal element of RS endowed with ≤. For every y ∈ R,
[y]S ≥ [x0]S ; therefore, fi(x0) ≥ fi(y) and gj(x0) ≤ gj(y) for all i = 1, . . . , p and all
j = 1, . . . , q. The arbitrariness of y ∈ R proves that x0 ∈ sol(M). We proved that

sol(M) :=
{

x ∈ R : [x]S is the maximum of
R
S endowed with ≤

}
.

Lastly, suppose that sol(Pi1) is a singleton for some i1 ∈ {1, . . . , p}, and write sol(Pi1) =
{x0}. Take y ∈ R satisfying that there exists i0 ∈ {1, . . . , p} or j0 ∈ {1, . . . , q} with
fi0(y) > fi0(x0) or gj0(y) < gj0(x0), respectively. If such i0 exists, then i0 6= i1. By hy-
pothesis, fi1(x0) > fi1(y) since y /∈ sol(Pi1). This shows that x0 ∈ Pos(M). Likewise,
sol(Qj1) ⊆ Pos(M) provides that sol(Qj1) is a singleton.
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Lemma 1. Consider MOP (1). Let i0 ∈ {1, . . . , p}, j0 ∈ {1, . . . , q}. Then,

1. If there is xi0 ∈ R so that
[
xi0
]
S is a maximal element of

{
[x]S : x ∈ arg maxR fi0

}
, then[

xi0
]
S is a maximal element ofR/S . Hence, xi0 ∈ Pos(M).

2. If there is xj0 ∈ R so that
[
xj0
]
S is a maximal element of

{
[x]S : x ∈ arg minR gj0

}
, then[

xj0
]
S is a maximal element ofR/S . Hence, xj0 ∈ Pos(M)

Proof. We only prove the first item since the other follows a dual proof. Assume that
[
xi0
]
S

is not a maximal element ofR/S . Then, we can find y ∈ R in such a way that
[
xi0
]
S < [y]S .

In particular, fi0
(

xi0
)
≤ fi0(y); therefore, fi0(y) = maxR fi0 ; hence, y ∈ arg maxR fi0 . As

a consequence, [y]S ∈
{
[x]S : x ∈ arg maxR fi0

}
, contradicting that

[
xi0
]
S be a maximal

element of
{
[x]S : x ∈ arg maxR fi0

}
.

Theorem 2. Consider MOP (1). If X is a topological space,R is a compact Hausdorff subset of X
and all the objective functions are continuous, then Pos(M) 6= ∅.

Proof. Fix i0 ∈ {1, . . . , p}. In accordance with Lemma 1, it is only sufficient to find a
maximal element of A :=

{
[x]S : x ∈ arg maxR fi0

}
. We rely on Zorn’s lemma. Consider

a chain in A, that is, a totally ordered subset of elements [xk]S , with k ranging a totally
ordered set K in such a way that k1 < k2 if and only if

[
xk1

]
S <

[
xk2

]
S . Since K is

totally ordered, we have that (xk)k∈K is a net in R. The compactness of R allows for
extracting a subnet (yh)h∈H of (xk)k∈K convergent to some x0 ∈ R. Let us first show that
x0 ∈ arg maxR fi0 . The continuity of fi0 implies that

(
fi0(yh)

)
h∈H converges to fi0(x0). Fix

any ε > 0. There is hε ∈ H satisfying that, if h ≥ hε, then
∣∣ fi0(yh)− fi0(x0)

∣∣ < ε. Fix any
k0 ∈ K. There is h0 ∈ H, so that {yh : h ≥ h0} ⊆ {xk : k ≥ k0}. Since H is a directed set,
we can find h1 ∈ H with h1 ≥ hε and h1 ≥ h0. There exists k1 ∈ K with k1 ≥ k0 such that
yh1 = xk1 . Next, fi0

(
yh1

)
= fi0

(
xk1

)
= maxR fi0 . As a consequence,

max
R

fi0 − f (x0) = fi0
(
yh1

)
− f (x0) < ε.

The arbitrariness of ε shows that maxR fi0 = f (x0). Lastly, we prove that [x0]S is
an upper bound for chain {[xk]S : k ∈ K}. Fix an arbitrary k0 ∈ K. In order to prove
that

[
xk0

]
S ≤ [x0]S , we have to check that fi

(
xk0

)
≤ fi(x0) for all i ∈ {1, . . . , p} and

gj
(

xk0

)
≥ gj(x0) for all j ∈ {1, . . . , q}. Indeed, fix i ∈ {1, . . . , p} and suppose to the contrary

that fi
(

xk0

)
> fi(x0). Let 0 < ε < fi

(
xk0

)
− fi(x0). There exists hε ∈ H such that, if h ≥ hε,

then | fi(yh)− fi(x0)| < ε. We can find h0 ∈ H, such that {yh : h ≥ h0} ⊆ {xk : k ≥ k0}.
Since H is a directed set, we can find h1 ∈ H with h1 ≥ hε and h1 ≥ h0. There exists k1 ∈ K
with k1 ≥ k0 such that yh1 = xk1 . Since k0 ≤ k1, we have that

[
xk0

]
S ≤

[
xk1

]
S . Thus,

fi
(
yh1

)
= fi

(
xk1

)
≥ fi

(
xk0

)
> fi(x0),

contradicting that
∣∣ fi
(
yh1

)
− fi(x0)

∣∣ < ε. In a similar way, it can be shown that
gj
(

xk0

)
≥ gj(x0) for all j ∈ {1, . . . , q}. As a consequence,

[
xk0

]
S ≤ [x0]S . In other words,

[x0]S is an upper bound for the chain {[xk]S : k ∈ K}. Since every chain of A has an upper
bound, Zorn’s lemma ensures the existence of maximal elements in A.

2.3. MOPs in a Functional-Analysis Context

A large number of objective functions in an MOP may cause a lack of general solutions,
that is, sol(M) = ∅. This happens quite often with MOPs involving matrices. Even if the
number of objective functions is short, we might still have sol(M) = ∅. The following
theorem [20], Theorem 2, is a very representative example of this situation of lack of
general solutions.
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Theorem 3. Let T : X → Y be a nonzero continuous linear operator, where X, Y are normed
spaces; then, the following max–min problem is free of general solutions:

max ‖T(x)‖,
min ‖x‖,
x ∈ X.

(3)

Equation (3) describes an MOP that appears in bioengineering quite often after the
linearization of forces or fields [18].

3. Results

We focus on MOPs similar to (3). In fact, we find Pos(3) (Theorem 6 and Corollary 1). If
X, Y are Hilbert spaces, say H, K, and T1, . . . , Tk ∈ B(H, K) are continuous linear operators,
then the sets of Pareto optimal solutions of the MOPs

max ‖Ti(x)‖,
min ‖x‖,
x ∈ H,

(4)

for i = 1, . . . , k are compared (Corollary 2) with the set of Pareto optimal solutions of MOP
max ‖T(x)‖,
min ‖x‖,
x ∈ H,

(5)

where
T : H → K⊕2

k· · · ⊕2K
x 7→ T(x) = (T1(x), . . . , Tk(x)).

3.1. Formatting of Mathematical Components

Let X, Y be normed spaces. Consider a nonzero continuous linear operator
T : X → Y. Then

‖T‖ := sup{‖T(x)‖ : x ∈ BX}

is the norm of T. On the other hand,

suppv(T) := {x ∈ SX : ‖T(x)‖ = ‖T‖},

stands for the set of supporting vectors of T, where BX := {x ∈ X : ‖x‖ ≤ 1} is a (closed)
unit ball, and SX := {x ∈ X : ‖x‖ = 1} is the unit sphere. Continuous linear operators
are also called bounded because they are bounded on the unit ball. The space of bounded
linear operators from X to Y is denoted as B(X, Y).

Let H be a Hilbert space, and consider the dual map of H:

JH : H → H∗

k 7→ JH(k) := k∗ = (•|k).

JH is a surjective linear isometry between H and H∗ (Riesz representation theorem). In the
frame of the geometry of Banach spaces, JH is called duality mapping.

Consider H, K Hilbert spaces, and let T ∈ B(H, K) be a bounded linear operator. We
define the adjoint operator of T as T′ := (JH)

−1 ◦ T∗ ◦ JK ∈ B(K, H), with T∗ : K∗ → H∗ as
the dual operator of T. The most representative property of the adjoint operator is that it is
the unique operator in B(K, H) satisfying (T(x)|y) = (x|T′(y)) for all x ∈ H and all y ∈ K.
It holds that ‖T′‖ = ‖T‖, (T′)′ = T, (T + S)′ = T′ + S′ and (λT)′ = λT′.
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If T ∈ B(H) verifies T = T′, then T is self-adjoint. This is equivalent to equality
(T(x)|y) = (x|T(y)) held for every x, y ∈ H. If T satisfies (T(x)|x) ≥ 0 for each x ∈ H,
then T is called positive. If H is complex, then T ∈ B(H) is self-adjoint if and only if
(T(x)|x) ∈ R for each x ∈ H. Thus, in complex Hilbert spaces, positive operators are
self-adjoint. T is strongly positive if there exists S ∈ B(H, K) with T = S′ ◦ S. Typical
examples of self-adjoint positive operators are strongly positive operators.

For each T ∈ B(H), the following set is the spectrum of T

σ(T) := {λ ∈ C : λI − T /∈ U (B(H))},

where U (B(H)) is the multiplicative group of invertible operators on H. Among spectral
properties, it is compact, nonempty, and ‖T‖ ≥ max |σ(T)|. We work with a special subset
of the spectrum:

σp(T) := {λ ∈ C : ker(λI − T) 6= {0}},

called the point spectrum, whose elements are eigenvalues of T. It is clear that σp(T) ⊆
σ(T). In addition, if λ ∈ σp(T), the subspace of associated eigenvectors to λ is

V(λ) := {x ∈ H : T(x) = λx}.

If ‖T‖ is an eigenvalue of T or, in other words, ‖T‖ ∈ σp(T), then ‖T‖ is the maximal
element of |σ(T)|, i.e., ‖T‖ = max |σ(T)|. In this situation, we also write ‖T‖ = λmax(T).

Example 1. Let T : H → K be a continuous linear operator where H, K are Hilbert spaces, such
that ‖T‖ ∈ σp(T); then, V(‖T‖) ∩ SX ⊆ suppv(T). If x ∈ V(‖T‖) ∩ SX, then T(x) = ‖T‖x;
therefore, ‖T(x)‖ = ‖T‖ and hence x ∈ suppv(T).

In general, ‖T‖ /∈ σp(T), unless, for instance, T is compact, self-adjoint, and positive.
This is why we have to rely on adjoint T′ and strongly positive operator T′ ◦ T. It is
straightforward to verify that the eigenvalues of a positive operator are positive, and in the
case of a self-adjoint operator, the eigenvalues are real. When T is compact, it holds that
T′ ◦ T is compact, self-adjoint, and positive.

The next result was obtained by refining ([10] [Theorem 9]). In particular, we obtained
the same conclusions with fewer hypotheses.

Theorem 4. Consider H, K Hilbert spaces, and T ∈ B(H, K). Then,

1. ‖T‖2 = ‖T′ ◦ T‖.
2. suppv(T) ⊆ suppv(T′ ◦ T).
3. supp(T) 6= ∅ if and only if ‖T′ ◦ T‖ ∈ σp(T′ ◦ T).

In this situation, ‖T‖ =
√

λmax(T′ ◦ T) and suppv(T) = V(λmax(T′ ◦ T)) ∩ SH .

Proof.

1. Fix an element x ∈ H, and the associated mapping x∗ := (•|x). Then,

‖T(x)‖2 = (T(x)|T(x)) =
(
T′(T(x))|x

)
= x∗

((
T′ ◦ T

)
(x)
)

(6)

≤ ‖x∗‖
∥∥T′(T(x))

∥∥ ≤ ‖x∗‖∥∥T′ ◦ T
∥∥‖x‖ = ∥∥T′ ◦ T

∥∥‖x‖2 (7)

≤
∥∥T′
∥∥‖T‖‖x‖2 = ‖T‖2‖x‖2. (8)

If element x is taken in the unit sphere, i.e., x ∈ SX, and considering the previous
inequalities, we concluded that ‖T‖2 = ‖T′ ◦ T‖.
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2. Let x ∈ suppv(T) be an arbitrary element; then, Equation (6) implies that∥∥T′(T(x))
∥∥ = ‖T‖2 = ‖T‖‖T(x)‖ =

∥∥T′
∥∥‖T(x)‖.

Then, x ∈ suppv(T′ ◦ T).
3. Take v ∈ suppv(T). Before anything else, since suppv(T) ⊆ suppv(T′ ◦ T), we have

that ∥∥∥∥ (T′ ◦ T)(v)
‖T′ ◦ T‖

∥∥∥∥ =
‖(T′ ◦ T)(v)‖
‖T′ ◦ T‖ =

‖T′ ◦ T‖
‖T′ ◦ T‖ = 1. (9)

Following chain of equalities (6),

v∗
(
(T′ ◦ T)(v)
‖T′ ◦ T‖

)
=
‖T(v)‖2

‖T′ ◦ T‖ =
‖T‖2‖v‖2

‖T′ ◦ T‖ = 1. (10)

Thanks to the strict convexity of space H,

(T′ ◦ T)(v)
‖T′ ◦ T‖ = v,

that is, (
T′ ◦ T

)
(v) =

∥∥T′ ◦ T
∥∥v

and so ‖T′ ◦ T‖ ∈ σp(T′ ◦ T). We implicitly proved that suppv(T) ⊆ V(‖T′ ◦ T‖)∩ SH.
Conversely, let us suppose that ‖T′ ◦ T‖ ∈ σp(T′ ◦ T). As we remarked before, T′ ◦ T
is a strongly positive operator, so the eigenvalues of that operator are real and positive.
Therefore, equality λmax(T′ ◦ T) = ‖T′ ◦ T‖ holds, which implies that

‖T‖ =
√
‖T‖2 =

√
‖T′ ◦ T‖ =

√
λmax(T′ ◦ T).

Take w ∈ V(λmax(T′ ◦ T)) ∩ SH . Then

‖T(w)‖2 = w∗
((

T′ ◦ T
)
(w)

)
= w∗

(
λmax

(
T′ ◦ T

)
w
)

= λmax
(
T′ ◦ T

)
=

∥∥T′ ◦ T
∥∥

= ‖T‖2.

This chain of equalities proves that w ∈ suppv(T). Consequently,

V
(
λmax

(
T′ ◦ T

))
∩ SH ⊆ suppv(T).

The following technical lemma establishes the behavior of the point spectrum of a
linear combination of operators. However, we first introduce some notation. Considering
bounder linear operator T ∈ B(H, K) defined between H and K, Hilbert spaces, then

V(T) :=
⋃

λ∈σp(T)

V(λ).

Lemma 2. If we consider Hilbert spaces, H, K, and T1, . . . , Tk ∈ B(H, K), then, for every
α1, . . . , αk ∈ C,

k⋂
i=1

V(Ti) ⊆ V

(
k

∑
i=1

αiTi

)
.
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Proof. Take any x ∈ ⋂k
i=1 V(Ti). If x = 0, there is nothing to prove, x is actually in

V
(

∑k
i=1 αiTi

)
. So, assume that x 6= 0. For every i ∈ {1, . . . , k}, there exists λi ∈ σ(Ti), such

that x ∈ V(λi), that is, Ti(x) = λix. Then(
k

∑
i=1

αiTi

)
(x) =

k

∑
i=1

αiTi(x) =
k

∑
i=1

αiλix =

(
k

∑
i=1

αiλi

)
x.

This shows that

x ∈ V

(
k

∑
i=1

αiλi

)
⊆ V

(
k

∑
i=1

αiTi

)
.

The hypothesis in Lemma 3 is, in fact, very restrictive.

Lemma 3. If H, K are Hilbert spaces, and T1, . . . , Tk ∈ B(H, K), such that
V(Ti) \ ker(Ti) ⊆ ker(Tj) for all i, j ∈ {1, . . . , k} with i 6= j. For every i ∈ {1, . . . , k} and
every xi ∈ V(Ti) \ ker(Ti), there are α1, . . . , αk ∈ C, such that

k

∑
i=1

βixi ∈ V

(
k

∑
i=1

αiTi

)

for every β1, . . . , βk ∈ C.

Proof. For every i ∈ {1, . . . , k}, there exists λi ∈ σ(Ti) \ {0}, such that xi ∈ V(λi), that is,
Ti(xi) = λixi. Define αi := λ−1

i for every i ∈ {1, . . . , k}. Then(
k

∑
i=1

αiTi

)(
k

∑
i=1

βixi

)
=

k

∑
i=1

αiβiTi(xi) =
k

∑
i=1

αiβiλixi =
k

∑
i=1

βixi.

If H1, . . . , Hp are Hilbert spaces, then
(⊕p

i=1 Hi

)
2

is a Hilbert space, considering the
following scalar product and norm

(
(hi)

p
i=1| (ki)

p
i=1

)
:=

p

∑
i=1

(hi|ki),
∥∥∥(hi)

p
i=1

∥∥∥ :=

√√√√ p

∑
i=1
‖hi‖2,

for all (hi)
p
i=1, (ki)

p
i=1 ∈

(⊕p
i=1 Hi

)
2
. If H is another Hilbert space and Ti : H → Hi is

a continuous linear operator for each i = 1, . . . , p, then the direct sum of T1, . . . , Tp is
defined as (⊕p

i=1 Ti

)
2

: H →
(⊕p

i=1 Hi

)
2

x 7→
(⊕p

i=1 Ti

)
2
(x) := (Ti(x))p

i=1.

If Si : Hi → H is a continuous linear operator for each i = 1, . . . , p, then the direct sum
of S1, . . . , Sp is now defined as(⊕p

i=1 Si

)
2

:
(⊕p

i=1 Hi

)
2
→ H

(hi)
p
i=1 7→

(⊕p
i=1 Si

)
2

(
(hi)

p
i=1

)
:= ∑

p
i=1 Si(hi).
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Theorem 5. Suppose that H, H1, . . . , Hp are Hilbert spaces, and let Ti : H → Hi be a continuous

linear operator for each i = 1, . . . , p. Then,
(⊕p

i=1 Ti

)′
2
=
(⊕p

i=1 T′i
)

2
and

( p⊕
i=1

Ti

)′
2

◦
( p⊕

i=1

Ti

)
2

=
p

∑
i=1

T′i ◦ Ti.

Proof. Fix arbitrary elements x ∈ H and (hi)
p
i=1 ∈

(⊕p
i=1 Hi

)
2
. Then,

(
x

∣∣∣∣∣
( p⊕

i=1

T′i

)
2

(
(hi)

p
i=1

))
=

(
x
∣∣∣ p

∑
i=1

T′i (hi)

)

=
p

∑
i=1

(
x
∣∣∣T′i (hi)

)
=

p

∑
i=1

(
Ti(x)

∣∣∣hi

)
=

(
(Ti(x))p

i=1

∣∣∣(hi)
p
i=1

)
=

(( p⊕
i=1

Ti

)
2

(x)
∣∣∣(hi)

p
i=1

)
.

Lastly, for each x ∈ H,(( p⊕
i=1

Ti

)′
2

◦
( p⊕

i=1

Ti

)
2

)
(x) =

( p⊕
i=1

Ti

)′
2

(( p⊕
i=1

Ti

)
2

(x)

)

=

( p⊕
i=1

T′i

)
2

(
(Ti(x))p

i=1

)
=

p

∑
i=1

T′i (Ti(x))

=
p

∑
i=1

(
T′i ◦ Ti

)
(x).

3.2. Pareto Optimal Solutions of the MOP max ‖T(x)‖, min ‖x‖, x ∈ X

Under the settings of Theorem 3, arg minx∈X ‖x‖ = {0}; therefore, in view of Theorem 1,
0 ∈ Pos(3). This Pareto optimal solution is usually disregarded when it comes to a real-life
problem.

Theorem 6. Let X, Y be normed spaces, and T : X → Y be a nonzero continuous linear operator.
Then, Pos(3) = Rsuppv(T).

Proof. Fix an arbitrary x0 ∈ Pos(3). Since x0 = ‖x0‖ x0
‖x0‖

, it is sufficient if we show that
x0
‖x0‖

∈ suppv(T). Therefore, we may assume that ‖x0‖ = 1, so our aim was summed
up to prove that ‖T(x0)‖ = ‖T‖. Since x0 ∈ SX ⊆ BX, ‖T(x0)‖ ≤ ‖T‖. Suppose
that ‖T(x0)‖ < ‖T‖. By the definition of sup,there exists y ∈ BX, such that ‖T(x0)‖ <
‖T(y)‖ ≤ ‖T‖. ‖y‖ ≤ 1 = ‖x0‖ and ‖T(x0)‖ < ‖T(y)‖, which contradicts that x0 ∈ Pos(3).
As a consequence, ‖T(x0)‖ = ‖T‖; hence, x0 ∈ suppv(T). The arbitrariness of x0 ∈ Pos(3)
shows that Pos(3) ⊆ Rsuppv(T). Conversely, fix an arbitrary x0 ∈ Rsuppv(T). There exists
y0 ∈ suppv(T) and α ∈ R, such that x0 = αy0. Observe that ‖x0‖ = |α|‖y0‖ = |α|. We
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prove that x0 ∈ Pos(3). Let us consider an element y ∈ X satisfying that ‖y‖ < ‖x0‖ = |α|,
and we distinguish cases: if y = 0, then ‖T(x0)‖ = |α|‖T(y0)‖ = |α|‖T‖ > 0 = ‖T(y)‖. If
y 6= 0, then

‖T(x0)‖ = |α|‖T(y0)‖ = |α|‖T‖ ≥ |α|
∥∥∥∥T
(

y
‖y‖

)∥∥∥∥ > ‖T(y)‖.

Lastly, if there exists y ∈ X, such that ‖T(y)‖ > ‖T(x0)‖, then

|α|‖T‖ = ‖T(x0)‖ < ‖T(y)‖ ≤ ‖T‖‖y‖,

which means that ‖x0‖ = |α| < ‖y‖.

When X, Y are Hilbert spaces, the Pareto optimal solutions of (3) are directly obtained
via combining Theorems 4 and 6.

Corollary 1. Let T : H → K be a continuous linear operator with H, K Hilbert spaces. Then,
Pos(3) = V(λmax(T′ ◦ T)).

This last result allows for solving the following MOP (motivated in Section 4), given by
max ‖T1(x)‖2 + · · ·+ ‖Tk(x)‖2,
min ‖x‖,
x ∈ H.

(11)

The Pareto optimal solutions of (11) are related to those of
max ‖Ti(x)‖,
min ‖x‖,
x ∈ H,

(12)

for i = 1, . . . , k.

Corollary 2. If T1, . . . , Tk ∈ B(H, K) are continuous linear operators between Hilbert spaces H
and K, then:

1. Pos(11) = V
(

λmax

(
∑k

i=1 T′i ◦ Ti

))
.

2.
⋂k

i=1 Pos(12) ⊆ Pos(11).

Proof. Consider bounded linear operator

T1⊕2
k· · · ⊕2Tk : H → K⊕2

k· · · ⊕2K

x 7→
(

T1⊕2
k· · · ⊕2Tk

)
(x) := (T1(x), . . . , Tk(x)).

The next equality trivially holds for every x ∈ H,

‖(T1(x), . . . , Tk(x))‖2 = ‖T1(x)‖2 + · · ·+ ‖Tk(x)‖2.

Since the square root is strictly increasing, (11) is equivalent to
max

∥∥∥∥(T1⊕2
k· · · ⊕2Tk

)
(x)
∥∥∥∥,

min ‖x‖,
x ∈ H,

(13)

which is an MOP of form (3).
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1. According to Corollary 1 and Theorem 5,

Pos(11) = Pos(13)

= V

(
λmax

((
T1⊕2

k· · · ⊕2Tk

)′
◦
(

T1⊕2
k· · · ⊕2Tk

)))

= V

(
λmax

(
k

∑
i=1

T′i ◦ Ti

))
.

2. We rely on Theorem 6 and Corollary 1. Fix an arbitrary x ∈ ⋂k
i=1 Pos(12). If x = 0, then

x ∈ Rsuppv
(

T1⊕2
k· · · ⊕2Tk

)
= Pos(13) = Pos(11). Suppose that x 6= 0. In view

of Theorem 6, x
‖x‖ ∈

⋂k
i=1 suppv(Ti). We prove that x

‖x‖ ∈ suppv
(

T1⊕2
k· · · ⊕2Tk

)
.

Take any y ∈ BH . Since x
‖x‖ ∈

⋂k
i=1 suppv(Ti), for every i ∈ {1, . . . , k},∥∥∥∥Ti

(
x
‖x‖

)∥∥∥∥ ≥ ‖Ti(y)‖.

As a consequence,

∥∥∥∥(T1⊕2
k· · · ⊕2Tk

)(
x
‖x‖

)∥∥∥∥ =

√∥∥∥∥T1

(
x
‖x‖

)∥∥∥∥2
+ · · ·+

∥∥∥∥Tk

(
x
‖x‖

)∥∥∥∥2

≥
√
‖T1(y)‖2 + · · ·+ ‖Tk(y)‖2

=

∥∥∥∥(T1⊕2
k· · · ⊕2Tk

)
(y)
∥∥∥∥.

This means that x
‖x‖ ∈ suppv

(
T1⊕2

k· · · ⊕2Tk

)
. In accordance with Theorem 6,

x = ‖x‖ x
‖x‖ ∈ Rsuppv

(
T1⊕2

k· · · ⊕2Tk

)
= Pos(13) = Pos(11).

4. Discussion

In order to design truly optimal TMS coils, and depending on the nature and char-
acteristics of the coil that we want to maximize or minimize, a linearization technique is
applied to the electromagnetic field [18,23–25]; then, MOPs like (3) come out:

max ‖Exψ‖2,
min ψT Lψ,
ψ ∈ Rn,


max ‖Eyψ‖2,
min ψT Lψ,
ψ ∈ Rn,


max ‖Ezψ‖2,
min ψT Lψ,
ψ ∈ Rn,

(14)

where E is a matrix representing the electromagnetic field, Ex, Ey, Ez are the components of
E, and L represents inductance with a positive definite symmetric matrix. Using Cholesky
decomposition, as L is positive definite and symmetric, the existence of an invertible matrix
C, such that L = CTC, is guaranteed. Then,

ψT Lψ = ψTCTCψ = (Cψ)T(Cψ) = ‖Cψ‖2
2.
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Next, we apply the following change of variables: ϕ := Cψ. Then, the previous
problems can be rewritten as follows:

max
∥∥(ExC−1)ϕ

∥∥
2,

min ‖ϕ‖2
2,

ϕ ∈ Rn,


max

∥∥(EyC−1)ϕ
∥∥

2,
min ‖ϕ‖2

2,
ϕ ∈ Rn,


max

∥∥(EzC−1)ϕ
∥∥

2,
min ‖ϕ‖2

2,
ϕ ∈ Rn.

(15)

Since the square root is strictly increasing, the previous MOPs are equivalent to the
following (in the sense that they have the same set of global solutions and the same set of
Pareto optimal solutions):

max
∥∥(ExC−1)ϕ

∥∥
2,

min ‖ϕ‖2,
ϕ ∈ Rn,


max

∥∥(EyC−1)ϕ
∥∥

2,
min ‖ϕ‖2,
ϕ ∈ Rn,


max

∥∥(EzC−1)ϕ
∥∥

2,
min ‖ϕ‖2,
ϕ ∈ Rn.

(16)

The three MOPs above are of the form (3). Therefore, in view of Corollary 1, the Pareto
optimal solutions of each of them is determined by

V
(

λmax

((
ExC−1)T(ExC−1))),

V
(

λmax

((
EyC−1)T(EyC−1))),

V
(

λmax

((
EzC−1)T(EzC−1))),

respectively. On the other hand, we can consider the combined MOP, as in (11):
max

∥∥(ExC−1)ϕ
∥∥2

2 +
∥∥(EyC−1)ϕ

∥∥2
2 +

∥∥(EzC−1)ϕ
∥∥2

2,
min ‖ϕ‖2,
ϕ ∈ Rn.

(17)

Let us define the following linear operator:

T : `n
2 → `n

2 ⊕2 `
n
2 ⊕2 `

n
2

ϕ 7→ T(ϕ) =
((

ExC−1)ϕ,
(
EyC−1)ϕ,

(
EzC−1)ϕ

)
.

The corresponding matrix to T is precisely

A :=

 ExC−1

EyC−1

EzC−1

.

For every ϕ ∈ Rn,

‖T(ϕ)‖2 =

(∥∥∥(ExC−1
)

ϕ
∥∥∥2

2
+
∥∥∥(EyC−1

)
ϕ
∥∥∥2

2
+
∥∥∥(EzC−1

)
ϕ
∥∥∥2

2

) 1
2
.

Then (17) is the same as 
max ‖T(ϕ)‖2,
min ‖ϕ‖2,
ϕ ∈ Rn.

(18)

According to Corollary 1,

Pos(18) = Rsuppv(T) = V
(

λmax(AT A)
)

.
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Equivalently, according to Corollary 2,

Pos(18) = Pos(17)

= V
(

λmax

((
ExC−1

)T(
ExC−1

)
+
(

EyC−1
)T(

EyC−1
)
+
(

EzC−1
)T(

EzC−1
)))

.

A very illustrative example of this situation is displayed in the Appendix A

5. Conclusions

This section deals with linear combinations of MOPs of the form given in (3). Let H, K
be Hilbert spaces. Consider continuous linear operators T1, . . . , Tk ∈ B(H, K) between
H and K. Let α1, . . . , αk > 0. In bioengineering, it is common to assign weights αi to
different operators Ti depending on the relevance of each Ti. Then, the following MOP
comes into play: 

max α1‖T1(x)‖2 + · · ·+ αk‖Tk(x)‖2,
min ‖x‖,
x ∈ H,

(19)

Nevertheless, the above MOP is, in fact, the same as the following:
max ‖S1(x)‖2 + · · ·+ ‖Sk(x)‖2,
min ‖x‖,
x ∈ H,

(20)

where Si :=
√

αiTi for each i = 1, . . . , k. suppv(Ti) = suppv
(√

αiTi
)
= suppv(Si) for every

i = 1, . . . , k. By relying on Corollary 2, at least we can ensure that

k⋂
i=1

Pos(12) ⊆ Pos(20) = Pos(19).

However, it is very unlikely that
⋂k

i=1 Pos(12) 6= {0}. Unless hypotheses similar to the
ones employed in Lemma 2 or Lemma 3 are used, we cannot conclude any other relation
between Pos(19) and Pos(12).
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
MOP Multiobjective optimization problem
SOP Single-objective optimization problem
POS Pareto optimal solution
PC Pareto chart
TMS Transcranial magnetic stimulation
MRI Magnetic resonance imaging
ROI Region of interest

Appendix A. Illustrative Example on Coil Design

Appendix A.1. Coil Design in Engineering

The use of coils that optimize one or more components of an electromagnetic field
while minimizing power dissipation or stored magnetic energy is often required in bioengi-
neering applications such as TMS [21,23] and magnetic resonance imaging (MRI) [24,25] or
in high-precision magnetic measurement systems in space missions such as eLISA [26–29].

All these applications are characterized by the need of generating a prescribed and
localized electromagnetic field in a specific region, and are subject to other performance
requirements such as the minimization of stored magnetic energy or dissipated power.
Therefore, the design of electromagnetic coils for these applications can be considered to be
an MOP. MOPs from coil design are frequently expressed as a convex optimization and
formulated in terms of the stream function of a quasistatic current [18].

Appendix A.2. Design of Maximal Bx and By Coil for Magnetic Measurement Systems in a
Space Missions

In the following, for the purpose of illustrating an application of the obtained theoreti-
cal results in this manuscript, we present the design of a planar coil over a (34 × 17 mm)
PCBfor magnetic measurement systems in space missions. This coil was constructed with
the aim of maximizing the magnetic field in a small and near region where a magnetic
sensor capable of measuring the X and Y components of the B field is located. At the same
time, resistance was minimized in order to avoid power dissipation.

Hence, the initial requirement that the coil had to satisfy was that it had to produce a
maximal magnetic field in a region of interest (ROI) that was located in the same position
as that of the sensor (x = 22 mm, y = 6.5 mm, z = 1.25 mm), with its same dimensions
(5.8 × 3.5 mm), formed by 200 points. Figure A1 illustrates the available surface for the
coil design along with the ROI.

In order to obtain stream function ϕ, which simultaneously maximizes Bx and By
while minimizing power dissipation at the ROI, previously presented MOPs (16) and
(17) were applied. Consequently, the current coil-design problem can be expressed as the
following MOPs:


max

∥∥(BxC−1)ϕ
∥∥

2,
min ‖ϕ‖2,
ϕ ∈ Rn,


max

∥∥(ByC−1)ϕ
∥∥

2,
min ‖ϕ‖2,
ϕ ∈ Rn,


max

∥∥(BzC−1)ϕ
∥∥

2,
min ‖ϕ‖2,
ϕ ∈ Rn.

(A1)


max α

∥∥(BxC−1)ϕ
∥∥2

2 + β
∥∥(ByC−1)ϕ

∥∥2
2 + γ

∥∥(BzC−1)ϕ
∥∥2

2,
min ‖ϕ‖2,
ϕ ∈ Rn.

(A2)

where Bi ∈ Rm×n stands for the matrix of the magnetic field in the i-th direction (i = x, y, z);
R ∈ Rn×n is the resistance matrix; n is the number of mesh points (n = 2000); m is the
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number of ROI points (m = 200); and α, β, and γ are constants that provide specific weights
for maximizing each component of the field (Bx, By, Bz). Due to the fact that it is only
necessary to maximize the Bx and By components in the current case, weights were chosen
such that α = β < γ (in concrete α = β = 1 and γ = 10−2).
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m
]

Coil Surface

ROI

Figure A1. Representation of planar coil surface and region of interest (ROI) where optimal stream
function ϕ is calculated.

Figure A2 shows the stream function solution from the (A1) and (A2) MOPs (red
and blue functions, respectively) computed by using the theoretical model developed
in [4,18,19]. Three different optimal stream functions were obtained from (A1) MOP
(ϕx, ϕy, ϕz). Consequently, the final ϕ1 solution was calculated as linear combination
ϕ1 = αϕx + βϕy + γϕz. However, stream function ϕ2 is the final solution obtained from
the (A2) MOP. As expected from the conclusions of the manuscript, the stream functions
were not equal.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Mesh Points

0
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0.4
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0.7

0.8

0.9

1

N
or

m

Stream Function Coil 2 
Stream Function Coil 1

Figure A2. Stream functions obtained from Problems (A1) (Coil 1) and (A2) (Coil 2).

Furthermore, stream function contours over the coil surface can be considered to be
the current wire path [30,31]. Accordingly, coil wires were designed as the stream function
contour, as is depicted in Figures A3 and A4, where the designed coils are different
depending on the MOP.
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Figure A3. Obtained wire paths from Problem (A1) over PCBsurface.
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Figure A4. Obtained wire paths from Problem (A2) over the PCB surface.

In conclusion, as expected from the proposed theoretical model in this manuscript,
the solutions of (A1) and (A2) were different; consequently, we could not conclude any
relation between the two MOPs.
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