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Abstract: After more than a century of history, the radiation-reaction problem in classical electro-
dynamics still surprises and puzzles new generations of researchers. Here, we revise and explain
some of the paradoxical issues that one faces when approaching the problem, mostly associated with
regimes of uniform proper acceleration. The answers we provide can be found in the literature and
are a synthesis of a large body of research. We only present them in a personal way that may help
in their understanding. Besides, after the presentation of the standard answers, we motivate and
present a twist to those ideas. The physics of emission of radiation by extended charges (charges
with internal structure) might proceed in a surprising oscillating fashion. This hypothetical process
could open up new research paths and a new take on the equivalence principle.

Keywords: radiation reaction; self-force; radiation by moving charges; equivalence principle; uniform
acceleration

1. Introduction

At the end of the 19th century, physicists realised that accelerating charges should
emit electromagnetic radiation and, as a consequence, there should be some back-reaction
on them (see, e.g., [1] for how this notion came to the physics forefront). Since then, the
so-called classical electromagnetic radiation-reaction problem has reappeared once and
again as an attractive problem full of controversies and insights touching central topics
in physics—and all that without invoking competing paradigms (in Kuhn’s terminology),
just using the standard Maxwell field equations. As of today, it is fair to say that there are
still several aspects of the problem which are not completely and satisfactorily understood.

In addition to the intrinsic interest of the classical electromagnetic radiation-reaction
problem, in modern times, a renewed interest in it comes about from two closely related
phenomena: the Unruh effect, which is interaction between accelerated quantum detectors
and quantum fields, and the gravitational radiation-reaction problem. On the one hand,
the physics of accelerated quantum detectors leads to some controversial interpretational
questions analogous to those with accelerated charges, e.g., surprisingly, at first look,
a uniformly accelerated Unruh–de Witt detector does not produce any radiation [2–4].
Whether this is the case or not can have important consequences in understanding for
example the Hawking emission by black holes [5]. On the other hand, the trajectory of a
small star or black hole, with m 6= 0, attracted by a supermassive black hole, with M� m,
differs from the geodesic it would have followed in the test-mass limit owing to the emission
of gravitational waves (see, e.g., [6,7] and references therein). The calculation of the back-
reacted trajectories has become an important problem in gravitational wave astronomy,
since these types of situations are expected to be observable sources of gravitational waves
(for a review on Extreme Mass Ratio Inspirals, see, e.g., [8]). To better understand these
arguably more complicated problems, it is sensible to take one step back and clearly
understand the classical electromagnetic problem.
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Our humble intention with the present work is to help clarify a selection of questions
one can naturally ask oneself when thinking about the classical electrodynamic radiation-
reaction problem. Answers to most of these questions are already present in the relevant
literature but sometimes not explicitly or clearly enough to stop being a source of confusion.
In addition, we show that some of these answers are not as compelling as they may seem,
leaving still space for further exploration.

In this paper, we always have in mind a charged object as a structured extended entity
which is however very small from the point of view of the observational parameters in the
laboratory. For example, we can think of a macroscopic grain of dust with a net charge.
For many characteristics of its behaviour, but not all, it can be treated as a point-like object.
Whether the findings we discuss apply in some way to elementary particles such as the
electron is more difficult to know. On the one hand, in many respects, their behaviour
is deeply quantum. On the other hand, at the current experimental level, electrons (and
some other particles) do not show any structure. In any case, we consider the classical
understanding as a rich conceptual toolkit.

Let us start by writing down an itemised number of questions that surely many readers
have come about when thinking about the radiation-reaction problem. Then, each section
is devoted to clarifying one of them (relevant references are given in the corresponding
sections).

• Does a charge restrained from falling in a gravitational well, so that it remains static,
radiate? The conceptual problem arises because of an interpretational clash. On the
one hand, people are typically convinced that an accelerated charge in Minkowski
spacetime emits radiation towards the asymptotic regions. On the other hand, people
are typically inclined to believe that a charge at rest in their desktop is not radiating
towards infinity and so it does not require a continuous supply of energy. However, a
charge at rest in a gravitational field is locally accelerating so a tentative application
of the equivalence principle suggests that it should emit.

Before putting forward the next questions, we need to recall the structure of the
Lorentz–Abraham–Dirac (LAD) self-force [9–12]. The well-known LAD expression for the
self-force acting on a point-like particle has the form

Fb
S = −medab +

2
3

q2

(
dab

dτ
− (acac)ub

)
, (1)

which becomes

FS = −meda +
2
3

q2ȧ (2)

in the non-relativistic limit (bold symbols represents three-vectors). In the relativistic
expression ub and ab represent the four-velocity and four-acceleration, respectively; τ is the
proper time of the trajectory; q is the charge of the particle; and med is an electrodynamic
mass whose value encodes the specific electrodynamic energy carried by the charge. Bold-
face symbols are used to represent spatial vectors in the non-relativistic equation, whose
components are labelled by Latin indices i, j, k . . . when necessary.

The first term in (1) is typically absorbed in a renormalised mass for the point-like
system that then contains some electrodynamic contribution. In this way, the actual
dressed mass of the charge consists of a bare mass plus an electrodynamic contribution:
mD = mB + med. In the point-like limit, this electrodynamic mass would be divergent, but,
for a real extended system, it would be finite and depend on the internal structure of the
system. Thus, one often forgets about this term and regards

F̃b
S =

2
3

q2

(
dab

dτ
− (acac)ub

)
(3)
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as the actual self-force, whose non-relativistic version is

F̃S =
2
3

q2ȧ. (4)

As we show below, this might lead to some interpretational difficulties.
It is well known that the LAD force leads to unphysical solutions (i.e., pre-accelerating

and run-away solutions) given the third-order nature of the resulting dynamical equa-
tion [13]. However, it is also well known that this equation is just an approximation to a
more appropriate second order equation devoid of these unphysical solutions [12,14,15].
However, with a bit of care, people can and actually do continue using the LAD self-force
to interpret radiation-reaction phenomena. For instance, it appropriately takes care of the
energy budget in standard physical situations. We pay a price though: with Expression (3)
we face at least three interpretational problems, listed in the following.

• Using the LAD force, the total amount of work done in a process in which the charged
particle starts and ends in inertial motion is precisely equal to the growth of kinetic
energy plus the total amount of radiated energy. The self-force part alone (3) is
responsible for the radiated energy. One can check, starting from dES/dτ = F0

S =

Fi
Sui/u0, that the work done by the self-force is given by

∆ES =
2
3

q2
∫ (dai

dτ
− (acac)ui

)
uiγ
−1dτ, (5)

where γ = u0 is the Lorentz factor. By performing some straightforward manipula-
tions, the integral above can be rearranged in two terms, so that

∆ES =
2
3

q2
∫ d

dτ
(aiuiγ

−1)dτ − 2
3

q2
∫
(acac)dt. (6)

The first term is the integral of a total derivative and therefore vanishes for trajectories
that start and end with zero acceleration. The second term is precisely the total energy
lost by the system by radiation emission (Larmor’s relativistic formula [16,17], see
below). In this way, we see that the energy budget appears to be correctly taken
care of.
Now, consider a situation separated in five different and consecutive regimes
(see Figure 1): one initial inertial regime that we denote Ii; a transient in which some
acceleration is established, Ti; one arbitrarily long period of uniform acceleration, A;
another transient in which the acceleration disappears, Tf; and another final inertial
regime, If. The LAD expression suggests that all the work done by the self-force on
the system takes place during the transients Ti, Tf, even though most of the radiation
has been emitted during stage A. This situation is interpretationally difficult and
can make one think that there might be local violations of the energy budget which
however do not lead to any global failure (this puzzle is described, e.g., in [18]).

• While the radiation emission in a regime of uniform acceleration is stationary, the self-
force vanishes. It seems that the emission of radiation in that regime is not influencing
in any way the trajectory of the charge which seems to be driven only by the external
force. It might appear that it does not take any more effort to move a particle when it
is charged that when it is not (of course for equal masses).

• The LAD self-force has another interpretational problem. When an acceleration is
established, as in transient Ti, the back-reaction appears to go in favour of this very
acceleration, the opposite to what one might have expected.

In the following sections, we provide answers to all these questions (although we
defend our selection of answers, let us stress again that there is not a clear consensus in the
literature; for example, the recent report by Kosyakov [19] offers a different perspective,
with some points in common). In Section 2, we discuss the issues associated with the
emission of radiation. Then, Section 3 deals with the problems associated with the self-
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force. As mentioned above, the answers found in these sections can be found in the
literature. Our contribution here is to collect them to construct a compelling interpretation
of all the issues at stake. In Section 4, we introduce a twist in the previous discussion,
suggesting a potential change on how radiation-reaction proceeds. In the final section, we
provide a short summary of the paper and some concluding remarks.

t

z

If

Tf

A

Ti

Ii

1

Figure 1. Accelerated trajectory of a particle in Minkowski spacetime. The particle starts from rest
(black dashed line). Then, it passes through a relatively short period of non-uniform acceleration (red
thick line), a uniformly accelerating regime (blue dashed line) and again through a brief transient
regime (red thick line). Finally, the acceleration disappears and the particle remains with inertial
motion (black dashed line).

2. Radiation by Uniformly Accelerating Charges

In the late 19th century, it was already asserted that an accelerated charge should
emit electromagnetic radiation [9,16]. However, this apparently clear idea was subjected to
intense debate for many years (some central references are [13,20–28]). In this section, we
comment on some of the core questions on this debate.

2.1. Does a Uniformly Accelerating Charge in Minkowski Spacetime Radiate?

Let us start by mentioning that, to analyse this question, one can deal with idealised
point particles. Indeed, on the one hand, the linearity of Maxwell equations allows to
deal with distributional sources. On the other hand, the radiation field shows up at large
distances from the source; thus, the divergences of the field at the point particle position
should not cause any trouble when analysing its radiative characteristics.

In favour of the assertion that an accelerating charge radiates, there is the direct
argument of calculating the fields generated by a moving point charge based on retarded
Liénard–Wiechert potentials [29–31] (see also [32] for an alternative derivation). The
Poynting-vector flux through a sphere at infinity can be calculated resulting in the radiation
rate below:

R =
2
3

q2abab. (7)

This is Larmor’s relativistic formula with ab the standard four-acceleration that measures
any deviation from inertial motion. For a given trajectory with proper constant acceleration
g (a hyperbolic motion in Minkowski spacetime); it holds that abab = g2 = constant.
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Therefore, a straightforward interpretation of the previous formula is that for a uniform
acceleration the radiation is emitted at a constant rate. (Note that in these starting sections,
we purposefully use the word “radiation” in a somewhat loose manner. If from the start
“radiation” were referring to a clear and unique mathematical term, some of the conceptual
problems associated with it would not have appeared or would have appeared in different
terms. In Equation (7), for example, we use the standard definition of radiation in Maxwell’s
theory in terms of the Pointing-vector [31]. Tacitly, this definition takes into account the
referential characteristics of the Minkowski background. One is measuring whether some
electromagnetic radiation is crossing a worldtube at infinity generated by the standard
Minkowskian time-translation Killing vector.)

Arguments against this interpretation were put forward since the very beginning by
researchers such as Born [20] and Pauli [21]. Many other such as von Laue [22], and later
Hill [33] and Feynman [27], subscribed and elaborated on these arguments. Essentially, on
the one hand, there is Pauli’s argument. It is based on the fact that, on the hypersurface
t = 0, where the hyperbolic trajectory passes through its point of zero velocity, the magnetic
field vanishes. Thus, it seems impossible to associate a wave zone and a non-vanishing
Poynting vector to the process. The problem with this argument appears to have been first
identified by Drukey [34] and then further cleared up by Bondi, Gold and Spencer [26]
and Fulton and Rohrlich [13]. The problem is that, to identify the radiation produced
at a point of the trajectory, one has to analyse the limit of large spheres R → ∞ within
the causal lightcone R = t− temission. Only with the values of the magnetic field in one
spacelike hypersurface one cannot know whether there is radiation or not at infinity. In
geometrical language, one has to analyse the structure of null infinity and not of spatial
infinity. On the other hand, Born’s argument is based on the conformal invariance of
Maxwell’s equations: if there is no radiation when a particle is at rest, there cannot be
radiation when the particle is uniformly accelerating, as this movement can be attained
by a special conformal transformation. The problem with Born’s argument is that he was
using, without realising it, not just the retarded fields of a single charge but a combination
of half-advanced plus half-retarded fields associated with two mirror charges. This field
combination indeed does not lead to radiation at infinity. However, this field solution does
not represent the physical situation one is interested in. In fact, this field solution is the
result of applying a special conformal transformation to the Coulomb field of a particle at
rest [13,25,35]. Against the conformal invariance argument, we could say that the particular
solution, one single accelerated charge with just retarded potentials, spontaneously breaks
conformal invariance.

We guess that the idea that uniformly accelerated charges could not radiate was
favourably taken by many people in part because they found that it was consistent with
the fact that in these trajectories the LAD self-force (3) vanishes (we start discussing this
problem at the end of this section and continue in the next). For instance, in a sufficiently
small neighbourhood around a uniformly accelerating charge (a worldtube surrounding
the charge trajectory), one realises that the retarded electromagnetic fields do not exhibit
any specific retarded characteristics [28]: locally, the retarded field is equal to the advanced
field. In fact, this observation alone could be used to predict that the self-force should
vanish for uniform acceleration. It is not as if something physical is being emitted locally by
the charge (as one would imagine the emission of a photon). The radiative characteristics
are appreciated only far from the source and, as we show below, take into account global
properties of the spacetime.

The answer to the question in the title of this subsection is yes, a charge subject to
uniform acceleration in Minkowski spacetime radiates, but this assertion should always go
hand in hand with further qualifications, as we are about to explain.

2.2. Does a Charge Restrained from Falling Towards a Gravitational Potential Well Radiate?

The idea that, when a particle accelerates in Minkowski spacetime, it radiates is
relatively easy to swallow. Then, it might appear that by looking at whether a particle
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radiates or not one could distinguish whether its behaviour is inertial or not (here, we
tacitly use an operational notion of radiation: whether an antenna would receive some
energy coming from the charge).

What happens when a charge is kept from falling towards a potential well remaining
static (either by some rocket or by being on top of a solid surface attached to a plane-
tary structure)? The equivalence principle seems to tell us that this situation should be
indistinguishable from an acceleration in Minkowski spacetime (at least locally, without
considering inhomogeneities in the gravitational field). However, it is difficult to imagine
that an observer at rest with respect to the charge will observe radiation as for him the
structure of the fields surrounding the charge is static. The same applies to any other
observer at rest with respect to the generator of the gravitational field, including those at
infinity. Therefore, there should be no radiation escaping to infinity. If this is the case, there
seems to be a problem with the equivalence principle: by measuring whether a charge
radiates or not one could distinguish whether it is accelerating in Minkowski spacetime or
experiencing a uniform gravitational field.

The solution to this puzzle was provided by Boulware [28], elaborating on previous
works by Fulton and Rohrlich [13] and Coleman [36]. Regarding the equivalence principle,
the situation that should be compared with the charge at rest in the gravitational field is
that of an observer following the accelerating charge in Minkowski spacetime (a comoving
accelerating observer). The presence of Rindler horizons in this case makes this observer
unable to feel any radiation. Boulware’s argument is that, by looking just at the fields
on the right wedge of Rindler spacetime, one cannot distinguish between retarded and
advanced solutions. For instance, one could perfectly think that the solution contained half
retarded plus half advanced fields (as in Born’s argument), which would entail no radiation
at infinity, and hence no overall self-force. As a final conclusion, this work advances the
thesis that the presence of radiation is observer dependent.

To explicitly check that a charge restrained from falling in a gravitational well does
not radiate, let us provide here a simple calculation based on Rindler spacetime. We use
the following system to completely separate the problem at hand from issues related with
the presence of tails in the propagators in curved spacetimes. Rindler spacetime can be
interpreted as representing the uniform gravitational field that observers would perceive
when moving in a small region close to the surface of a large ultracompact star or black
hole [37]. Take Schwarzschild metric in Schwarzschild coordinates, write r = 2M + h and
make the approximation h� 2M. The approximate metric reads

ds2 = − h
2M

dt2 +
2M

h
dh2 + (2M)2dΩ2

2. (8)

Using the coordinate z = 2
√

2Mh and local transverse Cartesian coordinates x, y, we
can write this metric as

ds2 = −g2z2dt2 + dz2 + dx2 + dy2, (9)

with g = 1/(4M) being the surface gravity of the black hole. One can think of this metric
as the right wedge of Minkowski spacetime written in Rindler coordinates. However, here
we go one step further and consider as our global metric a spacetime consisting of two
Rindlerian wedges of Minkowski spacetime pasted together through a thin membrane.
This amounts to consider two copies of the previous metric pasted at z = 0. It is not difficult
to check that this global metric is now a solution of Einstein equations with a diagonal
stress–energy tensor (SET) of the form

{ρ, pz, px, py} = {0, 0,−2g,−2g}δ(z). (10)

Therefore, it is not empty and is globally different from Minkowski spacetime
(two Rindler wedges have been cut out from it). In fact, this geometry can be under-
stood as a limiting situation within the family of symmetric Schwarzschild thin-shell
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wormholes [38]. One Schwarzschild thin-shell wormhole can be sustained by a thin shell
located at radius a and having surface density and transverse tensions

σ = − 1
2πa

√
1− 2M

a
, θ = − 1

4πa
1− M

a√
1− 2M

a

. (11)

If we take the neck to be located at a = 2M + ε/2M, ε � 1, and take the limit
M → +∞ at the same time that ε → 0 keeping ε constant and finite, then one obtains
precisely the previous Rindlerian geometry with (ε) = 1/(8πg)2. The density term gets
diluted to zero in the limiting process; not so the tension terms. In the following, when
making a calculation in Rindler spacetime we have in mind this spacetime.

Let us consider a static charge fixed at a distance z0 from the domain wall above. The
calculation of the four-potential in the Lorenz gauge yields

At = −
qg2

4π

ρ2

ξ
, Az = −

q
4π(z− z0)

, Ax = Ay = 0, (12)

where ρ2 = x2 + y2 + (z− z0)
2 + g−2 and ξ2 = g2ρ4 − 4(z− z0)

2. The electromagnetic
field Fab = ∂a Ab − ∂b Aa is easily computed to find:

Ftx = −2qg2

π

x(z− z0)
2

ξ3 , Fty = −2qg2

π

y(z− z0)
2

ξ3 ,

Ftz =
qg2

π

(z− z0)[ρ
2 − 2(z− z0)

2]

ξ3 ,

Fxy = Fxz = Fyz = 0. (13)

At large distances from the domain wall, one finds a behaviour

Ftz → −
qg

2π(z− z0)
. (14)

The linear fall-off with distance could be taken as an indication of the presence of ra-
diation. However, the magnetic field is exactly zero, and, therefore, so is the Poynting
vector measured by an observer far away from the source. For this observer, the four-
velocity is ua = (1, 0, 0, 0) and the Poynting vector Si = Tibub = 0, where Tab is the
usual Maxwell electromagnetic SET. (In other words, we now use a different worldtube
to calculate how much energy is crossing it. To generate this worldtube we are using a
time-translation Killing field of Rindler spacetime, which corresponds to a boost Killing
field in Minkowski spacetime).

We finally deduce that there is no radiation anywhere in the asymptotic region as the
magnetic field is identically zero in the whole spacetime.

2.3. Does a Charge Free Falling in a Gravitational Potential Well Radiate?

A free-falling charge will radiate with respect to an observer at rest [28,39], but this
same charge will not radiate according to a comoving (free-falling) observer [40]. In
agreement with these results, an analysis based on our Rindlerian geometry above shows
a net flux of energy in the asymptotic regions. This essentially involves transforming the
Coulomb field of an inertial particle in Minkowski spacetime to Rindler coordinates. In
the same manner, this means that an accelerated observer will perceive a charge at rest
in Minkowski spacetime as radiating. We can see here a classical analogue of the Unruh
effect: an accelerated detector (e.g., an antenna) will detect radiation in the Coulomb field
of a charge at rest (see, e.g., a discussion along these lines in [41]).

In this paper, we concentrate in the simplest situation showing the subtleties of the
presence of radiation: acceleration in rectilinear motion. However, let us just note here that
a charged particle orbiting a planet in free-fall motion will also produce radiation as seen
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by static observers. Thus, it is not the deviation of a trajectory from free fall that causes the
presence of radiation.

2.4. The Nature of Radiation

The previous discussion leads to the following image. In the context of a single
accelerating charge, to radiate or not to radiate is a perception issue. The Maxwell SET
does not change its form from a radiating situation to a non-radiating one. In this sense,
radiation is not encoded in local objective characteristics of the Maxwell SET. It is instead a
matter of how one splits the SET into radiating and non-radiating parts, something that
is beyond the SET itself. (The notion of energy flux requires the definition of a timelike
worldtube (it does not need to be generated by a Killing field), and different worldtubes
lead to different fluxes. Killing fields are necessary if one wants to define an asymptotic
notion of conserved energy (ADM mass) and how can it vary by energy dissipation at
infinity (Bondi mass).) Of course, this does not mean that when analysing the emission
characteristics of an aggregate of non-coherently moving charges, there exist observers
which can describe the aggregate as non-radiating.

For instance, for inertial observers in Minkowski spacetime, and given an arbitrary
trajectory for a point-like charge, one can follow Teitelboim and collaborators [42,43] and
separate the electromagnetic field in a Coulomb part Fab

C and a radiation part Fab
R defined as

Fab = Fab
C + Fab

R ,

Fab
C =

2q
(Rcuc)2 u(anb)∣∣

ret, Fab
R =

−2q
Rcuc

[
(acnc)u[anb] + a[anb]

]∣∣
ret. (15)

In these expressions, we use the following notation: R = x − xt is the four-vector
joining the spacetime point x with the retarded position xt of the point-like charge; −Raua
is the retarded distance to the charge; na = −Ra/(Rbub) is the retarded orientation; (ab)
and [ab] indicate symmetrisation and anti-symmetrisation in the corresponding indices,
respectively; and |ret reminds that these expressions must be evaluated at the retarded time.

While the radiation part of the field depends on the instantaneous retarded velocity
and acceleration of the charge, the Coulombian part depends only on the instantaneous
retarded velocity of the charge. From these quantities one can construct Maxwell’s SET
and split it into two parts

Tab = Tab
L + Tab

R , (16)

where the local Tab
L and radiative Tab

R parts are given by

Tab
L := Tab

CC + Tab
CR, Tab

R := Tab
RR. (17)

The labels CC, CR and RR represent the terms that come from products of the radiative
and Coulombian parts of the electromagnetic field.

When a charge is accelerating, Tab
R 6= 0 and it has been proved that it encodes all the

radiative properties of the field. For instance, its ti components are non-zero signalling
a flux of energy travelling towards infinity [42,43]. The radiative part is conserved off
the particle, ∇aTab

R = 0, and has a Dirac’s delta source at the particle itself. By looking
only at this term, one could interpret the radiation process as something that occurs
locally, as an emission that starts from the particle itself, contrary to the previous Boulware
explanation. However, there is no contradiction. Teitelboim’s splitting is explicitly of a
retarded nature. In a region of uniform acceleration and close to the particle, one could
have taken equivalently an advanced splitting leading to a different Tab

R 6= 0 which now
would contain just ingoing radiation. The nice feature of the retarded splitting when
using retarded fields is that it is consistent with the emission of radiation for wave fronts
arbitrarily far from the particle.
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How does Teitelboim’s splitting fit with the previously expressed idea that in an
accelerating frame an accelerating charge does not radiate? The connection appears when
one realises that an equivalent splitting can be performed using the acceleration as defined
relative to the Rindlerian frame [44]. For instance, the field of a charge at a fixed distance in
the Rindlerian spacetime will only have a Coulombian part

Fab = Fab
C̃

, (18)

although, tensorially speaking, it is the same field as that of a uniformly accelerating charge
in Minkowski spacetime, i.e.,

Fab
C̃

= Fab
C + Fab

R . (19)

The Maxwell SET will just have the form

Tab = Tab
L̃

= Tab
C̃C̃

, (20)

having no radiation term. Tuned accelerated observers in Minkowski spacetime (by tuned
we mean with Rindler accelerations, see below) will share this same perception of no radia-
tion, with no splitting of the electromagnetic field. The Einstein (mechanical) equivalence
principle is extended in this way to moving charges, finding no violations: by means of
experiments with moving charges, there is no way to tell whether a lab is accelerating or
restrained from falling into a gravitational well.

It is also interesting to compare Dirac’s and Teitelboim’s definitions of the radiation
field in a Minkowskian situation. In Teitelboim’s splitting, it appears as if the radiation
were created at the particle itself. Instead, Dirac defined the radiation field as

Frad
ab := Fret

ab − Fadv
ab . (21)

This definition makes the radiation field in the surroundings of a particle subject to
uniform acceleration to be zero. Only when reaching future null infinity the two definitions
coincide. Dirac’s definition conveys the idea that radiation only appears as a far field and
cannot be distinguished close to the particle. Both definitions have nice features but none
of them capture the actual relational nature of radiation.

At this point, let us make some further observations. If we were just considering
classical electrodynamics with just the previous emission mechanism, we would not need
to associate independent degrees of freedom to the electromagnetic field. One could always
associate the presence of some radiation passing through a region as the result of some spe-
cific rearrangement of elementary particles somewhere else in combination with a relative
perception mechanism. To use independent degrees of freedom for the electromagnetic
field would just be a convenient way of working since in many applications one does
not need to worry about the emission mechanism. Notice, however, that the situation
changes when considering quantum mechanical effects. For example, the phenomenon of
particle–anti-particle annihilation can be taken as evidence that the electromagnetic field
actually possesses independent degrees of freedom, with matter degrees of freedom being
transmuted into electromagnetic ones.

In this paper, we only consider locally flat situations. The presence of spacetime
curvature adds additional complications that we wanted to separate in order to have a
clean discussion. The presence of back scattering (due to spacetime curvature) generates
tails in the propagators which in turn hinder the naturalness of the splitting discussed
above. For example, Villarroel [45] proposed a splitting in curved backgrounds but the
radiation SET does not contain all the radiated energy. The situation when defining
radiation in general relativistic settings is actually parallel with the relational notion of
quantum particle in curved backgrounds [41,46].
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2.5. Radiation by Composite Particles

Before ending this section let us also discuss the radiation emitted by a composite
particle (or particle of finite size and internal structure). As we show in the next section,
this analysis is very relevant as one can only make physical sense of self-forces when going
away from the point-particle assumption.

Let us consider an extended charge-current field Ja with total charge q and whose
spatial extension is of compact support. It can be interpreted as a charged object. The
radiation generated by such an object could be extremely complicated, containing all sorts
of multipole components. It all depends on the internal complexity of the object. However,
when thinking of a model for a system that effectively behaves as a point-like particle, we
must assume that the composite system is as simple as possible. One would also like to be
able to associate a single (sufficiently precise) effective trajectory to the composite particle.
For these reasons, the most used models for a structured particle are a uniformly charged
sphere and a spherical shell. The radiation produced by an extended object of this kind is
approximately equal to that of an equivalent point charge only if we make an additional
assumption: that the accelerations involved are very small compared with the typical
(inverse) size of the composite system, g � 1/d. In this scenario, the fields originated
at different locations of the composite object would not be able to interfere significantly
at infinity, resulting in a radiation approximately equal to the radiation that would have
been produced by the charges separately. In summary, under the previous hypothesis,
it is reasonable to expect that the radiation from a composite system can be very well
approximated by that of a single point charge with the total charge of the composite and
an effective average acceleration. We can say that the existence and quantity of radiation is
robust in passing from the elementary to the simple composite system. Again, under the
previous conditions, most of the radiation at infinity is concentrated around frequencies
ω ∼ g. The condition g � 1/d tells that the radiation is not coming from short scale
characteristics of the composite object, but essentially from its motion as a whole.

On the contrary, as we argue, self-forces are not equally robust. Self-forces explore
higher frequency features of the fields and so, can in principle subtly depend on the
structure of the composite. This can be seen even in the LAD Equation (3), which depends
on the ȧb characteristics of the trajectory, while the radiation field depends only on the
ab features.

2.6. Summary

As a synthesis of the history of this controversy, we can say that all the main partic-
ipants provided arguments with elements of truth. A uniformly accelerating particle in
some sense radiates and in some other sense does not: the crucial ingredient is the relation
between the trajectory of the particle and the global properties of the spacetime in which
it evolves.

3. The Self-Force Equation

The idea that the electromagnetic field produced by an accelerating charge should
affect its own motion was realised by several researchers well before the special relativistic
framework was developed [47,48]. It is clear that one cannot directly deal with idealised
point charges to analyse this back-reaction. The self-field diverges at the very position of
the point-like particle making seemingly impossible to make any further assertion. Lorentz
and Abraham realised that, if a charge has a finite-size structure, it is possible to envisage
how do some self-force effects come about.

3.1. Will a Charge Uniformly Accelerating in Minkowski Spacetime Be Subject to Some Self-Force?

A first intuitive analysis of a charge uniformly accelerating in Minkowski spacetime
could lead us to believe that the presence of radiation at infinity would be accompanied by
some local friction effect at the position of the charge itself. We use the word friction when
thinking intuitively on a force that acts against the motion, i.e., in opposite direction to the
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velocity. However, an equivalent intuitive analysis of a particle at rest in Rindler spacetime,
with its corresponding absence of radiation at infinity, could make us believe that in the
latter case the particle would not be subject to any friction force. As they stand, these two
analyses are not compatible with each other. Our previous analysis of radiation based on a
single elementary particle asserts that the situation is equal in both cases, so the forces, if
any, should also be equal in both cases.

Indeed, the literature on the subject has apparently reached the consensus that the
two situations are equal and that the intuitive analysis that turns out to be incorrect is that
of the accelerated charge in Minkowski spacetime: in periods of constant acceleration the
self-force vanishes and there are no friction forces at work. Indeed, the LAD self-force
term (3) vanishes for hyperbolic (constant proper acceleration g) trajectories. This can be
easily seen in (3) noting that, for a charge in hyperbolic motion, both terms in the relativistic
version are equal to g2ub and hence cancel out; it is also obvious in the non-relativistic
limit (4).

However, as mentioned in the Introduction, this state of affairs leads to some inter-
pretational problems. To understand the problem of the local energy budget, Fulton and
Rohrlich [13] elaborated on analyses by Schott [24] and proposed that the problem lies
in an additional source of energy (and force) that typically passes unnoticed. This is an
“acceleration energy” term, Q = −2/3q2a0, which grows negative in regions of constant
acceleration, thus compensating the energy extracted in the form of radiation. This term
appears when writing the energy balance equation associated with the LAD Equation (3),
whose time component can be expressed as

d(E + Q)

dτ
= −2

3
q2g2u0 + F0

ext. (22)

Here, E is the dressed kinetic energy and Fb
ext is the external force that drives the

charged body. The Schott acceleration energy Q is reversible: it is accumulated during
accelerated motion but returns to zero in inertial segments. Notice also that the acceleration
energy does not show up as an addition to the inertial mass: it is neither in the radiation
field nor inside the effective mass of the particle. This acceleration energy could be seen at
first sight as mysterious and not very physical. However, in the 1960s, it was proved that
it actually corresponds to part of the electromagnetic energy contained in the local term
in the Maxwell SET [36,42]. In fact, in a very interesting paper [49], Rowe elaborated on
previous works by Harish-Chandra [50] and Weert [51] and proposed a new splitting of the
Maxwell SET. This splitting is motivated by the different divergent properties of the terms
and their distributional extension. More explicitly, attending to the different divergent
properties of the different terms composing the local Tab

L in Teitelboim’s splitting (15), it
was separated in two terms different from the previous ones Tab

CC and Tab
CR. In addition, he

provided a proper distributional definition of the expressions by adding appropriate delta
contributions at the worldline of the point charge:

Tab
L = Tab

sol + Tab
Schott,

Tab
sol =

q2

4π

[
1
2

ηab − 2u(aRb)

Rdud
− RaRb

(Rdud)2 +
2(Rcac)RaRb

(Rdud)2

]
1

(Reue)4 −
1
4

q2γ−1ubaaδ3(x− xt),

Tab
Schott =

q2

4π

[
2a(aRb) − 2(Rcac)u(aRb)

Rdud
− 4

(Rcac)RaRb

(Rdud)2

]
1

(Reue)4 −
2
3

q2γ−1uaabδ3(x− xt), (23)

where the label “sol” stands for solenoidal. Notice that the explicit delta-function terms
appearing in the previous expressions are not symmetric in ab. In fact, they are there
to eliminate other non-symmetric terms that appear when analysing the expression in a
proper distributional manner [49]. Rowe’s distributional definition of the three partial SETs,
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the radiative, the Schott and the solenoidal parts, are indeed ab-symmetric both off the
particle and on the worldline. The specific way in which the delta functions are arranged
has important consequences that we discuss below.

In our view, this splitting provides the cleanest interpretation we have seen in the
literature. The first term is divergence free even at the particle position ∇aTab

sol = 0. The
tensor Tab

Schott is divergence free off the particle while, at the particle position, provides a
point source supplying precisely the instantaneously produced radiation that goes into the
term Tab

R . This last term Tab
R is conserved outside the particle and has a source at the particle

position of precisely the same form (but reversed sign) than the source in ∇aTab
Schott. The

tensor Tab
Schott contains precisely the Schott (or acceleration) energy–momentum four-vector:

Pa =
∫

dΣbTab
Schott =

2
3

q2aa. (24)

As a nice property, let us mention that this integral does not depend on the hypersur-
face in which it is performed provided that it crosses the trajectory of the particle at the same
point. One could use for example any spacelike plane in Minkowski spacetime without
worrying whether one or more particles intersect this plane orthogonally. Therefore, the
acceleration energy–momentum is accumulated in a form of interference between the ra-
diative and local field associated with an accelerating particle. In a series of papers [52–56],
Eriksen and Gron reviewed in detail the electrodynamics of a uniformly charged particle
adding further analysis. In particular, in [55], they used Tab

Schott to analyse the localisation of
the Schott energy–momentum. They showed that for a given time, the contribution to the
Schott energy–momentum is zero from the region enclosed between any two concentric
wave fronts which do not touch the position of a regularised extended particle. The Schott
energy–momentum comes from a region surrounding the regularised particle (which in the
point-particle limit concentrates on the particle itself). It is also interesting to note that the
Schott term can be interpreted as the difference between the bound field of an accelerated
charge and the field of an inertial charge with the same instantaneous velocity (i.e., a plain
Coulombian contribution) [57] (see also the discussion in [58–60]).

The previous splitting leads to the idea that at least part of the radiated energy (all of it
in the regime of uniform acceleration) comes from a negative accumulation of acceleration
energy. However, recalling that the splitting itself is observer dependent, we are led instead
to the idea that an equal energy budget is distributed in different but equivalent manners by
different observers. An inertial observer in Minkowski spacetime will say that the emitted
energy comes from an accumulation of acceleration energy. In a Rindlerian situation, one
would say instead that there is neither radiation nor acceleration energy, i.e., that only a
Coulombian part will be present in the field.

3.2. Will a Charge Free Falling in a Gravitational Potential Well Be Subject to Some Self-Force?

This situation was analysed by de Witt and Brehme [61] for a particle free falling in a
Schwarzschild geometry. They concluded that there exists some non-zero self-force effect
but that in this case it is entirely due to the presence of tails in the propagator. This should
not be present in a homogeneous gravitational field. Notice that our Rindlerian analysis
avoids the presence of tails owing to the absence of curvature.

Free fall in Rindler spacetime is equivalent to inertial motion in Minkowski. In this
case, it is reasonable to expect no self-forces. However, this might confront the fact that
in this case there will be radiation at infinity. The acceleration energy notion comes to
the rescue again. In this situation it is clear that Rindlerian observers have to assume
that the negative acceleration energy Q is being accumulated in a charge that is just
moving inertially. This reinforces the idea that the acceleration energy, as well as all the
other energies involved, depends on observational issues and does not have intrinsic
local definitions.
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3.3. Non-Uniform Acceleration

From the LAD self-force (3) it results then that putting a charge in uniform acceleration
only requires some extra work (associated with the radiated energy) in the transient regimes.
However, as mentioned in the Introduction, the form of the LAD self-force in the transients
is counter-intuitive. As we explain below, the cause of the interpretational problem comes
from forgetting the inertial term in the LAD expression (1).

All derivations of the LAD equation involve an expansion in terms of derivatives of
the acceleration, with the standard LAD expression maintaining only the first non-trivial
term. The correct regime of application of the LAD self-force is then when q2 ġ � medg
(i.e., an adiabatic condition during the transients). Under this condition, when a charge
accelerates in Minkowski spacetime from rest, we have that −medai + F̃i

S has always a sign
opposite to the acceleration.

Within the framework of an extended charge, what really happens in a transient Ti
is that the total self-force acts against the acceleration. Furthermore, it increases until it
stabilises at the value −medai (see Figure 2). Therefore, it is not strictly correct to think
that a charged extended particle has always an electrodynamic contribution added to
the bare mass. This would correspond to a “perturbative” interpretation of the self-force
(for instance, this is a potential interpretational problem of formal schemes such as that
in [18]).

t

meda

F̃S

FS = −meda + F̃S

1

Figure 2. The diagram qualitatively portraits the behaviour of the two terms meda and F̃S that
form the full self-force FS during a complete finite period of acceleration and deceleration IiTi ATf If

depicted in Figure 1.

Here, we maintain that a better “non-perturbative” interpretation is to consider that
the electrodynamic inertial term appears progressively during the transient making it more
difficult to accelerate the charged extended particle as compared with that with the charge
off, so to speak. In the constant-acceleration regime A, the inertial term is all that remains
and is the one responsible for making more difficult to accelerate a particle when it is
charged than when it is not: starting from two particles with equal bare masses, the one
with charge acquires under acceleration an additional contribution to its mass. In practice,
this idea passes unnoticed because measurements of the inertial mass of a particle are
performed in time scales larger than the typically very brief extended-particle crossing
time, i.e., we measure the dressed mass. Then, when comparing the behaviour of a charged
particle with respect to an uncharged particle one takes two with equal dressed masses
and conclude that they behave equally.

When the extended charge starts recovering an inertial state (transient Tf), the two
terms of the self-force progressively disappear (Figure 2). The form of the LAD self-force
indicates that the process during this transient Tf is not completely symmetrical with
respect to that in Ti (see the change of sign in F̃i

S in expression (3)). This asymmetry occurs
because of the retarded nature of the self-force effect. During the transient Tf, it is clear
that the self-force is against the acceleration, that is, it helps recovering an inertial motion.
For example, Gupta and Padmanabhan [62] presented a derivation of the LAD equation
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making clear that all that matters, in order to find FS, is the deviations with respect a
constant acceleration regime.

It is clear that the LAD self-force is not a frictional force in the sense of acting against
the velocity of the particle. With hindsight, it would have been difficult to understand
that a self-force would have a frictional effect proportional to the velocity but acting in
opposite direction and also proportional to the square of the proper acceleration. A friction
of this form would work against having a velocity and not against having an acceleration.
While the former would have selected a preferred frame of reference, the latter is perfectly
consistent with the idea that radiation reaction is just opposing non-inertial motion. As
Lorentz himself appropriately put it, the self-force provides a resistance to acceleration [63].

Overall, as opposed to the notion of radiation, we can say that the presence or not
of self-force [taking as its definition (1)] is objective, with the only caveat that, without
assuming a specific model of extended particle, it is not possible to make a meaningful
separation of bare and electrodynamic masses.

4. A Possible Twist to the Situation

The image that results from the previous discussions is consistent and takes into
account the knowledge on the topic accumulated during a century. However, one can
still find at least two puzzling issues that suggest an interesting possible twist to the
radiation-reaction problem.

4.1. The Rigidity Hypothesis

The first puzzling observation is related to the impossible rigidity of real extended
bodies in relativity. The natural state of an extended body in Minkowski spacetime is
inertial motion. In fact, when analysing physical situations that involve accelerations, one
typically imposes that the acceleration regime is preceded by a state of inertial motion. All
calculations we know of regarding extended charges explicitly or implicitly assume that the
structure of the body is strictly rigid and that its charge is distributed with strict uniformity
assuming some shape (e.g., a rigid and uniformly charged sphere; see, e.g., [64–67]; in
the latter the author reviewed several rigid models comparing different approaches to
the calculation of their behaviour). In special relativity a rigidity assumption is consistent
with arbitrary rectilinear motion [65] (not with rotational motion). However, attaining
rigidity requires non-local arrangements with specific (non-uniform) proper-acceleration
profiles along the extension of the body in the direction of acceleration [20]. As we argue,
except in the case of a uniform acceleration of gravitational origin, strict rigidity is a
simplifying idealisation. While it is appropriate for analysing many issues, it can also hide
some interesting phenomena which could be happening at the microscopic description of
composed system.

A transient regime Ti necessarily introduces tensions in a realistic extended body.
However, the problem permeates even when trying to produce uniform acceleration. On
the one hand, a realistic extended albeit very small body will be constituted by a neutral
atomic network uniformly sprinkled with charge excesses or deficits so that on average it
results in a uniformly charged system. When applying an electric force to the system one is
just pulling the charges which act as anchor points to pull the entire system. In any realistic
situation in Minkowski spacetime, one would be far from uniformly pulling the system.
The structural forces within the system could keep it together but at the cost of continuous
retarded readjustments of these forces. On the other hand, even if one considered that
the uniformity of the charge is almost perfect, if one applies a constant force field to an
extended charge, the force tries to set each elementary charge into equal accelerations, not
equal proper accelerations. However, equal accelerations do not lead to a rigid acceleration.
In a stable regime of uniform acceleration, one needs that the distributions of accelerations
through the extended charge is the very specific one consistent with a rigid object in
relativity. A uniform force should produce instead a disrupting stretching of the structure
which the internal structural forces (whatever their nature) would try to counteract.
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Let us better illustrate the previous discussion with the simplest extended system one
can think of: two particles of charge q/2 and mass m/2 separated by a small distance and
tied together by a spring of some sort (Lyle [68] presented a compelling set of calculations
involving this simple situation). Imagine that they are initially at rest and located at a
distance di from each other. For the two charges to remain in this initial stable configuration,
they have to be tied together in some way so that the electric repulsion is counteracted.
That is why we put a spring connecting them. Now, let us accelerate the two charges in
the direction in which they are connected (e.g., the z-axis). If they accelerate equally, we
know that the proper distance as seen from a reference frame instantaneously at rest with
the charges is now d > di. Therefore, if the rope connecting them were not elastic, it would
break (this constitutes the so-called Bell’s paradox [69,70]).

On the other hand, if we set up the two charges to follow precisely uniform acceleration
trajectories satisfying

di =
1
gh
− 1

gt
, (25)

with gh and gt the accelerations of the head and tail charges, respectively, then the distance
between them as seen from each charge is kept constant. In this case, and only in this case,
the forces maintaining the charges together are just those present in the initial configuration;
the motion does not affect these forces. These specific trajectories precisely correspond to
the different rest positions in Rindler space.

For these trajectories, it is interesting to calculate the electromagnetic forces exerted
by each charge on the other. For that, one has to use the form of the electromagnetic field
produced by one point charge on the position of the other:

Fab =
µ0c
4π

[
q/2
Rcuc

d
dτ

(
Raub − Rbua

Rcuc

)]
ret

, (26)

where Ra denotes the retarded distance between both charges. The force is then calculated
as fa = Fab jb, with jb = (q/2)γ−1ub being the charge current of the charge that suffers
the force. It is easy to obtain the two reciprocal forces between the particles. Defining an
average acceleration as

2
g
=

1
gh

+
1
gt

(27)

we obtain the forces exerted by the tail charge on the head one and vice versa:

f t→h
z =

µ0cq2

16πd2

(
1− dg

2

)2
, f t←h

z = − µ0cq2

16πd2

(
1 +

dg
2

)2
. (28)

These relativistic forces have the structure of constant proper forces. One the one
hand, we see that | f t→h

z | < | f t←h
z |, which means that the acceleration of the system causes

a force opposing the acceleration itself. On the other hand, we see that the addition of the
two forces (as if applied to the central point) results in a total force

fz = −medg, med =
µ0cq2

8πd
+O(d0). (29)

This term, which appears only in this uniformly proper acceleration regime, can
be absorbed into the definition of an inertial mass, but, as explained in Section 3.3, its
appearance is the very radiation reaction effect we should not forget. The mass med
corresponds to an electrodynamic energy which diverges in the d → 0 limit. For real
extended systems, it always stays finite.

Given an arbitrary trajectory for, e.g., the head particle there is exactly one trajectory
of the tail particle such that it maintains the instantaneous proper distance with the head.
Whenever the trajectories trying to be imposed on the head and tail particles do not comply
with the previous unique prescription, which occurs for example when imposing equal
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accelerations on both particles, the structural forces maintaining the charges bound together
will experience adjustments.

This toy system also illustrates an additional issue about which we have not said
anything yet: the composition and behaviour of the spring (in fact, it is difficult to say
much about it; see next section). For example, as a material system, it should also have
mass. Then, the forces applied to the charges would be pulling from the spring making it
to react in specific ways. For sure its reactions would not constitute a strict rigid motion.

Thus, in setting an acceleration regime starting from an initial inertial motion, there
will always be a tension between the disrupting effect of the external forces and the
structural forces that try to keep rigidity. For all the reasons explained, it is difficult to
hold that by applying a constant force the toy-model extended system will move as in
Figure 3a, in which both charges undergo hyperbolic motion with different accelerations.
It is more sensible to expect that qualitatively the system will move more as in Figure 3b,
where oscillations are present throughout the trajectory.

t

z

(a)

di

1

t

z

(b)

1

Figure 3. (a) Two hyperbolic trajectories in Minkowski spacetime, or, equivalently, two particles at
rest in Rindler spacetime at different positions. The proper distance between these two trajectories is
well defined and fixed to a value di. (b) A constant force field will try to set the two charges to follow
equal hyperbolas, not the two unequal Rindlerian hyperbolas of (a). The presence of a material spring
joining the two charges may result in an oscillating trajectory instead of the rigid trajectory of (a).

4.2. Schott’s Energy and Tensions

The other puzzle comes about when rethinking the Schott term in the self-force (1).
Working in the point-like limit the acceleration energy grows continuously in periods of
uniform acceleration. In those periods, we can write the acceleration energy as

Q = −2
3

q2a0 = −2
3

q2

g2 t. (30)

The larger is the period of uniform acceleration, the larger is the energy accumulated
in the Schott term. The same happens with the Schott force term dai/dτ. As explained
above, the cross term in Maxwell’s SET contains the Schott energy–momentum. In the
same manner, it contains some pressure terms. As shown in [55], the Schott acceleration
energy–momentum is localised essentially at the position of the particle itself. Looking
at the Schott SET (23) one can also check that, in a long period of uniform acceleration,



Symmetry 2021, 13, 658 17 of 22

large acceleration pressures accumulate at the location of the particle and its surrounding
regions. These pressures should be compensated by the structural forces of the charged
body in order to maintain its structural stability.

It is interesting to realise that one way in which one would be able to tame the
accumulation of large acceleration energies and pressures is by having oscillations in the
acceleration. Specifically, instead of accelerating uniformly, imagine that the system is
effectively experiencing intermittent periods of acceleration essentially composed of a
sequence of transients of the form TfjTij, j = 1 · · ·N, so that the total process would read

IiTiTf1Ti1Tf2 · · · TfNTiNTf If. (31)

There are no periods of strict uniform acceleration. The notion of uniform acceleration
appears only on average. Applying this idea to the system of two charges described before,
one could image a situation similar to the one illustrated qualitatively in Figure 3b. In
Section 4.4, we reinforce this possibility by working out a classical model of two masses
bound together by a spring.

4.3. An Alternative View on Radiation-Reaction

The previous two observations lead to an interesting conclusion. A pure rigid accelera-
tion trajectory for an extended body is clearly physically unreasonable, as discussed above.
On the other hand, an oscillating version (typical of elastic bodies), which on average might
appear as indistinguishable from the former, can produce a much more intuitive interpreta-
tion of the emission and radiation-reaction effects. In this alternative view, in a period of
uniform acceleration (on average), the system is emitting continuously (on average) and
is back-reacted by a radiation-reaction force also continuously (again, on average). This
conceptualisation could also avoid large accumulations of both accelerating energies and
pressures. If the individual charges composing the extended system periodically went
through periods of zero acceleration, then the Schott term would oscillate, passing many
times through zero without entering into long accumulation regimes.

Having this picture in mind, it is also interesting to notice that internal oscillations
of an extended body might, at least qualitatively, be simulated by a single trajectory of
a point-like charge with added microscopic oscillations. In this way, the standard LAD
self-force expression could be formally used without encountering the interpretational
puzzles associated with strictly uniform accelerations.

In fact, as mentioned in the Introduction, the interpretational problem with uniform
accelerations has a parallel in the Unruh effect: Does the coupling of a uniformly accelerat-
ing detector to a field cause the emission of field quanta? In periods of uniform acceleration,
it appears that there is no emission of particles [2,4]. In the appendix of a paper by Sciama
et al. [71], there is a discussion of the radiation-reaction puzzle which resonates with our
arguments against mathematically precise uniform acceleration motion. In addition, in
trying to understand this puzzle in more detail, Parentani [72] analysed a model system in
which the trajectory of the detector was also treated quantum mechanically. He concluded
that the periods of uniform acceleration actually have a micro-oscillating structure. In this
case, emission of quantum photons involves recoil effects that perturb the trajectory. Our
proposal here could be taken as a classical analogue of that model in electrodynamics.

4.4. On the Difficulty of Producing a Model of Oscillations

Thus far we have discussed two puzzling observations occurring in the standard
treatment and suggested a possible alternative way in which extended systems might
turn out to behave when applying a constant force. However, can we prove that this
alternative version is actually correct? Can we at least provide an exact model calculation
corroborating this behaviour? It is here that we face various difficulties. Let us mention a
few without claiming to be exhaustive.
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• Difficulty of ascribing a centre of mass/energy to a composed or extended system:
Without a rigidity hypothesis, it is not straightforward to ascribe a single trajectory
even to the simplest composed system consisting of just two particles [73].

• Difficulty of introducing interactions between relativistic point-particles: When trying
to construct a simple model for a composed system, one could think of two charges
bound together by a spring (or interaction) of some sort. However, constructing
a model for interactions between relativistic particles encounters important obsta-
cles [74].

• Difficulty of treating bounded systems in electrodynamics: Modern physics is built
upon the idea that a consistent relativistic treatment of a system of elementary particles
and electromagnetic fields requires to treat them all as quantum fields. However, the
problem then is that, although the theory seems well defined, to calculate even the
simplest situation (other than just scattering amplitudes) needs approximations of
different sorts. For instance, the complex situations one encounters in condensed
matter systems are typically confronted (in many cases, with great success) by using
non-relativistic quantum mechanics.

As a summary, it appears that the framework that should allow for a consistent
treatment of composed relativistic systems is still too difficult to control; in addition, the
simple models one tries to build to effectively describe the more complex situations have
important conceptual problems to deal with.

At this stage, we do not know how to solve these difficulties to produce a realistic or
simple relativistic model of the situation (but this does not mean that we should take the
mathematically controllable situation as the one providing the physically correct picture).
What we can do here is to work out a simple analogue classical model that exhibits
oscillations of the form that we suggest that might exist.

A small but macroscopic system with total charge q could be composed of zillions of
charged particles (electrons and protons). The total charge is provided by a small mismatch
between the number of protons and electrons in the structure: typically, a surplus or a
deficit of electrons in an otherwise neutral atomic network. As a classical image of the
system, we can image it as having a uniform distribution of mass sprinkled with points
of charge. When applying a constant force field to the system, these points of charge will
act as anchor points which can be used to pull the entire system. Let us take this image to
the bones and consider a system of two particles with mass m/2 located at xt and xh > xt.
The masses are connected by a spring of natural length b and constant k. The head particle
at xh has a charge q to which we can apply a constant electric force from an initial time
t = 0 on. The tail particle however does not have a charge. The equations of motion of this
system can be written in the form:

m
2

ẍh = f − k(xh − xt − b),
m
2

ẍt = k(xh − xt − b). (32)

These equations can be easily be solved for the initial conditions at t = 0 that the two
particles are at rest at positions xh(0) = b/2, xt(0) = −b/2 leading to

xh =
b
2
+

f
2m

t2 +
f

4k

[
1− cos(2

√
k/m t)

]
,

xt = −
b
2
+

f
2m

t2 − f
4k

[
1− cos(2

√
k/m t)

]
. (33)

The accelerations of the two masses are, respectively,

ẍh = ( f /m)
[
1 + cos(2

√
k/m t)

]
, ẍt = ( f /m)

[
1− cos(2

√
k/m t)

]
. (34)

We clearly see that the head particle starts accelerating with acceleration ẍh(0) = 2 f /m,
that is, as if it were not connected to anything else. Progressively, this acceleration dimin-
ishes owing to the pull of the tail particle and enters an oscillatory regime passing by
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periodic moments of zero acceleration. On the other hand, the centre of mass of the system
accelerates uniformly with acceleration [ẍh(0) + ẍt(0]/2 = f /m.

4.5. Back to the Equivalence Principle

What happens now with the analogous situation of an extended charge at rest in
a Rindlerian spacetime? First of all, we have to realise that the acceleration structure
of Rindler spacetime is such that it naturally produces different proper accelerations at
different distances from the domain wall. For an extended structure at rest, the acceleration
structure is precisely the one that leads to pure rigidity. Rindler forces do not naturally
lead to oscillations within the extended charge. Of course, the structural pressures have to
maintain the static form of the extended charge. The difference with the previous situation
is that now naturalness does not impose that initial conditions should be inertial motion.
The presence of a domain wall in this spacetime makes conditions in which the distances
to the wall are kept fixed perfectly reasonable.

The image that results from this discussion is that Minkowski spacetime and a do-
main wall spacetime may each translate its global properties into different natural internal
structures for the extended particles living in them. In this way, we have that the elec-
trodynamics formalism itself does preserve the equivalence principle but this might be
broken by the different natural initial states on both situations. The situation can be seen as
analogous to that of general relativity in cosmology: although relativity builds upon the
idea that one cannot distinguish between different inertial states, in practice, the presence
of the cosmic microwave background introduces a natural rest frame with specific effects.

5. Summary and Conclusions

The classical electromagnetic radiation-reaction problem has attracted the attention of
many researchers for more than one hundred years (50 years ago Ginzburg already coined
this a “perpetual problem” [75] and thought to settle the issue). It is the first instance of
the potential clash between having point-like discrete objects coexisting in interaction with
continuous fields. Many notions of modern quantum field theory have their roots in this
apparently simple problem.

In this work, we first review the literature on the classical electromagnetic radiation-
reaction problem seeking to understand several questions that may appear paradoxical in
a first look at the problem:

• Does a uniformly accelerated charge in Minkowski spacetime radiate?
• Does an equivalent charge maintained in a fixed position on a gravitational well radi-

ate?
• Is the self-force a friction force or a proper acceleration resistance force?
• Does the self-force produce some backreaction on a particle in regimes of uniform ac-

celeration?

Our revision is useful for fully appreciating that the emission of radiation by single
point-like particles is an observer dependent issue. It complements other discussions
one can find in the literature (see, e.g., [41]). The emission of radiation is not encoded
in any stress–energy tensor but in the way one inquires into it. In this sense, it appears
parallel to the blurred notion of particle in curved spacetimes (see, e.g., [46]). At least in the
classical theory, an elementary radiation process is an exclusively relational notion. We also
show how this notion of radiation fits the existence of self-forces. As a synthesis, different
observational perspectives will make people analyse the energy budget in different ways.
For example, an inertial observer will say that a uniformly accelerated charge generates
some radiating energy plus some acceleration (or Schott) energy. In turn, a co-accelerating
observer will say that the only energy present is a Coulombian contribution to the inertial
mass of the charge. Our presentation also advocates a separation between any bare mass
the charged system may have and an electromagnetic contribution. In this way, it is
easy to appreciate that the self-force is a force resisting acceleration, that is, changes from
inertial motion.
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We hope that our presentation up to Section 3 will help improve the access to the
relevant information by new generations of curious people. In Section 4, however, we
take a step further and propose a rethinking of the previous standard paradigm. We put
forward the idea that precisely the relational connection between the motion of a charged
body (small but with an actual internal structure) and the global characteristics of the
spacetime it inhabits, should tend to excite, in some circumstances, internal vibrational
degrees of freedom of the body. This would happen whenever an external electromagnetic
force is used to modify a natural state of motion in the background spacetime. Note that
this “natural” state of motion need not be geodesic motion but is more related with a notion
of acceleration with respect to the global features of the spacetime (i.e., asymptotic regions
and matter content alike). For instance, we argue that a constant external force acting on
a charge body in Minkowski spacetime could make it internally oscillate inhibiting the
generation of large Schott (acceleration) energies. While the total emitted radiation will
be equal to that of a structureless uniformly accelerated charge, in this case, the radiation
will contain periodic fluctuations. We then argue that the situation would be different for
the same body fixed in a gravitational well. Then, it is more reasonable to expect that the
vibrational degrees of freedom will remain unexcited. Thus, this phenomenon might allow
differentiating the two situations. As a result, it is as if we were effectively breaking the
equivalence principle. The global characteristics of the spacetime would have imprinted
some natural initial conditions on the internal states of the bodies.

We highlight the difficulties in producing a solvable model exhibiting the described
behaviour. We can only collect arguments in favour of this alternative paradigm, including
the formulation of a very simple solvable classical model that exhibits precisely the advo-
cated characteristics. We feel that to know about this open possibility is interesting and
could open new research paths.
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