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Abstract: Sovereign debt and currencies play an increasingly influential role in the development of
any country, given the need to obtain financing and establish international relations. A recurring
theme in the literature on financial crises has been the prediction of sovereign debt and currency crises
due to their extreme importance in international economic activity. Nevertheless, the limitations
of the existing models are related to accuracy and the literature calls for more investigation on the
subject and lacks geographic diversity in the samples used. This article presents new models for the
prediction of sovereign debt and currency crises, using various computational techniques, which
increase their precision. Also, these models present experiences with a wide global sample of the
main geographical world zones, such as Africa and the Middle East, Latin America, Asia, Europe,
and globally. Our models demonstrate the superiority of computational techniques concerning
statistics in terms of the level of precision, which are the best methods for the sovereign debt crisis:
fuzzy decision trees, AdaBoost, extreme gradient boosting, and deep learning neural decision trees,
and for forecasting the currency crisis: deep learning neural decision trees, extreme gradient boosting,
random forests, and deep belief network. Our research has a large and potentially significant impact
on the macroeconomic policy adequacy of the countries against the risks arising from financial crises
and provides instruments that make it possible to improve the balance in the finance of the countries.

Keywords: sovereign debt crisis prediction; currency crisis prediction; deep learning neural decision
trees; fuzzy decision trees; extreme gradient boosting; country reputation

1. Introduction

The study of crisis events in international finance has received considerable attention
in the field of economics over the last two decades, especially the prediction of sovereign
debt and currency crises, due to their enormous importance in economic activity. This
great research effort has produced a huge range of prediction models, supported in turn by
varied methodologies [1–4].

The current importance of models for predicting crisis events is increased by the last
global financial crisis, which showed that even developed countries, that is, those that in
theory, are in a better situation and economic stability. The globalization process and eco-
nomic development have led to the emergence of greater complexity in the macroeconomic
and financial environment [1]. This has created a new space for research, and the demand
to build new models to forecast this event, not just at the level of a country but to explain
the common characteristics of these crises for a wide geographic spectrum [4,5].

One of the paths initially taken by the literature on the prediction of international
financial crisis events was the development of models built with samples made up of
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emerging economies since they tend to be more vulnerable countries and have statistically
suffered a higher frequency of crises. However, at this initial stage, specific samples
composed of only one country, or a reduced set of countries, were considered, and therefore
could well be considered as regional models. Subsequently, the development of the
literature in the construction of regional models was due to mere necessity [6]. Recently,
various so-called global models have also appeared that have used samples of economies
from different regions of the world for their construction. Almost all of these global models
have been built to predict situations in emerging economies, including some advanced
economies [7].

The results obtained by studies, such as that of [8], confirm the convenience, both
explanatory and potential classification capacity, of global models for predicting these
crisis events in comparison with regional models or with information from a single country.
Besides, there is a demand for more research on global models connected with the increase
of accuracy and the scope of the information used, since the studies that have obtained high
levels of precision used very small samples, mainly from a single country, and, therefore,
with short-term conclusions [6,9,10]. Many of these works have lacked methodological
comparisons to find which empirical technique or which type of method could be the most
appropriate for prediction [11–13]. Therefore, the literature shows how necessary it is to
deepen the use of computational techniques, also called ‘machine learning techniques’, to
find alternatives with greater precision to anticipate and prevent future financial crises [3,4].

These sovereign debt and currency crises prediction models can be useful to more
accurately assess the reputation of a country in the world [14–19]. Country reputation
explains how the most important characteristics of a country, for example, social and eco-
nomic factors, influence the image or brand in which the country is projected to the world.
In particular, it can influence the market expectations of energy companies, where bilateral
relations between countries are key, and the role of reputation shows the international trust
that exists in the country. Various authors [16–22] have expressed the need to incorporate
data and variables on the economic and financial stability of the countries as one more
important factor concerning the reputation of the country.

The present study tries to answer the research question of whether it is possible to
make global crisis prediction models more accurate relative to those in previous literature,
taking into account not only statistical techniques such as logistic regression or function
Probit but also computational techniques that have yielded excellent classification results
in recent decades in matters of economic prediction [23]. To offer greater explanatory and
comparative diversity, both global and regional models have been used for Africa and the
Middle East, Asia, Latin America, and Europe. The results reached have made it possible
to verify a greater precision of computational methods compared to traditional statistical
techniques. Even very novel computational techniques have shown interesting potential in
the precision of these events of the crisis.

The structure of this research work is as described below. In Section 2, a review of the
previous literature on the prediction of the mentioned crisis events is carried out: sovereign
debt crisis and currency crisis. Section 3 presents the methodology used. Section 4 details
the variables and data used in the research, and the results achieved are examined in
Section 5. Lastly, the conclusions of the investigation and its implications are presented.

2. Literature Review

The review carried out on the sovereign debt and currency crisis prediction literature
has allowed us to obtain precise conclusions on the studies carried out to date and on
where future research should be oriented. In this sense, it has been found that, on the
one hand, there are studies that aim to develop a prediction model to forecast some of
the two mentioned crisis events, and that facilitate classifying countries as in a state of
crisis or without crisis episodes. These are by far the majority of studies. This group could
also include those whose model proposes to be an “early warning” in anticipation of the
event of the crisis. On the other hand, it has also been found that in the last decade, global
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models have emerged to predict these crises, or with samples from various regions. These
models have generally looked for the determinants of crises in countries of a relatively
broad geographic region.

2.1. Sovereign Debt Crises Prediction

The existing literature on sovereign debt crisis prediction has focused mainly on
emerging countries [7,10,11,24–28]. For their part, some studies have addressed predic-
tions of the sovereign debt crisis in emerging and developing countries [3,29,30]. Finally,
refs. [5,31] modeled public debt default to predict it both for different regions (Africa, Latin
America, Asia, and Europe) and globally. Among them, Reference [26] proved that not
every crisis is the same: they vary according to if the government is faced with insolvency,
lack of liquidity, or diverse macroeconomic risks. Besides, they characterized the group of
fundamental elements that can be linked to a so-called “risk-free” zone. This is an impor-
tant classification for discussing appropriate policy options to avoid crises and respond to
them promptly.

Regarding the methods used, a considerable number of researchers have applied statisti-
cal methods to predict the sovereign debt crisis, highlighting the logit model [5,10,24–26,29,32].
On the other hand, the authors [3,7] develop regression models to forecast the sovereign
debt crisis. For their part, [11] applies a non-parametric method based on artificial neural
networks (ANN). Finally, Reference [27] develops the application of the self-organization
map (SOM), a display instrument based on ANN. Among them, Reference [11] concludes
that thanks to the excellent versatility of ANNs and their nonlinear relationship approxi-
mation capability, an early warning system founded on ANN can, in certain conditions,
improve on more conventional techniques. Reference [27] shows that the SOM is a viable
tool to monitor sovereign default indicators, facilitating the monitoring of multidimensional
financial data.

On the other hand, it is also found that previous studies have determined a series
of significant variables in the previous literature in the prediction of the sovereign debt
crisis. For example, Reference [11] exposes as explanatory variables the growth of Gross
Domestic Product (GDP), the profitability of the US Treasury bill, and the level of external
debt over total reserves. Other authors have shown that the interest rate of the US Federal
Reserve has an essential role to play in increasing the probability of default [3,30]. Finally,
Reference [5] shows that the country’s total debt, the global interest rate, and the current
account in the payment balance are the main determinants of the defaults of countries at
the global level.

Finally, regarding the level of precision achieved in said sovereign debt crisis predic-
tion literature, the studies by [10,24,25,29,30] stand out with a precision range between 70%
and 80%. With a higher rank level (80–90%), we find the investigations of [3,5,11,26]. These
last authors proposed a new crisis variable specification that allows for the prediction of
new-onset of crises, and their results were more precise in comparison with those in the
existing literature. They yielded a forecast capacity of 87% for the global model.

2.2. Currency Crises Prediction

The literature that has previously covered the prediction of currency crises has been
mostly for emerging economies; therefore, the evidence is poor for advanced economies.
Among the research from emerging countries, we highlight those of [2,12,33–38]. Other
authors have focused on Asian countries for currency crisis prediction [39–42]. For their
part, Reference [43] investigates the differences in a common set of indicators used in
early alert systems for currency crises in the situation of Jordan and Egypt. Reference [44]
empirically analyzes the causes of currency crises for a set of Organisation for Economic
Co-operation and Development (OECD) countries.

Regarding the methods used, a considerable number of researchers have applied
statistical methods to predict the currency crisis, highlighting Logit [2,12,37,38,43,45], and
Probit [44,46,47]. Also, previous studies have developed computational techniques such
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as RNA [6,33,40,41], auto-organization map [34], support vector machine (SVM) [35], and
deep neural decision trees [48]. For their part, Reference [39] used a switching model of
nonlinear Markov to carry out a systemic analogy and assessment of three different causes
of currency crises: contagion, fundamentals, and soft economics. Reference [34] concluded
that their model based on the self-organization map (SOM) is a viable tool to predict
currency crises, obtaining an accuracy of 91.6%. For their part, Reference [35] showed that
the support vector machine computing technique provides reasonably accurate results and
helps policymakers to identify situations in which a currency crisis may occur.

From another point of view, taking into account the explanatory variables of the
models, the most prominent among the authors have been exports [2,6,33,34,36,43,44,49],
the real exchange rate of the currency [33,36,43,44,49,50], relationship between the re-
serve and the money supply [2,33,34,43,49], current account balance [12,34,51], and GDP
growth [12,49,51]. For their part, Reference [42] found that global financial shocks and the
growth rate of domestic credit are the main currency crisis indicators.

Following the level of precision of the models, most of the previous studies reach a
precision range of 67–85% [2,38,39,46,50,51]. With a higher precision range level (90–97%)
we find the investigations of [6,12,33–37,40,41,48]. Among them, Reference [35] achieved
96% accuracy and his results showed that the currency crisis could be adequately predicted
using only a small fraction of sample data.

Therefore, the previous literature shows a greater predictive capacity of machine
learning methodologies over statistical methodologies. But this same literature shows that
the results obtained so far are not enough and that this type of methodologies can achieve
a higher level of precision [8,11]. Also, it is detailed in previous works that the use of
data has been very limited in time horizon and geographic space, making it a challenge to
increase it for future works [4,9,13]. Finally, there is a need to test different computational
methodologies in the prediction of financial crises [3,5,10,12]. This is due to the weaknesses
shown by some methodologies such as SVM and ANN on the difficulty of managing large
databases and the difficulty of interpretation.

3. Methodologies

As previously stated, to resolve the research question, we used a variety of methods
in the design of the crisis prediction models. Applying different methods aims to achieve
a robust model, which is tested not only through one classification technique but also by
implementing all previous classification techniques that have been successful in previous
literature. Specifically, multilayer perceptron, support vector machines, fuzzy decision
trees, AdaBoost, extreme gradient boosting, random forests, deep belief network, and
deep learning neural decision trees have been applied. The following is a summary of the
methodological aspects of each of these classification techniques.

3.1. Multilayer Perceptron

The multilayer perceptron (MLP) is an RNA methodology composed of a layer of
input units, an output layer and other intermediate layers also called hidden layers. These
last layers have no connections with the outside. The system is designed for supervised
feedback. All the layers would be connected so that the input nodes are connected with
the nodes of the second layer, these in turn with those of the third layer, and so on. The
methodology aims to form a correspondence between a set of initial observations at the
input with the set of outputs desired for the output layer.

The work [52] develops the MLP learning scheme as its case, in which initially there is
no knowledge about the underlying model of the applied data. This scheme needs to find
a function that captures the learning patterns, as well as a generalization process to be able
to analyze individuals not included in the learning stage [53]. It is necessary to adjust the
weights considering the sample data, assuming that the information on the architecture
of the network is available, where the objective is to achieve weights that minimize the
learning error. Therefore, given a set of pairs of learning patterns {(x1, y1), (x2, y2) . . . (xp,
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yp)} and an error function ε (W, X, Y), the training stage is It composes in identifying the
set of weights that minimizes the learning error E (W) [54], as it appears in (1).

min
W

E(W) = min
W

p

∑
i=1

ε(W, xi, yi) (1)

3.2. Support Vector Machines

Support vector machines (SVM) have registered good results when applied to prob-
lems of a very diverse nature, where the generalization error needs to be minimized. SVM
is defined as the attempt to classify a surface (σi) that divides positive and negative data by
as large a margin as possible [55].

All possible surfaces (σ1, σ2, . . . ) in the A-dimensional space that differentiates the
positive data from the negative ones in the training observations are used to find the
smallest possible distance. The positive and negative data are linearly separable and
therefore the decision surfaces are |A|-1-hyperplanes. Attention must be paid to the best
decision surface and is identified through a small set of training data called support vectors.
SVM allows the construction of non-linear classifiers, that is, the algorithm represents
non-linear training data in a high-dimensional space.

In our analysis, the minimum sequential optimization (SMO) method is applied to
train the SVM algorithm. The SMO technique separates quadratic programming (QP)
problems to be solved in SVM by smaller QP problems.

3.3. Fuzzy Decision Trees (FDT)

This is an algorithm based on the famous C4.5 technique where a decision tree is
built based on characteristics that are composed of smaller subsets, basing the decision of
the formation of the decision tree on the possibility of deriving a value from the informa-
tion [56]. This algorithm can collect hidden information from large data sets and produce
its own rules for optimal classification [57]. Therefore, C4.5 is made up of features such
as the selection of attributes as root, the possibility of producing a branch for each value,
and being able to repeat the process for each branch until all branch cases have the same
class. The highest gain is used for the selection of attributes as the root, as expressed in
Equation (2):

Gain (S, A) = Entropy(S)−
n

∑
i=1

|Si|
|S| = Entropy(S) (2)

where S is the set of cases, A is the attributes, n represents the partition number of the
attribute A, and Si represents the number of cases in the partition i-th.

The result of Entropy is computed as appears in Equation (3):

Entropy(S) =
n

∑
i=1
−pi × log2 × pi (3)

where S establishes the set of cases, n identifies the number of partitions of S, and pi
represents the proportion of S.

The fuzzy decision trees show an initial architecture identical to the decision trees
developed at the beginning. Fuzzy decision trees allow observations to be developed in
different branches of a node at the same time and with different levels of satisfaction in the
interval (0–1) [58,59]. Fuzzy decision trees differ from standard decision trees because they
apply division criteria related to fuzzy constraints, their inference techniques are different,
and the fuzzy sets representing the observations should not change. On the other hand,
the stimulus of the fuzzy decision tree is composed of two factors, such as a procedure to
build a fuzzy decision tree and an inference development for decision making. The fuzzy
modification has achieved better results in previous studies in comparison with the C4.5
algorithm [59].
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3.4. AdaBoost

AdaBoost is a meta-algorithm-based learning technique that can be applied to other
types of learning algorithms to increase your ability to hit. This procedure performs
a weighted sum to obtain the result from the other algorithms, called weak classifiers,
with the driven classifier such as AdaBoost. This classifier adapts to the rest of the weak
algorithms to hit in favor of the cases badly classified by the previous classifiers. AdaBoost
has the characteristic of being sensitive to samples with noise and outliers, but, in some
classification problems, it may be less sensitive than other classifiers [60].

AdaBoost develops a particular technique of training a powered classifier [61]. A
Boost classifier is a classifier composed as it shows in Equation (4):

FT(x) =
T

∑
t=1

ft(x) (4)

where a ft represents a weak learner which takes an object x as input and returns a real
value result pointing out the class of the object. The predicted object class and absolute
value show a level of confidence in the classification problem through the signal from the
weak classifier output. For its part, the sign T of the classifier will be positive in the case
that the sample is within a positive class, and negative otherwise.

Every classifier indicates an output, the hypothesis h(xi), for each sample in the training
set. In iteration t, a weak classifier has chosen ft and provides a coefficient αt, so the training
error adds Et, this classifier having the mission of minimizing the level of error, as shown
in Equation (5).

Et = ∑
i

E[Ft−1(xi) + αth(xi)] (5)

where Ft−1 represents the driven classifier generated in the prior step of training, E(F)
defines the error function, and ft(x) = αth(x) is the weak beginner that sums to the final clas-
sifier.

3.5. Extreme Gradient Boosting (XGBoost)

XGBoost is an algorithm based on increasing the gradient and has shown superior
predictive power to many computational methodologies widely used in the previous
literature [58,62,63]. It is an algorithm that can be applied to supervised learning situations
and is made up of sets of regression and classification trees (CART). Initially, the variable
to be predicted can be defined as yi, XGBoost is defined as it appears in Equation (6).

ŷi =
K

∑
k=1

fk(xi) fk ∈ F (6)

where K represents the total number of trees, fk for the tree, kih defines a function in the
functional space F, and F shows the possible set of all CARTs.

For the trained and trained CART, they will try to mimic the level of residues thrown
by the model in the training step. The objective function is optimized in step (t + 1) as
defined in Equation (7).

obj =
n

∑
i=1

l(yi, ŷ(t)i ) +
t

∑
i=1

Ω( fi) (7)

where l (.) represents the loss function in the training step, yi, shows the validation value

in this training step, ŷ(t)i describes the prediction value in step t, and Ω( fi) is fixed starting
the regularization defines in Equation (8).

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j (8)
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In this Equation (8), T represents the number of leaves and wj defines the score
obtained for the sheet jth. Once optimized (8), the expansive Taylor rule is applied to carry
out the descent of the gradient and collect different loss functions. Significant variables are
chosen during the training step as a node in the trees, eliminating non-significant variables.

3.6. Random Forests

Random forests (RF) are an ensemble method that averages the forecasts of a high
number of uncorrelated decision trees [64,65]. They usually display good performance
with better generalization properties than individual trees, are generally relatively robust
to outliers, and need virtually no parameter turning [66]. Random forests are supported by
two domain ideas: packaging to build each tree on a different starter sample of the training
data and random selection of features to decorate the trees. The training algorithm is quite
simple and can be described as follows: For each of the trees in the set, a sample of the
training data is drawn. By growing the tree Tb over Z, characteristics that are available as
candidates for the division at the respective node are randomly chosen [67]. Lastly, the
grown tree is added Tb to the whole. During the inference, each of the trees provides a pre-
diction ĉb(x) for the class label of the new observation x. The final random forest prediction
ĉRF(x) is then the majority vote of the trees, that is, ĉRF(x) = majority vote {ĉb(x)}.

Inspired by [64], RF holds 100 trees, each with a maximum depth of 10 for the sim-
ulation study. The trees all use cross-entropy as the error minimization measure and
m =
√

p characteristics are set as the default option for the classification configuration of
this algorithm.

3.7. Deep Belief Network

The Deep Belief Network (DBN) is a variant of a deep neural network made up of
two upper layers joined together as an undirected bipartite associative memory, called
restricted Boltzmann machines (RBM).

The lower layers form a directed graphical pattern, called the sigmoid belief network.
The difference between sigmoid belief networks and DBN is found in the way the hidden
layers are parameterized [68], as indicated in Equation (9).

P(v, h1, . . . , hl) = P(hl−1, hl)(
l−2

∏
k=0

P(hk|
∣∣∣hk+1) (9)

where v represents the vector of visible units, P(hk−1
∣∣∣hk) defines the conditional probability

of visible units at the level k. The joint distribution at the top level, P(hl−1, h), is an RBM,
being x(n) = [1, x1(n), x2(n), . . . , xm(n)]

T . Another way to show DBN as a generative
model can be pointed out in the expression (10):

w(n) = [b, w1(n), w2(n), . . . , wm(n)]
T (10)

DBN is made up of the accumulation of RBMs. The visible layer of each RBM in this
composition constitutes the hidden layer of the previous RBM. In the way that a model fits a
data set, the mission is to establish a model Q(hl−1, h) for the true posterior P(hl−1, h). The
approximations for the higher-level posterior are determined by the posterior Q(hl−1, h),
P(hl−1, h), where the upper-level RBM gives the possibility to calculate the inference
procedure [68].

3.8. Deep Neural Decision Trees

Deep Neural Decision Trees (DNDT) are composed of decision tree models computed
using deep learning neural networks. In these trees, a combination of weights is assigned to
DNDT, which belongs to a specific decision tree, its result being interpretable [69]. DNDT
starts with a “soft clustering” function [70] to evaluate the level of residues contained in
each node, which allows obtaining split decisions in DNDT. The “grouping” function is



Symmetry 2021, 13, 652 8 of 28

defined as using a real scalar as input x and getting an index of the “containers” that x
belongs to.

In the case of having a variable x, it can be joined in n + 1 intervals. The need to
generate n cut points is created, which are trainable variables within the algorithm. These
cutoff points are called [β1, β2, . . . , βn] and move in an increasing monotonic fashion,
hence, β1 < β2 < . . . < βn.

The function of the activation of the DNDT method starts from a neural network to
make the computation, as is defined in Equation (11).

π = fw,b,τ (x) = softmax((wx + b)/τ) (11)

where w is a constant and its value is set as w = [1, 2, . . . , n + 1], τ > 0 is a factor temperature,
and b is constructed as defined by Equation (12).

b = [0, −β1, −β1 − β2, . . . , −β1 − β2 − . . . − βn] (12)

The neural network, which is defined in Equation (12), produces an encoding of the
‘binning’ function x. In case τ approaches 0 (which is the case most often), the vector is
sampled via the straight-through (ST) method Gumbel-Softmax [71]. Considering our
‘binning’ function defined above, the main idea is to create the decision tree through the
Kronecker product. Suppose we get an input instance x ∈ RD with D features. Interleaving
each feature xd with its neural network fd(xd), we can find all the final nodes of the decision
trees, as expressed in Equation (13).

z = f 1(x1) ⊗ f 2(x2) ⊗ · · · ⊗ fD(xD) (13)

where z is now also a vector indicating the index of the leaf node where the instance
arrives x. Finally, we suppose that a linear classifier at every sheet z sorts the instances
that arrive there. DNDT scales well with the number of inputs because of the mini-batch
training of the neural network. However, a key design drawback is that, due to the use
of the Kronecker product, it is not scalable concerning the number of features. In our
implementation today, we avoid this problem with large data sets by having a forest with
random subspace training [65].

3.9. Sensitivity Analysis

In Machine Learning techniques, it is also necessary to analyze the impact of variables
as occurs in traditional statistical techniques, after using data samples that contain a wide
variety of variables. To carry out this evaluation, a sensitivity analysis must be applied.
The objective of this procedure is to determine the level of significance of the independent
variables over the dependent variable [72,73]. Therefore, it tries to determine those models
that are made up of the most important ones, and therefore, eliminate the variables that are
not significant. For a variable to be considered significant, it must have a variance greater
than the mean of the rest of the variables that make up the model. The Sobol method [74]
is the technique chosen to decompose the variance of the total V (Y) given by the following
equations expressed in (14).

V(Y) = ∑
i

Vi + ∑
i

∑
j>1

Vij + V1,2,...,k (14)

where Vi = V(E(Y|Xi)y, Vij = V(E|Xi, Xj)) − Vi − Vj.
The sensitivity indices are obtained by Sij = Vij/V, where Sij denotes the effect of

interaction between two factors. The Sobol decomposition makes it possible to estimate a
total sensitivity index STi, measuring the total sensitivity effects implied by the independent
variables.
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4. Sample, Data, and Variables
4.1. Sample and Data

From the 1970–2017 period, two samples have been obtained, each used for its pur-
pose, which has been for analyzing the forecast of a sovereign debt crisis and the prediction
of a currency crisis. For this, the samples have been classified by world regions, specifically
Africa and the Middle East, Latin America, Asia, Europe, and the total (global) set. The
database has been obtained from macroeconomic and financial data from the main inter-
national economic institutions like the International Monetary Fund (the database called
‘The World Economic Outlook’) and the World Bank (the database called ‘Open World
Bank Data’).

The dataset of the sample has been classified into three groups that are mutually
exclusive, reserving 70% for training samples, 10% for validation samples, and for the test
samples, the remaining 20%. Next, we selected the variables set that provided the most
number of classification hits in the verification set, and we have presented results based on
the average number of hits in the test set. The classification and prediction finally involve
using the developed model to produce predictions for the analyzed crises.

4.2. Variables
4.2.1. Sovereign Debt Crises

The database used for the construction of the sovereign debt crisis prediction mod-
els consisting of a comprehensive set of information (30 crude or converted significant
variables, with annual periodicity) concerning a panel (unbalanced) of 115 developed and
emerging markets in the period 1970–2017. An attempt is made to replicate the sample
used by Dawood, Horsewood, and Strobel (2017) as a reference work, expanding the time
range and the number of countries, as well as including the attributes of the indicators on
policy conditions and credit scoring. The macroeconomic variables have been obtained
from the World Bank, while the credit rating indicators are derived from Fitch Ratings
statistics and the political variables from the POLITY IV project, carried out by the Center
for Systemic Peace (http://www.systemicpeace.org/inscrdata.html (accessed on 5 March
2020)). The sample includes the four main regions worldwide, such as Africa and the
Middle East, Asia, Latin America and Europe.

The dependent variable is formed like most of the previous literature, like the work of
Dawood, Horsewood, and Strobel (2017). For emerging emerging countries, the dependent
variable indicates the value 1 in the event of any of the following events and zero otherwise:
interest and/or capital arrears increase above 5% of the pending debt; loans obtained
from the International Monetary Fund (IMF) that exceed 100% of the country’s quota; the
accumulated credit lent by the IMF exceeds 200% of the quota; participation in a debt
restructuring or rescheduling plan involving a volume greater than 20% of the outstanding
debt. For developed countries, in addition to the two related events around IMF loans, the
dependent variable is identified as 1 if public debt exceeds 150% of GDP. Table 1 describes
the variables used, and Table A1 in Appendix A shows the selected crisis years for each
country from the database used.

Table 1. Definition of the independent variables for the sovereign debt crises.

Attribute Abbreviation Description Exp. Sign.

Exposure to debt
TDEB Gross external debt as% of GDP +
IMFC Loans from the IMF as% of GDP +
GINT Global LIR +

Foreign Sector

FXR Total reserves (excluding gold) as% of GDP −
TRO Ratio of exports plus imports to GDP +/−

EXPG Annual export growth ratio −
CACC Balance of payments account as% of GDP −

FDI Foreign direct investment flows as% of GDP −

http://www.systemicpeace.org/inscrdata.html
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Table 1. Cont.

Attribute Abbreviation Description Exp. Sign.

Domestic
Macroeconomic

Factors

RGDP Annual growth of real GDP −
INF Rate of change in the consumer price index +
M2R Money supply ratio (M2) divided by reserves +

REER Deviation of the ratio of the real effective exchange rate of the currency (moving
average of the last 5 years) −

GOVS Final central government spending as% of GDP +/−
NSAV Total savings as% of GDP −
CON Sovereign debt crisis event in a country in the same region (t − 1) +

Banking Sector
DCRE Domestic credit ratio as% of GDP +/−
BASS Ratio of bank assets as% of GDP −
GBL Net bank claims on the central government +

Credit Rating
Indicators

SCLR Local currency long-term government bond credit quality scale +/−
SCFR Scale of the credit quality of the long-term government bond in foreign currency +/−
SBS Ratio of interest paid on 10-year public debt bond +
CDS Price of public debt bond default insurance +

Political Factors

FRAG Political fragmentation score (regional/ethnic tensions) +
POLI Combined politics score (autocracy score minus democracy score) +/−
DUR Durability of the political regime (‘POLI’ control variable) +

PERS Number of years since the last radical and abrupt political change. (‘POLI’ control
variable) +

RIR Score of the magnitude of civil war episodes involving the country (by year) +
SFI State fragility index +

EFEE Effectiveness of economic policy measured by GDP per capita −

4.2.2. Currency Crises

The database used for the construction of the currency crisis prediction models in-
cludes 32 explanatory variables from 163 developed, emerging, and developing countries
in the period 1970–2017. The dependent variable is constructed from the definition of [75]:
a currency crisis is a depreciation of the nominal value of the currency against the US dollar
of at least 30 percent, which is at least 10 points percentage higher than the depreciation
index in the previous year. The macroeconomic variables have been extracted from the
World Bank Open Data (see: https://data.worldbank.org/ (accessed on 11 March 2020))
and chosen from the experiences of [6,36,76]. For their part, the political variables come
from the POLITY IV project, following the factors used by [77]. Table 2 shows the set of
variables used, with their definition and expected sign, and Table A2 of Appendix A details
the years of crisis for the country by country in the sample. The Table A3 of Appendix A
summaries the number of crises occurred in the period previously mentioned.

Table 2. Definition of the independent variables for the currency crises.

Attribute Abbreviation Description Exp. Sign.

Exposure to debt

TDEB Gross external debt as % of GDP Short-term gross external debt as% of GDP Credit
interest rate adjusted for inflation +

STD Gross external debt as % of GDP Short-term gross external debt as% of GDP Credit
interest rate adjusted for inflation +

RIR Gross external debt as % of GDP Short-term gross external debt as% of GDP Credit
interest rate adjusted for inflation +

Foreign Sector

FXR Total reserves (excluding gold) as % of GDP −
TRO Ratio of exports plus imports to GDP +/−
IMP Imports of goods and services in current dollars (USD) +/−
EXP Exports of goods and services in current dollars (USD) −

CACC Balance of payments account as % of GDP −
PINV Net portfolio investment in current dollars (USD) −
FDI Foreign direct investment flows as % of GDP −

https://data.worldbank.org/
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Table 2. Cont.

Attribute Abbreviation Description Exp. Sign.

Domestic
Macroeconomic

Factors

RGDP Annual real GDP in current dollars (USD) −
GDPG Annual growth of real GDP −

INF Rate of change in the consumer price index +
M2M Annual growth of money supply (M2) +
M2R Money supply ratio (M2) divided by reserves +

REER Deviation of the ratio of the real effective exchange rate of the currency (moving
average of the last five years) −

GOVS Final central government spending as % of GDP +/−
FCF Gross fixed capital formation in current dollars (USD) −
UNE Total unemployment as % of the total labor force +
CON Sovereign debt crisis event in a country in the same region (with a delay of one year) +

SPEG Exchange rate regime applied to a currency to keep its value stable against a reserve
currency. +

PEG Exchange rate regime in which the value of a currency is set against the value of
another country’s currency. +

Banking Sector
DCRE Domestic credit ratio as % of GDP +/−

LIR Bank rate that meets the financing needs in the short and medium term −
DIR Rate paid by banks for demand, time, or savings deposits −

Political Factors

POLI Combined politics score (autocracy score minus democracy score) −
DUR Durability of the political regime expressed in years (‘POLI’ control variable) +

PERS Number of years elapsed since the last radical and abrupt political change (control
variable for ‘POLI’) +

SFI State frailty index (The higher the score, the greater the risk of frailty) +
LGOV Binary variable denoted by 1 if the government has a left ideology, and 0 otherwise +
ELEC Binary variable denoted by 1 if it is the year of general elections, and 0 otherwise +

TURN Annual rotation of political agents with veto (1—year in which there has been a
change of government; 0—otherwise) +

YEAR Years in office as president of the national government +
EFEE Effectiveness of economic policy measured by GDP per capita −

5. Results

This chapter completes the development of the empirical aspects of this research
work, offering detail of the results obtained. These results are presented for the global and
regional models, and for each of the crisis events considered. The results of the sensitivity
analysis have been performed using the Sobol method described in Section 3.9, and those
variables that have yielded a sensitivity level equal to or greater than 0.4 have been chosen
as the most significant of each model.

To be more effective in demonstrating the superiority of machine learning techniques
for the prediction of the crises treated in this study, a Logit analysis has been carried out
(see results in Tables A4 and A5 of Appendix A). The results of the Logit models performed
show an accuracy of 86.11–79.17% for training data and an accuracy range of 83.03–78.14%
for testing data. As explained in the Introduction, we applied machine learning techniques
to increase the precision capacity.

5.1. Results for Sovereign Debt Crises

The results of the sensitivity and precision analysis obtained in each stage according
to the data subsample (training, validation, and testing) of the global model, Africa, and
the Middle East, Asia, Latin America, and Europe, are shown in Tables 3 and 4, respectively.
After observing the results of the sensitivity analysis, the global model shows that variables
such as ORR are significant in all the applied methodologies. Another variable that shows
the same dynamics is FXR, showing high levels of sensitivity. For their part, the variables
that represent credit quality, such as SCFR and SBS, also have high importance according
to the results obtained. If we generalize the model in the test sample, the classification level
moves in the range 87.67–97.80%, showing the FDT technique with a precision of 97.80%
with test data. Finally, the Root Mean Squared Error (RMSE) values (Figure 1) resulting
from the methodologies used move in an interval of 0.33–0.22, showing that FDT provides
the lowest error (0.22).
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Table 3. Sensitivity analysis of sovereign debt crises.

MLP SVM FDT AdaBoost XGBoost RF DBN DNDT

Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity

Global

SBS 0.624 SBS 0.482 TRO 0.875 TRO 0.915 TRO 0.767 TRO 0.927 TRO 0.712 TRO 0.755
TRO 0.619 FXR 0.428 FXR 0.752 SCFR 0.651 FXR 0.724 INF 0.452 FXR 0.561 FXR 0.727
FXR 0.482 INF 0.415 SCFR 0.452 SBS 0.562 SFI 0.406 SFI 0.451 SFI 0.325 SFI 0.652
SFI 0.375 TRO 0.345 INF 0.375 FXR 0.519 SCFR 0.319 SCFR 0.282 SCFR 0.321

GINT 0.304 SFI 0.375

Africa &
Middle

East

IMFC 1.294 IMFC 1.601 IMFC 1.370 IMFC 0.916 IMFC 1.039 IMFC 1.023 IMFC 1.261 IMFC 1.069
POLI 0.621 TDEB 0.612 TDEB 0.493 SCFR 0.634 GOVS 0.526 TDEB 0.521 POLI 0.542 TDEB 0.653
SCFR 0.458 POLI 0.452 GOVS 0.452 TDEB 0.451 TDEB 0.427 M2R 0.378 GOVS 0.346 M2R 0.631

M2R 0.325 POLI 0.452 GOVS 0.175 SCFR 0.237 SBS 0.325 M2R 0.315 POLI 0.329
GDPG 0.321 SCFR 0.355 POLI 0.194 GOVS 0.315 SCFR 0.301
GOVS 0.305 GDPG 0.312

Asia

CACC 1.350 CACC 1.342 CACC 1.157 CACC 0.897 CACC 1.309 CACC 1.215 CACC 0.945 CACC 1.051
POLI 0.615 GDPG 0.621 REER 0.626 TDEB 0.436 REER 0.571 SCLR 0.623 TDEB 0.621 REER 0.548
SCLR 0.521 M2R 0.385 NSAV 0.502 NSAV 0.421 TDEB 0.425 POLI 0.525 IMFC 0.324 NSAV 0.451
NSAV 0.502 POLI 0.317 TDEB 0.428 GINT 0.325 FXR 0.381 REER 0.519 POLI 0.317 SCLR 0.329
REER 0.493 POLI 0.317 NSAV 0.359 FXR 0.417 POLI 0.308

GDPG 0.345 TDEB 0.314
GDPG 0.312

Latin
America

TRO 1.682 GOVS 0.910 TRO 1.145 TRO 1.206 TRO 1.243 TRO 1.324 TRO 0.910 TRO 1.231
SFI 0.956 TDEB 0.653 SFI 0.625 SFI 0.625 SCLR 0.652 GOVS 0.563 IMFC 0.675 SCLR 0.634

SCLR 0.679 IMFC 0.611 SCLR 0.452 IMFC 0.362 GOVS 0.423 SCLR 0.458 SCLR 0.452 IMFC 0.564
IMFC 0.454 TRO 0.563 IMFC 0.427 GOVS 0.324 INF 0.321 GINT 0.328 SFI 0.346 SFI 0.415
REER 0.428 INF 0.510 REER 0.329 SFI 0.315 SBS 0.324 GINT 0.357
SBS 0.421 SFI 0.462 GINT 0.317 GINT 0.314

SCLR 0.452
REER 0.323
FXR 0.322

Europe

TDEB 1.428 TDEB 1.351 TDEB 1.351 TDEB 1.452 TDEB 1.046 M2R 1.014 M2R 0.988 TDEB 1.152
M2R 1.145 M2R 1.05 M2R 1.145 M2R 1.231 M2R 1.023 TDEB 0.965 TDEB 0.872 M2R 1.061

GOVS 0.851 GINT 0.452 GOVS 0.325 GINT 0.514 GOVS 0.627 GDPG 0.621 GINT 0.329 GOVS 0.324
EFEE 0.462 EFEE 0.344 CACC 0.347 CDS 0.325 GOVS 0.384 GOVS 0.314 CACC 0.314

CACC 0.321 CDS 0.322 GINT 0.316 CDS 0.312
GOVS 0.307 EFEE 0.261

Note: Variables with a significance coefficient greater than 0.4 have been chosen.
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Table 4. Accuracy analysis for sovereign debt crises.

Method Classification Global Africa and Middle East Asia Latin America Europe

MLP
Training 88.88 90.28 88.70 87.35 88.82

Validation 87.96 89.04 86.04 86.39 86.76
Testing 87.67 88.67 85.44 87.65 86.36

SVM
Training 91.09 92.80 91.30 90.06 91.12

Validation 89.41 90.98 88.41 89.72 90.67
Testing 88.62 90.02 88.01 88.42 89.45

FDT
Training 98.95 100.00 100.00 99.22 100.00

Validation 98.13 100.00 98.52 99.03 99.91
Testing 97.80 100.00 96.82 98.95 99.76

AdaBoost
Training 98.48 97.30 99.49 98.74 99.49

Validation 97.63 99.34 96.54 98.33 99.75
Testing 96.08 98.40 95.97 97.13 99.45

XGBoost
Training 97.38 96.71 97.84 97.33 99.29

Validation 96.65 96.12 96.02 97.81 99.65
Testing 94.42 95.26 95.43 95.44 98.19

RF
Training 95.46 97.95 97.25 94.88 98.92

Validation 94.68 96.25 95.89 96.28 97.80
Testing 92.49 95.40 94.98 93.83 95.50

DBN
Training 95.30 95.27 96.83 94.10 98.46

Validation 93.17 94.69 94.20 95.06 96.46
Testing 91.71 93.70 93.95 93.76 94.02

DNDT
Training 96.29 97.13 97.81 94.12 99.36

Validation 94.79 96.22 96.44 95.70 98.94
Testing 93.43 95.30 95.20 94.23 97.58

Note: Values expressed in percentage.

The results of the analysis of the sensitivity of the model built with the sample from
Africa and the Middle East indicate that the most significant variables are IMFC, M2R,
SCFR, and SBS. Regarding the precision results obtained, if we generalize the model in the
test sample, the classification level moves in a range of 88.67–100%, with the FDT technique
being the one with the highest precision, 100% (testing). Other techniques like AdaBoost
and XGBoost show a high level of precision (exceeding 95%). The RMSE values (Figure 1)
produced by the methodologies used move in an interval of 0.24–0.07, showing again the
FDT technique as the algorithm with the lowest error (0.07).

The variables TRO, FXR, SCFR, and SBS have the greatest impact on the sensitivity
analysis of the Asian model. Regarding the precision results, the classification level moves
in a range of 8.44–96.82%, showing that FDT presents a precision of 96.82% with test data.
In this Asian model, the RMSE values (Figure 1) move in an interval of 0.38–0.26, being
again the FDT technique as the algorithm that yields the lowest error (0.26). Regarding
the Latin American model, it is observed that the most significant variables are TRO, FXR,
SCFR, and SBS. The classification level moves in a range of 87.65–98.85%, showing that FDT
obtains the best precision results. In this model, FDT also achieves a lower RMSE. Finally,
after examining the results of the sensitivity analysis, the European model shows that the
variables with the greatest impact are TDEB, M2R, FXR, SCFR, and SBS. The classification
level moves in a range of 86.36–99.76%, with the FDT technique being the one with the
highest precision (99.76%). Other techniques such as AdaBoost and XGBoost have also
obtained high levels of precision, exceeding 98% in the sample of testing. In this European
model, the FDT technique shows the lowest error (0.14).
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5.2. Results for Currency Crises

Tables 5 and 6 detail the results of the sensitivity and precision analysis obtained in
each stage according to the data subsample (training, validation, and testing) with the data
related to currency crises. In the global model, the most significant variables are M2M, M2R,
TRO, FDI, and REER. This shows that a considerable rise in the money supply and foreign
investment flows can decide the existence of a global currency crisis. If we generalize the
model in the test sample, the classification level moves in a range of 91.83–98.43%, showing
that the DNDT technique reaches the highest precision (98.43% with test data). In this
global model, the RMSE values (Figure 2) are within the interval 0.35–0.23, showing that
the lowest error (0.23) is obtained with FDT.

The Africa and Middle East model shows that M2M, M2R, and FDI are significant
with most of the techniques used. Therefore, increases in the money supply and with it, a
growth in the proportion of this supply over the country’s foreign exchange reserves, and
a low rate of foreign direct investment flows are the best predictors of currency crises in
Europe. Regarding the precision of this model, the classification level moves in a range of
92.18–98.24%, showing that the DNDT technique obtains the best fit (precision of 98.24%
with test data). Figure 2 details the RMSE values, being the DNDT technique the one with
the lowest error (0.19).

The Asian model shows that the variables FXR, TRO, M2R, and CACC show high
levels of sensitivity. Therefore, a large increase in the money supply and poor balance
of payments and foreign exchange reserve levels appear to be the best currency crisis
predictors in Asia. The DNDT technique is the one that offers the highest precision (98.54%
with test data). The error range is 0.34–0.18, again being the DNDT technique the one that
obtains the lowest (Figure 2). The variables TRO, RGDP, TDEB, and M2R are significant in
most of the models built in Latin America. These results indicate that a significant rise in
the proportion of the money supply to reserves and a low level of economic growth and
trade openness, as well as a high level of public debt, are the main factors in predicting
a currency crisis. For its part, the DNDT method is the best prediction technique, with a
precision of 96.90% in test data. In this Latin American model, the RMSE values presented
by the methods used are located in the interval of 0.34–0.26, with the RF technique being
the algorithm with the lowest error (0.26). The results of the sensitivity analysis in the
European model show that the variables of M2M, DCRE, FCF, and TDEB are the ones
with the greatest impact in most of the applied techniques. These results suggest that an
important expansion in the growth of the money supply and high levels of the balance of
payments credit and public debt are especially significant in detecting currency crises in
Europe. The level of precision is in the range of 92.93–99.07%, with the DNDT technique
being the one that reaches a greater success of 99.07% in the testing stage. Figure 2 also
details the RMSE values, being the DNDT technique the one with the lowest error (0.14).

5.3. Discussion of Results

The results obtained for the sovereign debt crises forecast reveal a set of robust
variables that are reproduced in almost all of the estimated models. Variables of the debt
exposure attribute such as TDEB and IMFC mean that the increase in debt levels also causes
an increased likelihood of a public debt crisis. These significant variables coincide with
the results of the previous works by [3,5], which indicate the great relevance of the debt
level on the probability of default. For their part, banking sector variables are significant in
previous studies [5], but they have not been validated in our estimates. On the contrary, it
has been more common in our models to observe greater significance in variables of the
foreign sector attribute such as FXR and M2R, which imply a high accumulation of foreign
currency for the payment of the debt of the public institutions of a country. This fact has
not been refuted, or at least not with such significance by previous works [7,10]. There are
other significant variables such as SCFR and SBS that have not been contrasted either by
the prior literature. These variables reflect the fact that a downgrading of the country’s
credit rating and an increase in interest payments make it more difficult to access financing
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and pay the debt, which increases the risk of default due to difficulties in refinancing said
debt [3,78]. Lastly, the most sensitive political variables, but with a weaker intensity than
those mentioned above, have been: SFI (in the Latin American and Global models) which
shows the state’s capacity to carry out public policies, and POLI that shows the country’s
level of democracy. In previous literature, only POLI has been identified as significant [3].

The results on sovereign debt default show that models developing with fuzzy C4.5
(FDT) raise the ability to forecast sovereign debt crises, obtaining better ratios of both
precision and other selection criteria. Most notably, the global model achieves an accuracy
of 97.8%, higher than the 87.1% obtained by [5] employing logistic regression. The same
work also reveals the improvement of the precision of their regional models. Along the
same lines, it improves the results reported by [3], which had 87% accuracy with regression
trees for emerging countries. Likewise, our methodology also improves the prediction
capacity of other computational techniques such as neural networks used by [11], with
which it obtained 85% accuracy for a sample of emerging countries. Reference [29] achieved
88.6% accuracy with their K-means method for a sample of emerging and developing
countries. Even so, other methodologies have shown a consistent predictive capacity
throughout the models built, both globally and regionally. These are the case of the
AdaBoost, XGBoost, and DNDT techniques, which have shown an average prediction in
testing close to 95% correct, making them interesting options to treat the prediction of
a sovereign debt crisis. Regarding the level of residuals measured by RMSE, the levels
obtained show that the models carried out have a high degree of fit, since the specific
statistical literature indicates that those levels below unity present good goodness of fit and
that those results less than 0.5 indicate particularly good goodness of fit [79,80]. Therefore,
our results show a unique set of variables, in addition to achieving better precision results
than the rest of the previous literature.

For their part, the results obtained in the study of currency crises also show a group
of explanatory variables that is common in a large part of the estimated models. The
FCF variable has been important in most of the models, showing the importance of the
evolution of a country’s net investment in increasing the threat of a currency crisis. This
result is in contradiction to the findings of [7], in which this variable was not statistically
relevant. Continuing with the domestic macroeconomic variables, the variables concerning
the money supply (M2M and M2R) have shown high significance, showing that a drastic
increase in the money supply hurts the price of the currency. On the other side, the INF
variable is not significant, in contrast to works like those of [6,35]. Another variable such as
REER has not been refuted as a significant factor either, unlike that shown in the works
of [38,45]. Likewise, variables of the foreign sector attribute such as TRO and CACC are
shown as more significant variables due to the importance of a country’s international trade
performance on price, something that refutes the results of the previous works of [2,36]. In
turn, the variables of the banking sector have been relevant in previous investigations [2,6],
but they have not obtained a huge significance in our estimates. Regarding the debt
variables, the TDEB variable (in connection with the debt accumulation) has been largely
significant, indicating that high public debt ratios decrease the currency’s value. Finally,
the most important political variables in our models have been: DUR and YEAR (Africa
and Asia) that show the state’s capacity to implement public policies, and POLI that shows
the level of democracy in the country. These variables have not been pointed as significant
in the prior literature [77].
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Table 5. Sensitivity analysis of currency crises.

MLP SVM FDT AdaBoost XGBoost RF DBN DNDT

Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity Variables Sensitivity

Global

M2M 1.315 TRO 1.314 TDEB 0.872 M2M 1.248 M2R 1.627 M2M 1.248 M2M 1.307 M2M 1.248
POLI 0.632 M2R 0.981 M2M 0.865 M2R 1.172 M2M 0.827 RGDP 0.624 M2R 1.152 M2R 1.172
FCF 0.553 FCF 0.814 M2R 0.691 TRO 0.834 TRO 0.725 REER 0.524 TRO 0.928 TRO 0.834
M2R 0.523 TDEB 0.720 REER 0.482 CACC 0.624 FDI 0.608 TDEB 0.501 TDEB 0.563 CACC 0.624
TDEB 0.497 FDI 0.689 FDI 0.387 REER 0.597 TDEB 0.472 TRO 0.442 CACC 0.528 REER 0.597
CACC 0.437 POLI 0.445 POLI 0.382 POLI 0.382 REER 0.425 POLI 0.331 GOVS 0.520 TDEB 0.439
TRO 0.435 GOVS 0.421 PINV 0.335 FDI 0.375 POLI 0.422 FDI 0.324 REER 0.517 POLI 0.382
REER 0.321 CACC 0.418 DCRE 0.317 TDEB 0.318 FCF 0.341 FDI 0.375

Africa
and

Middle
East

FDI 1.237 PINV 1.428 FDI 1.342 FDI 1.304 FDI 1.12 M2R 1.542 FDI 1.248 M2M 1.732
M2M 1.226 FDI 1.121 FCF 0.837 FCF 1.283 TRI 0.953 M2M 1.173 M2M 1.228 FDI 1.178
REER 0.985 TRO 0.925 PINV 0.628 M2M 0.728 DCRE 0.871 FDI 0.924 M2R 0.824 FCF 0.785
FCF 0.742 M2M 0.825 M2R 0.62 TRO 0.685 FCF 0.843 FCF 0.824 DCRE 0.708 TRO 0.748
M2R 0.653 GOVS 0.756 TRO 0.582 CACC 0.572 PINV 0.781 CACC 0.651 TRO 0.694 DCRE 0.627
POLI 0.653 FCF 0.647 POLI 0.573 GOVS 0.561 M2M 0.527 TRO 0.546 PINV 0.675 M2R 0.62

CACC 0.652 DCRE 0.357 GOVS 0.561 POLI 0.452 REER 0.473 GDPG 0.379 CACC 0.639 PINV 0.531
SFI 0.582 POLI 0.349 SFI 0.525 M2R 0.34 POLI 0.375 FCF 0.624 POLI 0.493

DCRE 0.538 CACC 0.391 SFI 0.304 POLI 0.315 CACC 0.483
PINV 0.368

Asia

CACC 1.652 PINV 1.562 M2R 1.582 TRO 1.351 TRO 1.067 TRO 0.952 CACC 1.275 TRO 1.351
TRO 1.223 TRO 1.132 TRO 1.214 CACC 1.181 DCRE 0.705 REER 0.951 TRO 1.274 CACC 1.181
M2R 0.562 FXR 0.924 EXP 1.159 EXP 0.657 EXP 0.621 FCF 0.572 REER 0.854 EXP 0.657
RIR 0.523 FDI 0.896 CACC 0.859 FXR 0.634 FDI 0.571 PINV 0.412 FXR 0.634 FXR 0.634

TDEB 0.452 POLI 0.651 FCF 0.625 REER 0.349 M2R 0.481 RGDP 0.354 EXP 0.512 REER 0.349
EXP 0.377 CACC 0.563 DCRE 0.527 CACC 0.437 TDEB 0.198
FCF 0.327 EXP 0.547 REER 0.349 RIR 0.309 POLI 0.185

POLI 0.324 GDPG 0.524 RGDP 0.345

Latin
America

TRO 1.314 GDPG 1.505 TRO 1.528 TRO 1.253 TRO 1.342 TRO 1.321 TRO 1.164 TRO 1.253
RGDP 1.256 TRO 1.285 TDEB 0.899 RGDP 1.173 RGDP 1.206 GOVS 0.851 RGDP 1.132 RGDP 1.173
FCF 0.788 M2M 0.895 GDPG 0.649 FCF 0.593 FCF 0.972 TDEB 0.715 TDEB 0.627 TDEB 0.726

TDEB 0.687 DCRE 0.852 M2M 0.618 TDEB 0.435 DCRE 0.628 FCF 0.627 FCF 0.505 FCF 0.593
FDI 0.649 FCF 0.683 POLI 0.524 IMP 0.415 TDEB 0.582 FDI 0.582 DCRE 0.425 IMP 0.415

DCRE 0.427 TDEB 0.652 DCRE 0.521 RIR 0.317 FDI 0.418 POLI 0.537 DCRE 0.301
POLI 0.354 FDI 0.649 FDI 0.415 DCRE 0.301 REER 0.391 EXP 0.324

Europe

DCRE 1.528 FCF 1.528 RGDP 1.162 DCRE 1.518 M2M 1.62 M2M 1.494 M2M 1.529 DCRE 1.518
M2M 1.234 M2M 1.293 M2M 0.925 M2M 1.494 DCRE 1.372 RGDP 0.952 DCRE 1.152 M2M 1.494
FCF 1.176 DCRE 1.184 DCRE 0.693 FCF 0.843 TDEB 0.983 TDEB 0.925 FCF 0.581 FCF 0.843

PINV 0.965 STD 0.765 STD 0.641 TDEB 0.648 FCF 0.843 DCRE 0.527 TDEB 0.421 TDEB 0.586
TDEB 0.326 TDEB 0.652 PINV 0.581 STD 0.415 PINV 0.721 EXP 0.517
EXP 0.315 PINV 0.541 GOVS 0.521 STD 0.473 FCF 0.355

SFI 0.437 TDEB 0.458 GDPG 0.318

Note: Variables with a significance coefficient greater than 0.4 have been chosen.
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Table 6. Accuracy analysis for currency crises.

Method Classification Global Africa & Middle East Asia Latin America Europe

MLP
Training 94.84 94.44 95.06 94.12 95.43

Validation 94.27 93.91 94.52 93.37 95.10
Testing 93.76 93.62 94.13 92.85 94.46

SVM
Training 93.33 93.38 93.47 93.04 93.81

Validation 92.65 92.57 93.02 92.68 93.22
Testing 91.83 92.18 92.61 91.95 92.93

FDT
Training 96.52 95.90 95.18 94.62 95.56

Validation 96.14 95.08 93.73 93.20 93.87
Testing 95.79 94.59 93.03 92.72 93.06

AdaBoost
Training 95.95 95.25 96.17 95.08 96.86

Validation 95.34 94.57 95.64 94.21 96.42
Testing 94.28 94.11 95.19 93.36 95.73

XGBoost
Training 98.36 96.81 96.45 98.26 97.78

Validation 97.87 98.87 95.52 96.19 96.23
Testing 97.25 95.41 95.34 95.71 96.33

RF
Training 96.48 98.83 98.38 98.01 98.88

Validation 94.79 97.79 97.07 97.12 97.58
Testing 94.01 96.52 96.17 95.93 97.01

DBN
Training 96.63 98.97 99.42 98.27 99.70

Validation 95.80 97.52 97.42 97.61 98.90
Testing 94.57 96.79 96.45 96.17 98.13

DNDT
Training 99.16 99.17 99.68 98.42 100.00

Validation 98.87 98.85 99.03 97.79 99.61
Testing 98.43 98.24 98.54 96.90 99.07

Note: Values expressed in percentage.

The results on the case of currency crises conclude that the models built with DNDT
obtain a forecasting ability close to 100% for currency crises in the regional and global
models, with higher levels of accuracy than in other studies. The precision of the global
model is 96.38%, but a comparison of this model is complex as it is the first model developed
to predict currency crises worldwide. Other studies have obtained lower levels of precision,
such as [2], with an accuracy of 84.62% based on the dynamic panel model. In the same way,
we have also improved the results obtained by [6], who reached 93.8% accuracy employing
neural networks for Turkey. Our methodology is also more powerful in prediction than
other computational methods such as the k-nearest neighbor hybrid algorithm and vector
support machines (kNN-SVM), which had an accuracy of 97% for a sample of emerging
markets [36].

6. Conclusions

The present study developed robust global and regional models to predict interna-
tional financial crises, specifically those related to sovereign debt and the price of the
currency. Similarly, an attempt is made to show the superiority of computational tech-
niques over statistics in terms of the level of precision. An attempt has been made to clarify
these issues by overcoming the previous absence of definitive conclusions due to the lack
of homogeneity caused by the disparity of methodologies, approaches, available databases,
periods, and countries, among other issues.

The results of the study carried out have allowed us to obtain the conclusions that
appear below. First, to confirm the existence of differences between the global and regional
models, and that the global models can even show a precision capacity similar to the
mean of the regional models. To this end, the global sovereign debt prediction models for
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the studied regions (Africa and the Middle East, Asia, Latin America, and Europe) have
obtained an accuracy capacity of 97.80%, 100%, 96.82%, 98%, 85%, and 99.76%, respectively.
For its part, this precision relationship for the models built in the study of the currency
crisis shows a precision of 98.43%, 98.24%, 98.54%, 96.90%, and 99.07% for the Global
sample, Africa and the Middle East, Asia, Latin America, and Europe, respectively. This
shows the high level of robustness of the models built concerning previous works.

Second, about the objective that postulated that the application of computational
methods could improve the level of precision shown by statistical techniques, our empirical
evidence has allowed us to accept it for the analyzed crises, all based on the comparison
made between levels of success for test sample data and obtained RMSE values. The best
methods for the sovereign debt crisis have been FDT, AdaBoost, XGBoost, and DNDT.
While for the prediction of the currency crisis, the best techniques have been DNDT,
XGBoost, RF, and DBN.

Regarding the explanatory variables of sovereign debt crises, in the set of estimated
models, some variables have appeared as significant continuously. They are the variables
related to the exposure to the country’s debt, more specifically TDEB, which shows the
importance of a high level of public debt in sovereign default, and IMFC, which indicates
the influence of high dependence on credit provided by the IMF as a possible cause of the
increased probability of default. On the other hand, the foreign sector variables related
to the amount of foreign exchange reserves accumulated by a country, such as FXR and
M2R, show the importance of a high level of foreign exchange reserves with which to be
able to face international debt payments. Lastly, the SCFR and SBS variables also show
continued significance, showing that interest paid and credit rating are important factors
when evaluating the possibility of a sovereign default.

The results of the currency crisis prediction models also show that a small group of
variables are consistently significant. This is the case of the FCF variable, indicating how
a low level of dynamism in net investment in the country can cause a strong drop in the
currency’s value. Similarly, the variables that the money supply represents, such as M2M
and M2R, indicate that a rise in the money supply in the market makes the currency lose its
price. Variables of the foreign sector attribute such as TRO and CACC are also presented as
significant variables due to the importance of the commercial opening of a country in the
price of its currency. Finally, in the case of naming the most significant political variables in
a general way, the variables DUR and YEAR indicate a higher incidence of currency crises
in those countries where political regimes are perpetuated, i.e., close to totalitarianism.

6.1. Implications

The above conclusions have important theoretical and practical implications. From
a theoretical approach, the models developed can help provide tools for the prevision of
sovereign debt and currency crises that are able to avoid international financial crises both
at the regional level and as a whole (global), since a high level of robustness in these models
concerning previous works. This study is a great contribution to the field of international
finance, as the results presented in this work have considerable implications for further
decisions, providing tools that help governments and financial markets achieve financial
stability. Given the need of countries to obtain financing and establish international
relations, our models can help to foresee sovereign debt and currency crises in them,
avoiding financial disturbances and imbalances and reducing the possibility of damages in
the financial intermediation process. All this implies an improvement in the functioning
of financial markets, debt sustainability, the profitability of credit institutions, and the
non-banking financial sector, such as investment funds. From a practical point of view, our
sovereign debt and currency crisis prediction models can be useful to assess the reputation
of a country more accurately. In a globalized world, companies always try to expand into
markets outside their own, which makes it vital to enjoying a good image of the country of
origin to improve the perception of the goods and services offered. A poor reputation of a
country in terms of paying its debt obligations, as well as an unstable currency, can have a
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negative impact on companies from that country in other markets about seeking financing,
suppliers, and partnerships with other companies. Therefore, a better perception of the
country’s financial management can improve on the one hand, its position in the financial
markets, and, on the other side, the country’s reputation for the benefit of its companies.

6.2. Limitations and Further Research

This investigation has certain limitations, principally the historical data available for
emerging economies. As this research was conducted from a globally oriented perspective,
it requires a much larger range of information compared to other studies in this field.
Furthermore, future studies may delve into other types of political information to deepen
their influence both on the financial crises studied and on the impact of the country’s
reputation. It would be convenient to relate the influence of the financial crises suffered by
a country on exports or tourism, important dimensions in the country’s reputation through
modifications of the country strength models, as the main tools for measuring reputation.
Likewise, and to increase the generalization of the results in the study of the country’s
reputation, further analysis could be included on the impact that the financial strength of
a country has on corporate reputation, both in large companies and in those that wish to
expand internationally, for instance energy companies.

Machine learning techniques show a great capacity to absorb observations, the use
of large data samples being vital to obtain a high level of accuracy. Therefore, it shows
a greater margin to achieve better precision ratios and a low level of error. But some of
the weaknesses of these computational techniques compared to statistics is their higher
computational cost to perform the analyzes, as well as greater difficulty in interpreting some
methodologies. Therefore, leaving aside the superiority of machine learning methodologies
demonstrated in this study and a multitude of previous works, it is necessary to find new
techniques that can mitigate the weaknesses described. An interesting technique to test
powerful alternatives for predicting international financial crises, such as their effect on
the management of the country’s reputation, would be dynamic systems. This technique
has been used in different areas of management, obtaining very satisfactory results in
simulations of medium and long-term scenarios [81–84].
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Appendix A

Table A1. Sovereign debt crisis by country and by year.

Country Years Country Years Country Years

Albania 1990 Finland Nicaragua 1980
Germany Francia Niger 1983
Algeria Gabon 1986, 2002 Nigeria 1983
Angola 1988 Gambia 1986 Norway

Argentina 1982, 2001, 2014 Georgia New Zealand
Armenia Ghana Netherlands



Symmetry 2021, 13, 652 22 of 28

Table A1. Cont.

Country Years Country Years Country Years

Australia Grenada 2004 Panama 1983
Austria Greece 2012 Paraguay 1982

Bangladesh Guinea 1985 Perú 1978
Belgium Equatorial Guinea Poland 1981

Belize 2007, 2012, 2017 Guyana 1982 Portugal
Bolivia 1980 Haiti United Kingdom
Brazil 1983 Honduras 1981 Central African Republic
Brunei Hong Kong Czech Republic

Bulgaria 1990 Hungary Dominican Rep. 1982, 2003
Camerún 1989 India Romania 1982
Canada Indonesia 1999 Russia 1998

Chad Iran, R.I. 1992 Senegal 1981
Chile 1983 Ireland Seychelles 2008

China, R.P. Israel Sierra Leone 1977
Cyprus 2013 Italy Singapore

Colombia Jamaica 1978, 2010 Syria
Congo, Rep. 1986 Japan South Africa 1985
Congo, D.R. 1976 Jordan 1989 Sudan 1979
South Korea Kazajistan Sweden
Ivory Coast 1984, 2001, 2010 Kenya Switzerland
Costa Rica 1981 Kuwait Thailand

Croatia Lebanon Tanzania 1984
Denmark Liberia 1980 Togo 1979
Dominica 2002 Libya Trinidad y Tobago 1989
Ecuador 1982, 1999, 2008 Madagascar 1981 Tunisia

Egypt 1984 Malasia Turkey 1978
Slovakia Malawi 1982 Ukraine 1998, 2015

Spain Morocco 1983 Uganda 1981
United States Mexico 1982 Uruguay 1983, 2002

Estonia Moldavia 2002 Venezuela 1982, 2017
Ethiopia Mozambique 1984 Vietnam 1985

Philippines 1983 Namibia Zambia 1983

Table A2. Currency crisis by country and by year.

Country Years Country Years Country Years

Albania 1997 Denmark Jordan 1989
Germany Dominica Kazajistan 1999, 2015
Algeria 1988, 1994 Ecuador 1982, 1999 Kenya 1993
Angola 1991, 1996, 2015 Egypt 1979, 1990, 2016 Kirguistan 1997

Argentina 1975, 1981, 1987,
2002, 2013 El Salvador 1986 Kuwait

Armenia Eritrea Laos, R.D.P. 1972, 1978, 1986,
1997

Australia Slovakia Lesoto 1985, 2015
Austria Slovenia Latvia 1992

Azerbaiyán 2015 Spain 1983 Lebanon 1984, 1990
Bangladesh 1976 United States Liberia
Barbados Estonia 1992 Libya 2002
Belgium Ethiopia 1993 Lithuania 1992

Belice Fiji 1998 Luxemburgo
Benín 1994 Filipinas 1983, 1998 Macedonia

Belarus 1997, 2009, 2015 Finland 1993 Madagascar 1984, 1994, 2004
Bolivia 1973, 1981 Francia Malasia 1998

Bosnia y
Herzegovina Gabon 1994 Malawi 1994, 2012

Botsuana 1984 Gambia 1985, 2003 Maldives 1975
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Table A2. Cont.

Country Years Country Years Country Years

Brazil 1976, 1982, 1987,
1992, 1999, 2015 Georgia 1992, 1999 Mali 1994

Brunei Ghana 1978, 1983, 1993,
2000, 2009, 2014 Morocco 1981

Bulgaria 1996 Grenada Mauricio
Burkina Faso 1994 Greece 1983 Mauritania 1993

Burundi Guatemala 1986 Mexico 1977, 1982, 1995
Bhutan Guinea 1982, 2005 Moldavia 1999

Cape Verde Equatorial Guinea 1980, 1994 Mongolia 1990, 1997
Camboya 1971, 1992 Guinea-Bissau 1980, 1994 Mozambique 1987, 2015

Cameroon 1994 Guyana 1987 Myanmar 1975, 1990, 1996,
2001,2007, 2012

Canada Haiti 1992, 2003 Namibia 1984, 2015
Chad 1994 Honduras 1990 Nepal 1984, 1992
Chile 1972, 1982 Hong Kong Nicaragua 1979, 1985, 1990

China, R.P. Hungary Niger 1994

Cyprus India Nigeria 1983, 1989, 1997,
2016

Perú 1976, 1981, 1988 Sierra Leona 1983, 1989, 1998 Trinidad and
Tobago 1986

Poland Singapore Tunisia
Portugal 1983 Syria 1988 Turkmenistan 2008

United Kingdom Sri Lanka 1978 Turkey 1978, 1984, 1991,
1996, 2001

Central African
Republic 1994 Swaziland 1985, 2015 Ukraine 1998, 2009, 2014

Czech Republic South Africa 1984, 2015 Uganda 1980, 1988

Dominican Rep. 1985, 1990, 2003 Sudan 1981, 1988, 1993,
2012 Uruguay 1972, 1983, 1990,

2002
Ruanda 1991 South Sudan 2015 Uzbekistan 2000

Romania 1996 Sweden 1993 Venezuela 1984, 1989, 1994,
2002, 2010

Russia 1998, 2014 Switzerland Vietnam 1972, 1981, 1987
San Cristóbal y

Nieves Surinam 1990, 1995, 2001,
2016 Yemen 1985, 1995

São Tomé and
Príncipe 1987, 1992, 1997 Thailand 1998 Zambia 1983, 1989, 1996,

2009, 2015

Senegal 1994 Tayikistan 1999, 2015 Zimbabue 1983, 1991, 1998,
2003

Serbia 2000 Tanzania 1985, 1990
Seychelles 2008 Togo 1994

Table A3. Frequency of crisis event (number per year).

Year Currency Crises Sovereign Debt Crises

1970
1971 1
1972 5
1973 1
1974
1975 5
1976 4 1
1977 1 1
1978 5 3
1979 3 2
1980 4 3
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Table A3. Cont.

Year Currency Crises Sovereign Debt Crises

1981 10 6
1982 5 9
1983 12 9
1984 10 4
1985 10 3
1986 4 3
1987 6
1988 5 1
1989 8 3
1990 10 2
1991 6
1992 6 1
1993 8
1994 20
1995 4
1996 6
1997 7
1998 10 2
1999 7 2
2000 4
2001 3 2
2002 5 4
2003 4 1
2004 1 1
2005 1
2006
2007 1 1
2008 3 2
2009 5
2010 1 2
2011
2012 3 2
2013 2 1
2014 3 1
2015 13 1
2016 4
2017 2

Total 236 75

Table A4. Results of Logit analysis for sovereign debt crises.

Variables Coefficients Sig. (Wald) ROC Curve R2 Nagelkerke
Classification (%)

Training Testing

Global

SBS 0.731 0.000

0.675 0.582 79.17 77.38
TRO −0.826 0.006
FXR −0.294 −0.005
INF 0.502 0.000

Africa and
Middle East

IMFC 1.038 0.001

0.718 0.638 85.36 81.24
GOVS 0.592 0.007
TDEB 0.291 −0.004
SCFR −0.374 0.000
POLI −0.105 0.000
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Table A4. Cont.

Variables Coefficients Sig. (Wald) ROC Curve R2 Nagelkerke
Classification (%)

Training Testing

Asia

REER −1.274 0.000

0.659 0.572 81.93 78.51
CACC −0.682 0.000
NSAV −0.719 0.007
POLI −0.073 0.000
TDEB 0.388 −0.009

Latin
America

TRO −0.737 0.000

0.725 0.653 80.28 78.14

GOVS 1.193 −0.008
SFI 0.159 0.000

IMFC 0.461 0.003
SCLR −0.153 0.005
INF 0.274 0.000

Europe

TDEB 0.955 −0.012

0.750 0.674 82.46 79.62

M2R 0.684 0.000
GOVS 1.003 0.000
GINT 0.241 −0.003
EFEE −0.639 0.000
CDS 0.146 0.000

The sample has been divided into 70% for training and 30% for testing.

Table A5. Results of Logit analysis for currency crises.

Variables Coefficients Sig. (Wald) ROC Curve R2 Nagelkerke
Classification (%)

Training Testing

Global

M2M 1.048 −0.003

0.625 0.545 83.48 80.57

M2R 0.734 0.000
POLI −0.382 −0.004
REER −0.285 0.013
CACC −0.419 0.000
TRO −0.118 0.000

Africa and
Middle East

FDI −0.892 0.000

0.727 0.621 85.94 82.26
FCF −0.537 −0.008

DCRE 0.583 0.000
CACC −0.242 0.006

Asia

CACC −1.235 0.000

0.650 0.529 86.11 83.03

TRO −0.728 0.000
EXP −0.326 0.000

PINV −0.440 −0.017
REER −0.962 0.005
DCRE 0.287

Latin
America

TRO −0.937 0.006

0.715 0.692 84.20 81.83
FCF −0.629 −0.004

RGDP −0.249 0.000
TDEB 0.385 0.000
DCRE 0.273 −0.001

Europe

DCRE 0.849 −0.011

0.725 0.644 85.19 82.62

M2M 0.393 −0.003
RGDP −0.741 0.000
TDEB 0.361 0.004
FCF −0.104 0.000
STD 0.215 0.003

The sample has been divided 70% for training and 30% for testing.
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