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Abstract: The purpose of this paper is to construct a unified generating function involving the families
of the higher-order hypergeometric Bernoulli polynomials and Lagrange-Hermite polynomials.
Using the generating function and their functional equations, we investigate some properties of these
polynomials. Moreover, we derive several connected formulas and relations including the Miller-Lee
polynomials, the Laguerre polynomials, and the Lagrange Hermite-Miller-Lee polynomials.

Keywords: hypergeometric Bernoulli polynomials; Lagrange polynomials; hypergeometric Lagrange—
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1. Introduction

Special polynomials (like Bernoulli, Euler, Hermite, Laguerre, etc.) have great impor-
tance in applied mathematics, mathematical physics, quantum mechanics, engineering,
and other fields of mathematics. Particularly the family of special polynomials is one of the
most useful, widespread, and applicable families of special functions. Recently, the afore-
mentioned polynomials and their diverse extensions have been studied and introduced
in [1-14].

In this paper, the usual notations refer to the set of all complex numbers C, the set of
real numbers R, the set of all integers Z, the set of all natural numbers N, and the set of
all non-negative integers Ny , respectively. The classical Bernoulli polynomials B, (x) are
defined by

t Xt ad B t"
d—1° _ngo n(x)ﬁ

Upon setting x = 0 in (1), the Bernoulli polynomials reduce to the Bernoulli numbers,
namely, B, (0) := B,,. The Bernoulli numbers and polynomials have a long history, which
arise from Bernoulli calculations of power sums in 1713 (see [9]), that is

(It] < 27). M

§° - Busa(m+1) = By
= n+1

The Bernoulli polynomials have many applications in modern number theory, such as
modular forms and Iwasawa theory [11].
In 1924, Norlund [13] introduced the Bernoulli polynomials and numbers of order « :

ezt 0 "
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For M,N € N, and « € C, Suand Komatsu [10] defined the hypergeometric Bernoulli

polynomials BI(\Z,)N,n (x) of order « by means of the following generating function:

ot ® W g

1F(M;M+N; 1) = Baa (¥ ©)
where . t"

1B (M; M+ N;t) = Z MH’\;
is called the confluent hypergeometric function (see [14]) with (x), = x(x +1)---

(x+n—1)forn € Nand (x)p = 1. When x =0, B](é,)N,n(O) = Bl(\i,)N,n are the higher-order
generalized hypergeometric Bernoulli numbers. When M = 1, the higher-order hyperge-
ometric Bernoulli polynomials Bg\?)n( )= Bi Izln( ), which are studied by Hu and Kim
in [9]. When « = M = 1, we have that By ,(x) = By, (x) are the hypergeometric Bernoulli
polynomials which are defined by Howard [7,8] as

eXt tN Xf/Nl 0
B . 4
(LT N;E)  ef — Ty a( Z Nl ! @)

Fora =M =N=1in(3), wehaveB&)n( ) := By(x).

The Lagrange polynomials in several variables, which are known as the Chan—Chyan—
Srivastava polynomials [2], are defined by means of the following generating function:

H(]. — x t Y = Z g(alr o xl/ /xr)tn/ (5)

(ajec (=1, ) [ <min{lxa| 7l 7'}),
and are represented by
K kr

g,(qal""'ar)(xlz' cx) = Y (a) (“r)k,k71, . k’| . (6)
kit Thy=n v

Altin and Erkus [1] introduced the multivariable Lagrange-Hermite polynomials
given by

r

[Ta=xt) ™ = Z B x1, cxp)t, (7)

=1

) . - _1 _1
(0 €C (j=1,- 7))t <min{a| ™ x| 72, 0] 73,

where
((X o ) x]1<1 xkr
AR r
Iyt r (xl,-..,Xr)Z Z (Dél)kl"'(ar)kfﬁ"'k,'
k142ky+---+rky=n 1 re
(o,

In the special case when r = 2 in (7), the polynomials h,, ) (x1,- - - x,) reduce to
the familiar (two-variable) Lagrange—Hermite polynomials considered by Dattoli et al. [3]:

(1—x1t) " (1 — xpt2) %2 = ¥ B (xy, ) 7. ®)
n=0
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(0(1,---,067)

The multivariable (Erkus—Srivastava) polynomials Z,In.l1 L (x1,---,x,) are defined
by the following generating function [6]:

T o
H(l_x]t] Y 2 nll xl/ ,xr)tnr )

j=1
(0 €C,LLEN (j=1,--,7); [t < min{|xg| /", |7/}

which are a unification (and generalization) of several known families of multivariable

polynomials including the Chan-Chyan-Srivastava polynomials g,(z”‘] ) (x1,--+, %) in (5)

and multivariable Lagrange-Hermite polynomials (7).

By (9), the Erkus-Srivastava polynomials Ur(t“fl?r) (x1,- -+, xr) satisfy the following

explicit representation (cf. [6]): "

kl ky
oy X
ulr @, x) = Y (@) (@ >k,k1,-~ o (10)

ki -+t lky=n

which is the generalization of Relation (6).

In this paper, we introduce the multivariable unified Lagrange-Hermite-based hy-
pergeometric Bernoulli polynomials and investigate some of their properties. Then, we
derive multifarious connected formulas involving the Miller-Lee polynomials, the Laguerre
polynomials polynomials, the Lagrange Hermite-Miller-Lee polynomials.

2. Lagrange-Hermite-Based Hypergeometric Bernoulli Polynomials

By means of (3) and (9), we consider a unification of the hypergeometric Bernoulli
polynomials BI(\Z)N ,(x) of order a and the multivariable (Erkus-Srivastava) polynomials

u(”‘l

iy )(xl, , xr). Thus, we define the multivariable unified Lagrange—Hermite-based

(“1/"'/0‘7)

MN oo 1, (X[x1, -+, xr) of order & € C by

hypergeometric Bernoulli polynomials yB
means of the following generating function:

1
GE(M; M+ N; 1))

(e}
e H = Z() HB](VOI"KLIT;;;.Z.{:%K) I, (x]xq, -, x)t", 11)
n—=

’

~1/h 1/1,
7

wherew; € C,[; €N forj=1,---,rand || < min{|x]|

lj = j, we have HBI(VIan) xlxg, e xp) = HBI(\/INn )(x|x1,- -+, xy), which we call the

multivariable Lagrange—Hermite-based hypergeometric Bernoulli polynomials of order « :

, x| 77/ }. Upon setting

1

t - (a|a
(1Fi(M; M + N; t)) e’ H (1= x;th) ™ Z nBya " Dl )t (12)

Where lX]' € (C fOI'j - 1, ot and |t| < min{|x1\71, Tty |xr|71/7}' Furthermore, note that
1 - 7R
HB](\,IK‘ﬂ,,zl (e, e xp) = HBl(\j‘I}N,n;Dlél,)m,zr (x|xq, -+, xp).
Remark 1. e e = ¥ =2, we gt B0 (s, ) = B )

(x|x1, x2), which we call the Lagrange—Hermite-based hypergeometrzc Bernoulli polynomials of
order w:

xt

¢ (o]ory ) n
1—X1t o 1—th2 —ay uB x|xy, 1) (13)
GBEMGM N ) Eb M (xx1, %2)
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Remark 2. When I; = 1 and r = 2,we acquire HBZ(VI ‘]'f,lnl 1(x[xq, - x) = ng(v?,'ﬁJ%”'ar)

(x|x1, x2), which we call the Lagrange-based hypergeometrzc Bernoullz polynomials of order w,
and which are defined by

ext

1F1(M;M + N; t)

(1= xqt) (1 — xpt) 2 = ng S (el x) . (14)

When x = 0 in (14), we have gB( o, “2 (0]x1,x2) = gBI(&!i},’;Z) (x1, x2), which we call
the Lagrange-based hypergeometric Bernoulli nurnbers of order a.

. . . (o|ag,-
We now investigate some properties of B, '\ 11 (x|x1, LX),

Theorem 1. The following summation formula:

(o|aq, - 0r) & (0, r) BJ(\Z)NS(X)
HBM/N;J]’,..’. ,lr(xlxll e X)) = Z Un_lg;lljif,l, (xlz' o /xr)# (15)
s=0 ’
holds for n € Ny.
Proof. By (11), we have
Z BM‘:jl 1 ar) (x|x1,--- ,xr)tn = e x r (1_xjtlj)7txj
wh (1F1(M; M+ N; 1)) -5
B
o tn ) @y, ) © 1 N M Ns( )
2 MNn I’Z' Zunlll (xl’ ' X Zzunlsll X],'”,Xr) 5! t",
n=0 *n=0 n=0s=0 ’
which gives the asserted Formula (15). O
Theorem 2. The following summation formula:
+Blay, -, M)N,
By Al ) (x -yl - x 2 By ) (a1
holds for n € Ny.
Proof. By using (13), we have
©0 xt r yt
BBy ) (x gy, ) = ° (1 ;th) 7% -
n;() Mt (1F(M; M+ N; t))“, ! (1F1(M; M + N; £))P
— B “‘D‘l/ e . tm
ZH MN il (x|x1, = Z MNm
_ (ala () t*
Z Z BM Nln m; l1 (x|x1, T ,xr)BM,N,m(y)ﬁ,
n=0m= :
which gives the asserted result (16). O
We give the following theorem:
Theorem 3. The following summation formula:
BI(\ZL‘K([]” lljl l"" ﬁf)(x|x1,, X Z B]Viékéfln m; l) (x|x1’ o )UIS1 l?l--,l;_ﬁr)(xlf T ,xr) (17)
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/Ml

holds for n € Ny.

Proof. Using definition (11), we have

Z HBY A e P (g, o)t = e z r (1 — x;th)Pims
=0 (1F(M; M+ N; )" 55
ext r
= (1- X; t] & (1—x; t/
(1F1(M; M+ N;t))* =1 H J
= Z() B](\/?‘I‘fll;’l.l{,ar), (x|x1’ ’ X Z nllr .’ 7ﬁ7) o /xr)tn/
n: :
e8] n
Z Z Nafdlffln ml)l g (e x Uy, lfl Iy P ey, 2,

which provides the claimed result (17). O

We state the following theorem:

Theorem 4. The following summation formulas for the higher-order generalized hypergeometric

Lagrange—Hermite—Bernoulli polynomials HB%‘;‘\}; 2) (x|x1, x2) hold:

I'(N L rm —k
V1B ()1, 1) = F(n(—|->1) kz( " )r(Z\/EjLIJ\r]in—)k) By(M, N), (18)
=0

and
n:F(M+N) 1 I'(M+n—k)

(1/0,0)
T(M) nb

k;)F(MJrNjLn—k) MNk

(x[1,1) (19)

(n— k)!'
Proof. For « =1 and &1 = ap = 01in (13), we have

1 1|00
1,1)t
1F1(M'M+N,‘t) Z BMN” X| )

:ii( )BkMN X" kt 2 HBU) (x[1,1)¢". (20)

Moreover, we have

»  T(M+N) i I'(M+n—k)

_ (1]0,0) n!
S V7YY IS v vy L AV A

(n—k)

Therefore, by integrating (20) with weight (1 — x)N~1xM~1 we obtain

[ = N B i D
1
- Z(Z)Bk(M,N)J, AMAn—k=1(1 _ p)N-1gy
k=0 YJo
~ T(N) & (n\ T(M+n—k
- Wg<k>r(M+N+n—k)Bk(M,N),

which completes the proof. [



Symmetry 2021, 13, 648 6of 11

Theorem 5. The following summation formula for the higher-order generalized hypergeometric

(o \061 ﬂtz (

Lagrange-Hermite-Bernoulli polynomials yB,, x|x1, x2) holds:

h,(;xl'DQ)( I'(M+N) i [(M+n—k) B(l\lxl,lxz)

T(M) S T(M+N+n—k" MmNk Ok x) = @D

xler) =

Proof. For « = 1 and x = 0in (13), we have

Y R (xy, 1) " = (1 — x08) "1 (1 — xpt2) ™2 = 1 Fy (M; M + N t) Z BN (0]x1, x)t"

n=0 n=0
=Y TN, ( ) 2 Bz(\}ll‘;\},fﬁ (0]x1, x) ¢
n=0
_TM+ N) SR F(M +n—k) (1]ag,z) t
T T(M) EO ; TM+N+n—Riomnk O G

Comparing the coefficients of #" in both sides, we get the result (21). O

We give the following derivative property:

Theorem 6. The following derivative property for the higher-order hypergeometric generalized
Lagrange—Hermite—Bernoulli polynomials HB(W(1 ) (x|x1, x2) holds:

dp
s HBYN ) (el ) = BN (el nzp @)

Proof. Start with

) p Ht: 1— x‘tlf —a; p

Z%H I(V?‘Ifllnl (x|x1, ,Xr)tn _ j 1( j ) aipe

= (1F1(M; M + N; )" dx
TTj_y (1 — x;t) %
(1F1(M; M + N; 1))*

o0
= ) HB%!?\},ZLZ)(X|X1/X2)W“’,
n=0

xt

xttp

which implies the asserted result (22). O

Theorem 7. The following summation formula involving the higher-order generalized hypergeomet-

(a |’Xl th (

ric Lagrange—Hermite—Bernoulli polynomials B, |x1, x2) and higher-order generalized

hypergeometric Lagrange—Bernoulli polynomials gB](wli};‘ 2 (x|x1, x2) holds true:

gl#la1a2) gl#la1p) (x2)™ 23
Z M,N,n—m x|x x2 Z M,N,n—m ‘xlly) m' (lxz)m‘ ( )

Proof. The proof is similar to Theorem 3. [

3. Some Connected Formulas

The generation functions (13) and (14) can be exploited in a number of ways and
provide a useful tool to frame known and new generating functions in the following way:
As a first example, weseta =y = 0,07 =m +1, x; = 1in (13) to get

- =Y e, <1, (24)
n=0
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where G,(Im) (x) are called the Miller-Lee polynomials (see [4]).
Another example is the definition of higher-order hypergeometric Bernoulli-Hermite—

Miller-Lee polynomials HB](\T:,)n (x,y) given by the following generating function:

n

1 et (1 —xpt) ™41 (1 — xpt?) ™ > t
St M . 2 sHGy " (21, %), (25)

151 (M; M+ N; £)* (1—g)m+

which for &« = 0 reduces to

et(1 — x1t a1 — x2t2)*”‘2 © ) i
( (1) t)(m—i-l = Z’E)HG,S’”"’“ aZ)(x\xlfxz)al (26)
n=»
where G{"I"%) (x|x1, x2) are called the Lagrange Hermite-Miller-Lee polynomials.

Putting a7 = ap = 0 into (25) gives

1 EXt . i G(mﬂ() ( )ﬁ (27)
1 (M; M+ N; t)* (1 — t)m+1 _n OB MN\X) s

where BGI(VT}?,?H (x) are called the higher-order hypergeometric Bernoulli-Miller-Lee poly-
nomials.
We now give some connected formulas as follows:

Theorem 8. The following implicit summation formula involving higher-order hypergeometric

Lagrange—Hermite—Bernoulli polynomials HB( lal “2 (

BG](\/I,N?n( ) and Miller—Lee polynomials G,(l ) (x ) holds:

x|x1, x2), Bernoulli-Miller—Lee polynomials

n (5]
1 2 _ v r
G () = 1t 1 B G () Gy = (Coadrloa)” i+ 192) (111, 2y). 8)
r= r=

Proof. For x; =1and a; = m + 1 in (13) and using (27), we have

o o 1
glme) (B xt(1 _ py—m-1
LsCuna O = FapmiNe G

= (1—xP)® Z BN (x[1, 21"
which by using binomial expansion takes the form

(e (e o t2r 0o 1
L By 1,600 = 1 I 5 ) a1, )
n=0

(3]

<
(=}

2)"  plalm+ia) n
HBM,N,n—Zr (x|1,x2)t ’

agk

3
i
o

r=0
which implies the asserted result (28). [

Theorem 9. The following implicit summation formula involving higher-order Lagrange—Hermite—

Bernoulli polynomials HB](\i(Ilill; 2) (x]x1, x2) and Miller-Lee polynomials Gim (x) holds:

B(zx|4x1+m+1,a2)

X
HPM,Nn (x +ylx1,x2) = Z Bﬁi‘?&ﬁ% |x1,x2)G(m)<xl>x{. (29)
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Proof. On replacing x with x + y and a7 with &y + m + 1, respectively, in (13), we have

1
B (e|ory+m+1,02) X+ ylxg, x)t" = oyt
Z M (e ryh ) 1A (M; M+ N; )"

(1 —xq8) ™" 1(1 — xlt)_"‘l (1— x02)~

— Z B](\Z‘i,l’;z (y]x1, x2) t”ZG <x1>x§tr

n=0 r=
o N
o0 m X
= L L el )6 ()6
X1
n=0r=0

which yields the claimed result (29). O

Theorem 10. The following implicit summation formula involving higher-order Lagrange—Hermite—

Bernoulli polynomials HBJ(\??IIS 2) (x|x1, x2) and Miller—Lee polynomials Gim (x) holds:

« 1 - 1
Lo Bl G (e, 32) g = (B (L ) GO
=0 : r=0 :

Proof. For &y = m+ 1 and x; = 1in (13), we have

1
B \m+11x2 1 o= Xt _ p)mm=1(] _ o f2) %2
Z s (L)t = e (1= (1 - xaf?)

Multiplying both the sides by (1 — x1t)~*1, we have

n

°° t
L Bihunyy 2O (e t” = 32 3 B Gl el )

n=0 n=0r

Now, replacing n by n — r in the above equation, we get

B( a|m+1,a7) 1 tn
H M,N,n—r (x| x2)

u[\ﬂs

()
D R )
n=0 n=0

Comparing the coefficient of t", we get the result (30). [

Now, we shall focus on the connection between the higher-order generalized hyper-

geometric Lagrange-Hermite-Bernoulli polynomials HBI(\Z‘;‘\};'IX 2) (x|x1,x2) and Laguerre

polynomials LS,’") (x).
For xp =0, x1 = —1, a1 = —m and ap = 0 in Equation (11), we have
L 1" = Y Ll (o (31)
1F(M; M + N; t)* = DM

where HBZ(VI‘N"; 0 (x| —1,0) = BL%%?W(JC) are called generalized higher-order hypergeo-
metric Bernoulh—Laguerre polynomials.

When a = 0in (31), BL M. N) (x) reduces to ordinary Laguerre polynomials L,(qm) (x)

(see [14]).

n
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Theorem 11. The following implicit summation formula involving higher-order Lagrange—Hermite—

(o |“1 062 (

Bernoulli polynomials B, x|x1,x7) and Laguerre polynomials Lim (x) holds:

n

_ _ 1
ZOHBM>M (e )L W) = L s () WBYS (5 v~ L) (@)
r r=

Proof. By replacing x with x + y and setting x; = —1, ;y = —m in (13), we have

1
1F1(M}M + N,‘ t)lx

eFTVHL 4 1) (1 — xot?) ™2 = Z BMNIZWZ)(X‘FW—LXZ)’*”

Multiplying both sides (1 — x1t) ™%, we have

1
VB (M; M+ N't)

= (I-xt) MZ BMNZM)(x‘Hﬂ—sz)tn

eV 4 1) (1 — xqt) M1 (1 — xp2) ™%

n=0
_ v g n Yo =)
= Y H M,N,n(x|x1,xz)f Y L")t
n=0 r=0
~ m,u )
= Z 2 BMNn 2 x+y|—1,x2)t",
r=0
which gives
Y (m—r) n o v a| may) "
ZZ MNn rx|x1’x2)L (y)t = ZZ M[\]n r(x+y|*1rx2)?1
n=0r=0 n=0r=0 :

which yields the asserted result (32). O

Theorem 12. The following implicit summation formula involving higher-order hypergeometric

Lagrange—Hermite—Bernoulli polynomials BH,(JX‘M’“Z) (x|x1, x2) and Laguerre polynomials L,(qm) (x)
holds true:
—k 1
ZBJ(\?Nn p(x )ngm )(y)j _HBj(\Zan )(x+y|—1 x2). (33)
= (n )!
Proof. By replacing x with x 4-y and setting x; = —1, #; = —m, and a; = 0in Equation (11),
we have
1
B (a]—m 0) _1, P XY 1t
Z M\Nn X+y| x2> 1F1(M,‘M+N;i’) ( + )
[e¢] tn [ee] _k
= ¥ By () DL P )t
n=0 " k=0
0 n n
— () (m—k) t
= B x)L
,1;0;(;0 M,N,nfk( ) k (y) (7’1 _ k)'

which yields the asserted result (33). O

Theorem 13. The following implicit summation formula involving the Lagrange—Hermite—Bernoulli

polynomials pHIme2) (x|x1, x2) and Laguerre polynomials Lim (x) holds true:

n
Y B (xxg, x0) (—x FL T (9 /00) = wBY T (2 i x2). (34)
k=0
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o0
Y HBE\Z,‘KJTZMM)(X — ylx1, x2)t"
n=0

Z B

(a+p|—m—k,0)

M,N,n

Proof. Replacing ay with —m + &1 and x — x — y in (13), we have

1
1F1(M}M + N,‘ t)lx

= Y uBUT) (g, 1)t Y (—) ML (/)

n=0 k=0

= Z 2 HBM NTFZl aZ)(x\xllxz)(—xl)kL;(cm_k) (y/x)t",
n=0k=0

eI — 3y 1) (1 — xpt?) %2

which implies the claimed result (34). O

Theorem 14. The following implicit summation formula involving higher-order Lagrange—Hermite—
Bernoulli polynomials HBJ(\Z%; ) (x|x1, xp) and Laguerre polynomials Lﬁlm) (x) holds:

1 - 1 _
Y- B 1L W) gy = B (<] = L), (35)
k=0 :

Proof. For x; = —1, a1 = —m, ap = 0 and replacing x with x — y in (13), we have

(«|—m,0) "o 1 (x
B —y|=1,x)t" =
Z MmN (F Yl =L 3) VB (M; M+ NG

n=0
e _
= EBMNn )EZLIE’” k)( y)tk

- L (m=k)
Ok;OBMNnk Lo NG

BAEDK

I
agk \

n

which gives the claimed result (35). O

Theorem 15. The following implicit summation formula involving higher-order Lagrange—Hermite—

Bernoulli polynomials HB](\z,‘?\},fZ)(x|x1,x2) and generalized Laguerre-Bernoulli polynomials

BL%%\]/n(x) holds:

k 1 —m—k,0
ZBLAD/}%” o i\ﬁ'z\ir(y)m = HBZ(\Z;?,L " )(x—|—y| —1,x3). (36)

Proof. By (13), we write

1
(etyl =ttt = +N.t)a+,ae(””*<1+t)m+k
11 7 7
1 ot 1
= e (1+H)™
1FL(M; M+ N; )" ( )1F1(M;M+N}f)ﬂ

t\* t\f
— <et—1> €Xt(1+t)m<et_1> eyt(1+t)k

o tn o k
- F et § o,

(o) n k tn
= 2 ZLBI(\Z!;\HI,)n r( X)L Bz(\ﬁ‘zv)r(y)mr

eVt (14 1)k

r!

which yields the asserted result (36). O
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4. Conclusions

In this paper, we define the multivariable unified Lagrange-Hermite-based hypergeo-
metric Bernoulli polynomials and investigate some of their properties. Then, we derive
multifarious connected formulas involving the Miller-Lee polynomials, the Laguerre poly-
nomials, and the Lagrange Hermite-Miller-Lee polynomials. It is demonstrated that the
proposed the method allows the derivation of sum rules involving products of generalized
polynomials and addition theorems. We developed a point of view based on generating
relations, exploited in the past, to study some aspects of the theory of special functions.
The possibility of extending the results to include generating functions involving products
of Lagrange-Hermite-based hypergeometric Bernoulli polynomials and other polynomials
is finally analyzed.
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