

 symmetry-13-00636

symmetry-13-00636

Symmetry 2021, 13(4), 636; doi:10.3390/sym13040636

Article

Anderson Acceleration of the Arnoldi-Inout Method for Computing PageRank

Xia Tang 1, Chun Wen 1,*, Xian-Ming Gu 2,*[image: Orcid] and Zhao-Li Shen 3

1

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

2

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

3

College of Science, Sichuan Agricultural University, Ya’an 625000, China

*

Correspondence: wchun17@uestc.edu.cn (C.W.); guxm@swufe.edu.cn (X.-M.G.)

Academic Editor: Aviv Gibali

Received: 15 March 2021 / Accepted: 1 April 2021 / Published: 10 April 2021

Abstract

:

Anderson(m 0) extrapolation, an accelerator to a fixed-point iteration, stores m 0 + 1 prior evaluations of the fixed-point iteration and computes a linear combination of those evaluations as a new iteration. The computational cost of the Anderson(m 0) acceleration becomes expensive with the parameter m 0 increasing, thus m 0 is a common choice in most practice. In this paper, with the aim of improving the computations of PageRank problems, a new method was developed by applying Anderson(1) extrapolation at periodic intervals within the Arnoldi-Inout method. The new method is called the AIOA method. Convergence analysis of the AIOA method is discussed in detail. Numerical results on several PageRank problems are presented to illustrate the effectiveness of our proposed method.

Keywords:

PageRank problems; Anderson acceleration; Arnoldi-Inout method

1. Introduction

As the core technology of network information retrieval, Google’s PageRank model (called the PageRank problem) uses the original hyperlink structure of the World Wide Web to determine the importance of each page and has received a lot of attention in the last two decades. The core of the PageRank problem is to compute a dominant eigenvector (or PageRank vector) of the Google matrix A by using the classical power method [1]:

 A x = x , A = α P + 1 − α v e T , | | x | | 1 = 1 ,

(1)

where x is the PageRank vector, e is a column vector with all elements equal to 1, v is a personalized vector and the sum of its elements is 1, P is a column-stochastic matrix (i.e., the dangling nodes have been replaced by columns with 1 / n), and α ∈ 0 , 1 is a damping factor.

As the damping factor α gradually approaches 1, the Google matrix is close to the original hyperlink structure. However, for large α such as α ≥ 0.99 , the second eigenvalue (≤ α) of the matrix A will be close to the main eigenvalue (equal to 1) [2], such that the classical power method suffers from slow convergence. In order to accelerate the power method, a lot of new algorithms are used to compute PageRank problems. The quadratic extrapolation method proposed by Kamvar et al. [3] accelerates the convergence by periodically subtracting estimates of non-dominant eigenvectors from the current iteration of the power method. It is worth mentioning that the authors [4] provide a theoretical justification for acceleration methods, generalizing the quadratic extrapolation and interpreting it as a Krylov subspace method. Gleich et al. [5] proposed an inner-outer iteration, wherein an inner PageRank linear system with a smaller damping factor is solved in each iteration. The inner-outer iteration shows good potential as a framework for accelerating PageRank computations, and a series of methods have been proposed based on it. For example, Gu et al. [6] constructed the power-inner-outer (PIO) method by combining the inner-outer iteration with the power method. It is worth mentioning that different versions of the Arnoldi algorithm applied to PageRank computations were first introduced in [7]. Gu and Wang [8] proposed the Arnoldi-Inout (AIO) algorithm by knitting the inner-outer iteration with the thick restarted Arnoldi algorithm [9]. Hu et al. [10] proposed a variant of the Power-Arnoldi (PA) algorithm [11] by using an extrapolation process based on a trace of the Google matrix A [12].

Anderson(m 0) acceleration [13,14] has been widely used to accelerate the convergence of a fixed-point iteration. Its principle is to store m 0 + 1 prior evaluations of the fixed-point method and compute a linear combination of those evaluations such that a new iteration is obtained. Anderson(0) is the given fixed-point iteration. Note that when the parameter m 0 becomes large, the computational cost of the Anderson(m 0) acceleration becomes expensive. Hence, in most applications, m 0 is chosen to be small, and we set m 0 = 1 as a usual choice in this paper. In [15], Toth et al. proved that Anderson(1) extrapolation was locally q-linearly convergent. Pratapa et al. [16] developed the Alternating Anderson–Jacobi (AAJ) method by periodically employing Anderson extrapolation to accelerate the classical Jacobi iterative method for sparse linear systems.

In this paper, with the aim of accelerating the Arnoldi-Inout method for computing PageRank problems, the Anderson(1) extrapolation is used as an accelerator, and thus a new method is presented by combining the Anderson(1) extrapolation with the Arnoldi-Inout method periodically. Our proposed method is called the AIOA method, and its construction and convergence behavior are analyzed in detail, and numerical simulation experiments prove the effectiveness of the new algorithm.

The other parts of this article are structured as follows: In Section 2, we briefly review the Anderson acceleration and the Arnoldi-Inout method for PageRank problems. In Section 3, the AIOA method is constructed, and its convergence behavior is discussed. In Section 4, numerical comparisons are reported. Finally, in Section 5, we give some conclusions.

2. Previous Work

2.1. Anderson Acceleration

Anderson acceleration (also known as Anderson mixing) has been widely used in electronic structure computations [17]. Walker et al. [14] developed it for solving fixed-point problems: x = g x , where x ∈ R n and g : R n → R n . They showed that Anderson acceleration without truncation was essentially equivalent, in a certain sense, to the generalized minimum residual method (GMRES) [18] for linear problems. It has been proved that the Anderson iteration is convergent if the fixed-point iteration g is a contraction and the coefficients in the linear combination remain bounded [15].

In this paper, we consider the Anderson(1) acceleration that stores two prior evaluations g x 0 , g x 1 and then computes x 2 (a linear combination of g x 0 and g x 1) as the new iteration. The main algorithmic steps of Anderson(1) are given as Algorithm 1.

	
Algorithm 1 The Anderson(1) acceleration

	
(1) Given an initial vector x 0 .

	
(2) Compute x 1 = g x 0 , where g is a fixed-point iteration.

	
(3) Compute F = f 0 , f 1 , where f i = g x i − x i , i = 0 , 1 .

	
(4) Compute γ = γ 0 , γ 1 T that satisfies

	
 min γ = γ 0 , γ 1 T | | F γ | | 2 ,   s . t . ∑ i = 0 1 γ i = 1 .

	
(2)

	
(5) Compute x 2 = γ 0 g x 0 + 1 − γ 0 g x 1 .

According to [15], the constrained linear least-squares problem (2) in step 4 of Algorithm 1 can be formulated as an equivalent, unconstrained least-squares problem:

 min γ 0 | | f 1 + f 0 − f 1 γ 0 | | 2 .

(3)

It is easy to solve the unconstrained least-squares problem 3 , for example, Pratapa et al. [16] chose the generalized inverse to compute γ 0 , and Walker et al. [19] chose QR decomposition [18] to compute γ 0 .

2.2. The Arnoldi-Inout Method for Computing PageRank

Gu and Wang [8] proposed the Arnoldi-Inout method by preconditioning the inner-outer iteration with the thick restarted Arnoldi method. Its algorithmic version can be found in Algorithm 2.

	Algorithm 2 Arnoldi-Inout method [8]

	Input: an initial vector x 0 , the size of the subspace m , the number of approximate eigenvectors that are retained from one cycle to the next p ^ , an inner tolerance η , an outer tolerance τ , three parameters α 1 , α 2 , and m a x i t to control the inner-outer iteration. Set r e s t a r t = 0 , r = 1 , d = 1 , d 0 = d .

	Output: PageRank vector x .

	(1). Apply the thick restarted Arnoldi algorithm [8,9] a few times (2–3 times). If the residual norm satisfies the prescribed tolerance, then stop; otherwise, continue.

	(2). Run the inner-outer iteration with x as the initial guess, where x is the approximate vector obtained from the thick restarted Arnoldi algorithm:

	 r e s t a r t = 0 ;

	2.1. While r e s t a r t < m a x i t & r > τ

	2.2. x = x / | | x | | 1 ; z = P x ;

	2.3. r = | | α z + 1 − α v − x | | 2 ;

	2.4. r 0 = r ; r 1 = r ; r a t i o = 0 ;

	2.5. While r a t i o < α 1 & r > τ

	2.6. f = α − β z + 1 − α v ;

	2.7. r a t i o 1 = 0 ;

	2.8. While r a t i o 1 < α 2 & d > η

	2.9. x = f + β z ; z = P x ;

	2.10. d = | | f + β z − x | | 2 ;

	2.11. r a t i o 1 = d / d 0 ; d 0 = d ;

	2.12. End While

	2.13. r = | | α z + 1 − α v − x | | 2 ;

	2.14. r a t i o = r / r 0 ; r 0 = r ;

	2.15. End While

	2.16. x = α z + 1 − α v ; x = x / | | x | | 1 ;

	2.17. If r / r 1 > α 1

	2.18. r e s t a r t = r e s t a r t + 1 ;

	2.19. End If

	2.20. End While

	2.21. If r ≤ τ , stop, else goto step 1.

For Algorithm 2, it is necessary to indicate that:

	(1)

	
The detailed description of the thick restarted Arnoldi algorithm in step 1 can be found in [8,9]. Here, we leave out its implementation for conciseness.

	(2)

	
The parameters α 1 , α 2 , r e s t a r t and m a x i t are used to control the conversion between the inner-outer iteration and the thick restarted Arnoldi algorithm. The specific utility mechanism and more details can be found in [8].

3. The AIOA Method for Computing PageRank

In this section, we combine the Arnoldi-Inout method with the Anderson(1) acceleration. The new method is called the AIOA method, which can be understood as the Arnoldi-Inout method accelerated with the Anderson(1) extrapolation. We first describe the construction of the AIOA method and then analyze its convergence behavior.

3.1. The Construction of the AIOA Method

The mechanism of the AIOA method can be described as follows: We first ran the Arnoldi-Inout method with a given initial guess x 0 to get an approximation vector x ˜ 1 . If the approximation vector was unsatisfactory, then we treated the inner-outer iteration as a fixed-point problem and ran Algorithm 1 with vector x ˜ 1 as the starting vector to get another approximation vector x n e w . If the vector x n e w did not work better than the approximation vector x ˜ 3 of the fixed-point problem, we set x n e w = x ˜ 3 . If the new approximation vector x n e w was still not up to the specified accuracy, then we returned to the Arnoldi-Inout method with x n e w as the starting vector. We repeated the above process similarly until the required accuracy was reached. The specific algorithmic version is shown as follows.

3.2. Convergence Analysis

The convergence of the Arnoldi-Inout method and that of the Anderson acceleration can be found in [8,14,15]. In this subsection, we analyze the convergence of the AIOA method. Specifically, the convergence analysis of Algorithm 3 focuses on the process when turning from the Anderson(1) acceleration to the Arnoldi-Inout method.

	Algorithm 3 AIOA method

	(1). Given a unit initial guess x 0 , an inner tolerance η , an outer tolerance τ , the size of the subspace m , the number of approximate eigenvectors that are retained from one cycle to the next p ^ , three parameters α 1 , α 2 and m a x i t to control the inner-outer iteration. Set r e s t a r t = 0 , r = 1 , d = 1 , d 0 = d , l = 1 .

	(2). Run the Algorithm 2 with the initial vector x 0 . If the residual norm satisfies τ , then stop, otherwise continue.

	(3). Run the Algorithm 1 with x ˜ 1 as the starting guess, where x ˜ 1 is the approximation vector obtained from step 2.

	3.1. l = 1 , z = P x ˜ 1 ;

	3.2. While l < 3 & r > τ

	3.3. f = α − β z + 1 − α v ;

	3.4. Repeat

	3.5. x = f + β z ; z = P x ;

	3.6. Until | | f + β z − x | | 2 < η

	3.7. l = l + 1 ;

	3.8. x ˜ l = α z + 1 − α v ;

	3.9. r = | | x ˜ l − x | | 2 ;

	3.10. End While

	3.11. Compute f 0 = x ˜ 2 − x ˜ 1 , f 1 = x ˜ 3 − x ˜ 2 .

	3.12. Compute γ 0 that satisfies min γ 0 | | f 1 + f 0 − f 1 γ 0 | | 2 .

	3.13. Compute x n e w = γ 0 x ˜ 2 + 1 − γ 0 x ˜ 3 .

	3.14. If | | x ˜ 3 − x ˜ 2 | | 2 < | | x n e w − x ˜ 2 | | 2

	3.15. x n e w = x ˜ 3 ;

	3.16. else

	3.17. r = | | x n e w − x ˜ 2 | | 2 ;

	3.18. End If

	3.19. If r ≤ τ , stop, else go back to step 2 with the vector x n e w as the starting vector.

Let L m − 1 denote the set of polynomials whose degree does not exceed m − 1 and σ A represent the set of eigenvalues of the matrix A . Assume the eigenvalues of A are sorted in the decreasing order 1 = λ 1 > λ 2 ≥ ⋯ ≥ λ n . The following theorem proposed by Saad [20] describes the relationship between an approximate eigenvector μ 1 and the Krylov subspace K m .

Theorem 1.

[20] Assume that A is diagonalizable and that the initial vector v 0 in Arnoldi’s method has expansion v 0 = ∑ i = 1 n ζ i μ i with respect to the eigenbasis μ i i = 1 , 2 , 3 , ⋯ , n in which | | μ i | | 1 = 1 , i = 1 , 2 , 3 , ⋯ , n and ζ 1 ≠ 0 . Then the following inequality holds

 | | I − P m μ 1 | | 2 ≤ ξ ε m ,

(4)

where P m is the orthogonal projector onto the subspace K m A , v 0 , ξ = ∑ i = 2 n ζ i ζ 1 and

 ε m = min p ∈ L m − 1 , p λ 1 = 1 max λ ∈ σ A / λ 1 p λ .

For the purpose of analyzing the convergence speed of our algorithm, it is given that two useful theorems about the spectrum properties of the Google matrix A are as follows.

Theorem 2.

[21] Assume that the spectrum of the column-stochastic matrix P is 1 , π 2 , ⋯ , π n and then the spectrum of the matrix A = α P + 1 − α e v T is 1 , α π 2 , ⋯ , α π n , where α ∈ 0 , 1 , and v is a vector with nonnegative elements such that e T v = 1 .

Theorem 3.

[2] Let P be an n × n column-stochastic matrix. Let α be a real number such that 0 < α < 1 . Let E be an n × n rank-one column-stochastic matrix E = v e T , where e is the n -vector whose elements are all ones and v is an n -vector whose elements are all nonnegative and sum to 1. Let A = α P + 1 − α E be an n × n column-stochastic matrix, and then its dominant eigenvalue λ 1 = 1 , λ 2 ≤ α .

In the Arnoldi-Inout method, let v 0 from the previous thick restarted Arnoldi method be the starting vector for the inner-outer iteration. Next, the inner-outer method produces the vector v 1 = G k v 0 , where k ≥ m a x i t and G = I − β P − 1 α − β P + 1 − α v e T . The derivation of the iterative matrix G can be found in [5]. In our proposed method, we ran Algorithm 1 with vector v 1 as the initial vector. Note that in the Anderson(1) acceleration, we treated the inner-outer iteration as a fixed-point iteration such that the new vector v n e w = ω 1 − γ 0 G 2 v 1 + γ 0 G v 1 was produced such that ω was the normalizing factor. If the vector v n e w worked better than the vector G 2 v 1 , then, as given in Algorithm 3, we set v n e w = G 2 v 1 , which meant the Anderson(1) acceleration was reduced to the inner-outer iteration and the convergence of Algorithm 3 was certainly established for this case. Hence, it is discussed that the convergence for another case when the vector v n e w = ω 1 − γ 0 G 2 v 1 + γ 0 G v 1 works better than the vector G 2 v 1 .

In the next cycle of the AIOA algorithm, a m -step Arnoldi process was run with v n e w as the starting vector, and then the new Krylov subspace

 K m A , v n e w = s p a n v n e w , A v n e w , ⋯ , A m − 1 v n e w

was constructed. Next, we introduced the theorem that illustrates the convergence of the AIOA method.

Theorem 4.

Suppose that the matrix A is diagonalizable if we denote by P m ˜ the orthogonal projector onto the subspace K m A , v n e w . Then under the notations of Theorem 1, it has

 | | I − P m ˜ μ 1 | | 2 ≤ Λ · α − β 1 − β k + 1 · ξ ε m ,

(5)

where Λ = 1 − γ 0 α − β 1 − β + γ 0 , ξ = ∑ i = 2 n ζ i ζ 1 , ε m = min p ∈ L m − 1 , p λ 1 = 1 max λ ∈ σ A / λ 1 p λ and k ≥ m a x i t .

Proof of Theorem 4.

For any u ∈ K m A , v n e w , there exists q x ∈ L m − 1 such that

 u = q A v n e w = ω · q A · 1 − γ 0 G 2 + γ 0 G v 1 = ω · q A · 1 − γ 0 G k + 2 + γ 0 G k + 1 v 0 = ω · q A · 1 − γ 0 G k + 2 + γ 0 G k + 1 · ζ 1 μ 1 + ∑ i = 2 n ζ i μ i ,

(6)

where v 0 = ∑ i = 1 n ζ i μ i is the expansion of v 0 within the eigenbasis μ 1 , μ 2 , … , μ n .

As shown in [5] and [8], it has

 G = I − β P − 1 α − β P + 1 − α v e T = I − β P − 1 A − I − β P − 1 + I ,

then

 G μ i = I − β P − 1 A μ i − I − β P − 1 μ i + μ i = I − β P − 1 λ i μ i − I − β P − 1 μ i + μ i = λ i − 1 I − β P − 1 μ i + μ i ,

where we use A μ i = λ i μ i , i = 1 , 2 , … , n .

Assume that π i is an eigenvalue of P , and from Theorem 2, π 1 = 1 , π i = 1 α λ i , i = 2 , 3 , … , n , then the matrix I − β P − 1 has eigenvalues

 η i = 1 1 − β π i , i = 1 , 2 , … , n ,

such that

 G μ i = λ i − β π i 1 − β π i μ i , i = 2 , 3 , … , n .

(7)

Using the fact that λ 1 = 1 and π 1 = 1 , we have G μ 1 = μ 1 and G k μ 1 = μ 1 . Let

 φ i = λ i − β π i 1 − β π i , i = 2 , 3 , … , n ,

then, according to Theorem 3 and derivation in [8], it has λ i ≤ α , i = 2 , 3 , … , n , such that

 φ i = λ i − β π i 1 − β π i ≤ α − β 1 − β .

(8)

Substituting (7) and (8) into (6), it has

 u = ω q 1 ζ 1 μ 1 + ω 1 − γ 0 ∑ i = 2 n q λ i φ i k + 2 ζ i μ i + γ 0 ∑ i = 2 n q λ i φ i k + 1 ζ i μ i ,

and then

 | | u ω q 1 ζ 1 − μ 1 | | 2 = | | ∑ i = 2 n ζ i ζ 1 · q λ i q 1 · φ i k + 1 μ i · 1 − γ 0 φ i + γ 0 | | 2 ≤ 1 − γ 0 α − β 1 − β + γ 0 · α − β 1 − β k + 1 ∑ i = 2 n ζ i ζ 1 · max i ≠ 1 p λ i = Λ · α − β 1 − β k + 1 ξ · max i ≠ 1 p λ i ,

where we let p λ = q λ / q 1 satisfy p 1 = 1 , ξ = ∑ i = 2 n ζ i ζ 1 and Λ = 1 − γ 0 α − β 1 − β + γ 0 .

Therefore, we proved

 | | I − P m ˜ μ 1 | | 2 = min u ∈ K m A , v n e w | | u − μ 1 | | 2 ≤ Λ · α − β 1 − β k + 1 · ξ · min p ∈ L m − 1 , p λ 1 = 1 max λ ∈ σ A / λ 1 p λ .

□

Remark 1.

Comparing (4) with (5), it is easy to find that our method can improve the convergence speed by a factor of at least Λ · α − β 1 − β k + 1 when turning from the Anderson(1) acceleration to the Arnoldi-Inout method.

4. Numerical Experiments

In this section, we first give the appropriate choice for the parameter m a x i t and then test the effectiveness of the AIOA method. For the thick restarted Arnoldi method, there were two parameters, m and p ^ , that needed to be considered, but the thick restarted Arnoldi method had the same effect as the Arnoldi-Inout [8] method and the AIOA method. In addition, with the parameters m and p ^ increasing, the cost would have been expensive, and they usually take small values. As a result, we don’t discuss the choice of the two parameters m and p ^ in detail and set m = 4 and p ^ = 3 for all test examples.

All the numerical experiments were performed using MATLAB R2018a programming package on 2.10 GHZ CPU with 1 6GB RAM.

Table 1 lists the characteristics of the test matrices, where n represents the matrix size, n n z denotes the number of nonzero elements and d e n is the density which is defined by d e n = n n z n × n × 100 . All the test matrices are available from https://sparse.tamu.edu/ (accessed on 14 July 2020). For the sake of justice, the same initial guess x 0 = v = e / n with e = 1 , 1 , ⋯ , 1 T was used. The damping factors were chosen as α = 0.99 , 0.993 , 0.995 and 0.998 in all numerical experiments. The stopping criterion were set as the 2-norm of the residual, and the prescribed outer tolerance was τ = 10 − 8 . For the inner-outer iterations, the inner residual tolerance was η = 10 − 2 , and the smaller damping factor was β = 0.5 . The parameters chosen to control the flip-flop were α 1 = α − 0.1 and α 2 = α − 0.1 . We ran the thick restarted Arnoldi procedure twice in each loop of the Arnoldi-Inout [8] method and the AIOA method. In the AIOA algorithm, we chose the QR decomposition to compute γ 0 .

4.1. The Selection of Parameter M a x i t

In this subsection, we discuss the selection of the parameter value m a x i t by analyzing the numerical results of the Arnoldi-Inout [8] (denoted as “AIO”) method and the AIOA method for the web-Stanford matrix, which contains 281,903 pages and 2,312,497 links. Table 2 lists the matrix–vector products (MV) of the AIO method and the AIOA method for the web-Stanford matrix when α = 0.99 , 0.993 , 0.995 , 0.998 and m a x i t = 2 , 4 , 6 , 8 , 10 . Figure 1 depicts the curves of computing time (CPU) of the two methods versus number m a x i t , respectively.

From Table 2, it is observed that the optimal m a x i t was different for different α and different methods. From Figure 1, optimal m a x i t is 6 and the worst performing m a x i t is 8 for the AIO method, but for the AIOA method, the best value of m a x i t is not 6. For fairness, we decided to choose the m a x i t = 4 in the following numerical experiments. In addition, in Table 2, when α = 0.995 and m a x i t = 6 , the MV of the AIOA is a little more than that of the AIO method, but the CPU time of AIOA method is better than that of the AIO method. The situation suggests that our method has some potential.

4.2. Comparisons of Numerical Results

In this subsection, we tested the effectiveness of the AIOA method through numerical comparison experiments with the inner-outer (denoted as “Inout”) [5] method, the power-inner-outer (denoted as “PIO”) [6] method and the Arnoldi-Inout (denoted as “AIO”) [8] method in terms of iteration counts (IT), the number of matrix-vector products (MV) and the computing time (CPU) in seconds. In all experiments in this subsection, we set the parameters m = 4 , p ^ = 3 and m a x i t = 4 . Table 3, Table 4, Table 5 and Table 6 give the numerical experiment results of the Inout method, the PIO method, the AIO method and the AIOA method for four matrices when α = 0.99 , 0.993 , 0.995 , 0.998 , and Figure 2, Figure 3, Figure 4 and Figure 5 describe the residual convergence images of the above methods with different α for all test matrices.

In order to better demonstrate the efficiency of our proposed method, we defined

 speedup = CPU AIO − CPU AIOA CPU AIO × 100 % ,

to show the speedup of the AIOA method with respect to the AIO method in terms of CPU.

From the numerical results in Table 3, Table 4, Table 5 and Table 6, it is easy to see that the AIOA method performed better than the other three methods in terms of IT, MV and CPU time for four matrices with different damping factors. As we expected, the advantage of the AIOA method was obvious for large α . For instance, when α = 0.995 , the speedup is 52.65 % in Table 3 and 36.66 % in Table 5. When α = 0.998 , the speedup is 49.48 % in Table 4 and 60.32 % in Table 6. In addition, from Figure 2, Figure 3, Figure 4 and Figure 5, it is easy to observe that the AIOA method can reach the accuracy requirement faster than the Inout method, the PIO method and the AIO method for all test examples. Therefore, the above results verify the effectiveness of the AIOA method.

5. Conclusions

In this paper, by employing the Anderson(1) extrapolation at periodic intervals within the Arnoldi-Inout method, we have presented a new method called the AIOA method to accelerate the computation speed of PageRank problems. Its implementation process and convergence theorem can be found in Section 3. Numerical simulation experiment results in Section 4 proved that the AIOA method was very efficient and converged faster compared to the inner-outer method, the power-inner-outer method and the Arnoldi-Inout method. However, there is still a lot of work to be further studied. For example, it is difficult to handle the best choices for parameters m , β , m a x i t .

Author Contributions

Methodology, C.W.; software, X.T.; writing—original draft preparation, X.T.; writing—review and editing, C.W., X.-M.G. and Z.-L.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Page, L.; Brin, S.; Motwani, R. The PageRank Citation Ranking: Bringing Order to the Web; Stanford InfoLab: Stanford, CA, USA, 1999. [Google Scholar]

	

Haveliwala, T.; Kamvar, S. The Second Eigenvalue of the Google Matrix; Stanford InfoLab: Stanford, CA, USA, 2003. [Google Scholar]

	

Kamvar, S.D.; Haveliwala, T.H.; Manning, C.D.; Golub, G.H. Extrapolation methods for accelerating PageRank computations. In Proceedings of the 12th International Conference on World Wide Web, Budapest, Hungary, 20–24 May 2003; pp. 261–270. [Google Scholar]

	

Brezinski, C.; Redivo-Zaglia, M. The PageRank vector: Properties, computation, approximation, and acceleration. SIAM J. Matrix Anal. Appl. 2006, 28, 551–575. [Google Scholar] [CrossRef]

	

Gleich, D.F.; Gray, A.P.; Greif, C. An inner-outer iteration for computing PageRank. SIAM J. Sci. Comput. 2010, 32, 349–371. [Google Scholar] [CrossRef]

	

Gu, C.Q.; Xie, F.; Zhang, K. A two-step matrix splitting iteration for computing PageRank. J. Comput. Appl. Math. 2015, 278, 19–28. [Google Scholar] [CrossRef]

	

Golub, G.H.; Greif, C. An Arnoldi-type algorithm for computing page rank. BIT 2006, 46, 759–771. [Google Scholar] [CrossRef]

	

Gu, C.Q.; Wang, W. An Arnoldi-Inout algorithm for computing PageRank problems. J. Comput. Appl. Math. 2017, 309, 219–229. [Google Scholar] [CrossRef]

	

Morgan, R.B.; Zeng, M. A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity. Linear Algebra Appl. 2006, 415, 96–113. [Google Scholar] [CrossRef]

	

Hu, Q.Y.; Wen, C.; Huang, T.Z.; Shen, Z.L.; Gu, X.M. A variant of the Power–Arnoldi algorithm for computing PageRank. J. Comput. Appl. Math. 2021, 381, 113034. [Google Scholar] [CrossRef]

	

Wu, G.; Wei, Y. A Power—Arnoldi algorithm for computing PageRank. Numer. Linear Algebra Appl. 2007, 14, 521–546. [Google Scholar] [CrossRef]

	

Tan, X. A new extrapolation method for PageRank computations. J. Comput. Appl. Math. 2017, 313, 383–392. [Google Scholar] [CrossRef]

	

Anderson, D.G. Iterative procedures for nonlinear integral equations. JACM 1965, 12, 547–560. [Google Scholar] [CrossRef]

	

Walker, H.F.; Ni, P. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 2011, 49, 1715–1735. [Google Scholar] [CrossRef]

	

Toth, A.; Kelley, C.T. Convergence analysis for Anderson acceleration. SIAM J. Numer. Anal. 2015, 53, 805–819. [Google Scholar] [CrossRef]

	

Pratapa, P.P.; Suryanarayana, P.; Pask, J.E. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems. J. Comput. Phys. 2016, 306, 43–54. [Google Scholar] [CrossRef]

	

Yang, C.; Meza, J.C.; Wang, L.W. A trust region direct constrained minimization algorithm for the kohn–sham equation. SIAM J. Sci. Comput. 2007, 29, 1854–1875. [Google Scholar] [CrossRef]

	

Allaire, G.; Kaber, S.M.; Trabelsi, K.; Allaire, G. Numerical Linear Algebra; Springer: New York, NY, USA, 2008. [Google Scholar]

	

Walker, H.F. Anderson Acceleration: Algorithms and Implementations; Report MS-6-15-50; WPI Math. Sciences Dept.: Worcester, MA, USA, 2011. [Google Scholar]

	

Saad, Y. Numerical Methods for Large Eigenvalue Problems; Manchester University Press: Manchester, UK, 1992. [Google Scholar]

	

Langville, A.; Meyer, C. Google’s PageRank and Beyond: The Science of the Search Engine Rankings; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]

[image: Symmetry 13 00636 g001 550]

Figure 1. The total computing (CPU) time of the Arnoldi-Inout (AIO) method and the AIOA method versus number m a x i t on the web-Stanford matrix.

Figure 1. The total computing (CPU) time of the Arnoldi-Inout (AIO) method and the AIOA method versus number m a x i t on the web-Stanford matrix.

[image: Symmetry 13 00636 g001]

[image: Symmetry 13 00636 g002 550]

Figure 2. Convergence behaviors of the four methods on the wb-cs-stanford matrix.

Figure 2. Convergence behaviors of the four methods on the wb-cs-stanford matrix.

[image: Symmetry 13 00636 g002]

[image: Symmetry 13 00636 g003 550]

Figure 3. Convergence behaviors of the four methods on the usroads-48 matrix.

Figure 3. Convergence behaviors of the four methods on the usroads-48 matrix.

[image: Symmetry 13 00636 g003]

[image: Symmetry 13 00636 g004 550]

Figure 4. Convergence behaviors of the four methods on the web-Stanford matrix.

Figure 4. Convergence behaviors of the four methods on the web-Stanford matrix.

[image: Symmetry 13 00636 g004]

[image: Symmetry 13 00636 g005 550]

Figure 5. Convergence behaviors of the four methods on the wiki-Talk matrix.

Figure 5. Convergence behaviors of the four methods on the wiki-Talk matrix.

[image: Symmetry 13 00636 g005]

[image: Table]

Table 1. The characteristics of test matrices.

Table 1. The characteristics of test matrices.

	Name
	 n
	 n n z
	 d e n

	wb-cs-stanford
	9914
	36,854
	 0.375 × 10 − 1

	usroads-48
	126,146
	323,900
	 0.204 × 10 − 2

	web-Stanford
	281,903
	2,312,497
	 0.291 × 10 − 2

	wiki-Talk
	2,394,385
	5,021,410
	 0.875 × 10 − 4

[image: Table]

Table 2. The number of the matrix–vector products of the AIO method and the AIOA method on the web-Stanford matrix.

Table 2. The number of the matrix–vector products of the AIO method and the AIOA method on the web-Stanford matrix.

	
 α

	
 m a x i t = 2

	
 m a x i t = 4

	
 m a x i t = 6

	
 m a x i t = 8

	
 m a x i t = 10

	
AIO

	
AIOA

	
AIO

	
AIOA

	
AIO

	
AIOA

	
AIO

	
AIOA

	
AIO

	
AIOA

	
 α = 0.99

	
342

	
266

	
337

	
277

	
386

	
306

	
423

	
308

	
439

	
281

	
 α = 0.993

	
446

	
309

	
422

	
327

	
433

	
376

	
542

	
417

	
563

	
358

	
 α = 0.995

	
558

	
383

	
637

	
414

	
524

	
544

	
706

	
440

	
711

	
471

	
 α = 0.998

	
1044

	
588

	
975

	
677

	
699

	
661

	
1503

	
669

	
1533

	
789

[image: Table]

Table 3. Numerical results of the four methods on the wb-cs-stanford matrix.

Table 3. Numerical results of the four methods on the wb-cs-stanford matrix.

	
 α

	

	
Inout

	
PIO

	
AIO

	
AIOA

	
 α = 0.99

	
IT

	
997

	
333

	
192

	
116

	
MV

	
997

	
666

	
238

	
167

	
CPU

	
0.2344

	
0.2011

	
0.1741

	
0.1038

	
speedup

	

	

	

	
40.35%

	
 α = 0.993

	
IT

	
1427

	
476

	
252

	
133

	
MV

	
1427

	
952

	
316

	
200

	
CPU

	
0.3283

	
0.2488

	
0.2297

	
0.1211

	
speedup

	

	

	

	
47.28%

	
 α = 0.995

	
IT

	
2000

	
667

	
304

	
143

	
MV

	
2000

	
1334

	
378

	
209

	
CPU

	
0.4590

	
0.3490

	
0.2689

	
0.1273

	
speedup

	

	

	

	
52.65%

	
 α = 0.998

	
IT

	
5009

	
1670

	
396

	
216

	
MV

	
5009

	
3340

	
496

	
315

	
CPU

	
1.1347

	
0.8670

	
0.3817

	
0.1985

	
speedup

	

	

	

	
47.99%

[image: Table]

Table 4. Numerical results of the four methods on the usroads-48 matrix.

Table 4. Numerical results of the four methods on the usroads-48 matrix.

	
 α

	

	
Inout

	
PIO

	
AIO

	
AIOA

	
 α = 0.99

	
IT

	
436

	
146

	
96

	
51

	
MV

	
436

	
292

	
109

	
73

	
CPU

	
1.1275

	
1.0362

	
0.7928

	
0.4347

	
speedup

	

	

	

	
45.16%

	
 α = 0.993

	
IT

	
537

	
180

	
118

	
59

	
MV

	
537

	
360

	
135

	
84

	
CPU

	
1.6484

	
1.0888

	
1.0487

	
0.6894

	
speedup

	

	

	

	
34.26%

	
 α = 0.995

	
IT

	
646

	
216

	
146

	
64

	
MV

	
646

	
432

	
164

	
94

	
CPU

	
1.9562

	
1.4969

	
1.1519

	
0.6894

	
speedup

	

	

	

	
40.14%

	
 α = 0.998

	
IT

	
999

	
334

	
242

	
106

	
MV

	
999

	
668

	
272

	
155

	
CPU

	
2.5375

	
2.0479

	
1.8138

	
0.9163

	
speedup

	

	

	

	
49.48%

[image: Table]

Table 5. Numerical results of the four methods on the web-Stanford matrix.

Table 5. Numerical results of the four methods on the web-Stanford matrix.

	
 α

	

	
Inout

	
PIO

	
AIO

	
AIOA

	
 α = 0.99

	
IT

	
768

	
381

	
284

	
191

	
MV

	
769

	
762

	
337

	
277

	
CPU

	
9.5426

	
11.7488

	
8.4437

	
7.2447

	
speedup

	

	

	

	
14.20%

	
 α = 0.993

	
IT

	
1087

	
544

	
360

	
229

	
MV

	
1088

	
1088

	
422

	
327

	
CPU

	
10.4567

	
13.4826

	
11.0564

	
8.2018

	
speedup

	

	

	

	
25.81%

	
 α = 0.995

	
IT

	
1516

	
763

	
540

	
279

	
MV

	
1517

	
1526

	
637

	
414

	
CPU

	
16.6344

	
17.8678

	
17.0485

	
10.7983

	
speedup

	

	

	

	
36.66%

	
 α = 0.998

	
IT

	
3781

	
1908

	
828

	
484

	
MV

	
3782

	
3816

	
975

	
677

	
CPU

	
38.1507

	
43.2843

	
26.5169

	
16.8771

	
speedup

	

	

	

	
36.35%

[image: Table]

Table 6. Numerical results of the four methods on the wiki-Talk matrix.

Table 6. Numerical results of the four methods on the wiki-Talk matrix.

	
 α

	

	
Inout

	
PIO

	
AIO

	
AIOA

	
 α = 0.99

	
IT

	
687

	
230

	
97

	
86

	
MV

	
687

	
460

	
117

	
109

	
CPU

	
47.5235

	
34.3597

	
23.7834

	
20.1552

	
speedup

	

	

	

	
15.25%

	
 α = 0.993

	
IT

	
971

	
324

	
113

	
109

	
MV

	
971

	
648

	
136

	
136

	
CPU

	
73.2740

	
45.5463

	
27.8776

	
25.1927

	
speedup

	

	

	

	
9.63%

	
 α = 0.995

	
IT

	
1339

	
448

	
145

	
118

	
MV

	
1339

	
896

	
173

	
157

	
CPU

	
98.4781

	
62.3806

	
35.8122

	
29.3671

	
speedup

	

	

	

	
17.99%

	
 α = 0.998

	
IT

	
3127

	
1044

	
275

	
98

	
MV

	
3127

	
2088

	
324

	
141

	
CPU

	
208.5881

	
155.7358

	
65.6808

	
26.0576

	
speedup

	

	

	

	
60.32%

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file4.png
Residual norms

Residual norms

-
o
o

—_
=1
(&)}

o =0.99

Inout
PIO
AlO
AIOA
500 1000
lterations
o =0.995
500 1000 1500 2000

Iterations

Residual norms

Residual norms

e
o
o

-—
S
o

o =0.993

16°°
0 500 1000 1500
lterations
10° o =0.998
—|nOUt
PIO
AlO
2 AIOA
10°
10710
0 2000 4000 6000
lterations

nav.xhtml

 symmetry-13-00636

 		
 symmetry-13-00636

media/file2.png
Ll AIOA

CPU

—— = (.99 — o, = (.99
— -y = (.993 ——— = 0.903
————q = 0.995 e gt >
=meme = (0.998 -, = 0.008
-
S
o
. 1
d 10
~ '/ — -
-
-—-----_ R —— ~]
:::-‘---_-- =:_._,_.—-—-—.{_-.~
i

media/file5.jpg
Residual norms.

Residual norms

2=0993

10° 10
g
g
10° K
g
|
0 100 200 300 400 0 200 400
terations, terations,
=099 a=0998
10° 10°,
[——ont
Po (| 2
£
ao || E
aoa|| 2
e E
.
¢ |
1070 ‘040}
0 200 400 600 800 0 500

lterations.

lterations.

1000

media/file3.jpg
Residual norms

Residual norms

10°,

10°

1070

g
5
2
2
]
H
-4
o 500 1000 1500
terations terations
a=0995 " a=0998
10
—— nout —— ot
PIO 2 PO
ao || E A0
noa| | 2 AlOA
T 10°
2
2
H
-4
1070
500 1000 1500 2000 0 2000 4000 6000
terations terations

media/file1.jpg
cPU

media/file7.jpg
Residual norms

Residual norms

10°
o
E
5
2
2
-4
1ol
0 200 400 600 800 0 500 1000
Iterations. terations
i =0995 " a=09%8

=099

500 1000
lterations.

1500

Residual norms

1000

2000
lterations.

3000

4000

media/file10.png
Residual norms

Residual norms

—
o
o

-
S,
(&)

o,

o
L
o

a=0.99
Inout
PIO
AlO
AIOA
200 400 600 800
lterations
a=0.995

500
Iterations

1000

1500

Residual norms

Residual norms

-t
o
o

-—
=
(9]

-

o
23
o

—_
o
o

10-10

a= Q.993

Inout
PIO
AlO
AIOA
0 500 1000
Iterations
o =0.998
Inout
PIO
AlO
AIOA
0 1000 2000 3000
Iterations

media/file9.jpg
Residual norms

Residual norms

10°

10°

1010

=099

g
§
2
s
3
2
H
-4
1010
200 400 600 800 0 500 1000
lterations lterations
a=0995 o =099
10
—rg
——ro 0
€
| ——ao £
[aoA| | 2
T 10°
g
-4
10
50 1000 1500 4 1000 2000 3000

Iterations

Iterations

media/file0.png

media/file8.png
Residual norms

Residual norms

10-10
0

a= 9.99

Inout
PIO
AlO
AIOA

400
Iterations
a =0.995

600

800

Inout
PIO
AlO
AIOA

500

1000
Iterations

1500

Residual norms

Residual norms

-
o
o

-—
=
()]

a ='0.993

Inout
PIO
AlO
AIOA

500
lterations
a=0.998

1000

Inout
PIO
AlO
AlIOA

1000

2000
lterations

3000

4000

media/file6.png
Residual norms

Residual norms

107 a=0.99
Inout
PIO
AlO
5 AIOA
10°
10710
0 100 200 300 400
Iterations
10° o =0.995
Inout
PIO
AlO
5 AIOA
10°
¥
0 200 400 600 800

Iterations

Residual norms

Residual norms

10°
Inout
PIO
AlO
AIOA
10°
1010
0 200 400 600
lterations
0 o =0.998
10
Inout
PIO
AlO
AIOA
10°
i
500 1000
lterations

