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Abstract: Rockburst is a complex phenomenon of dynamic instability in the underground excavation
of rock. Owing to the complex and unclear rockburst mechanism, it is difficult to accurately predict
and reasonably assess the rockburst potential. With the increasing availability of case histories from
rock engineering and the advancement of data science, the data mining algorithms provide a good
way to predict complex phenomena, like rockburst potential. This paper investigates the potential of
J48 and random tree algorithms to predict the rockburst classification ranks using 165 cases, with
four parameters, namely maximum tangential stress of surrounding rock, uniaxial compressive
strength, uniaxial tensile strength, and strain energy storage index. A comparison of developed
models’ performances reveals that the random tree gives more reliable predictions than J48 and
other empirical models (Russenes criterion, rock brittleness coefficient criterion, and artificial neural
networks). Similar comparisons with convolutional neural network resulted at par performance in
modeling the rockburst hazard data.

Keywords: rockburst hazard prediction; risk assessment; random tree; J48 algorithm; machine learning

1. Introduction

During underground operations, rockburst is a sudden and violent release of elastic
energy stored in rock and coal masses. This causes rock fragments to eject, potentially
causing injury, collapse, and deformation of supporting structures, as well as damage to
facilities [1–3]. Related activity occurs in open cuts in the mass of the joint rock [4,5]. For
both the civil and mining engineering industries, its economic consequences are important.
The mechanism is not yet well understood owing to the difficulty and uncertainty of the
rockburst. In order to mitigate the risks caused by rockburst, such as damage to equipment,
access closure, delays, and loss of property and life, it is important to accurately predict
or estimate the realistic potential of rockburst for the safety and efficient construction and
serviceability of underground projects.

Conventional mechanics-based methods fail to provide precise rockburst hazard detec-
tion due to the highly complex relationship between geological, geometric, and mechanical
parameters of rock masses in underground environments. Further, mechanics-based meth-
ods have several underlying assumptions, which, if flouted, may yield biased model
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predictions. This has forced many researchers in recent years to investigate alternative
methods for better hazard prediction and detection of the rockburst phenomenon. Several
researchers suggested several indicators to assess burst potential. The strain energy storage
index (Wet), proposed by Kidybinski [6], is the ratio of strain energy stored (Wsp) to strain
energy dissipated (Wst).Wattimena et al. [7] used elastic strain energy density as a burst
potential measure. The rock brittleness coefficient, which is based on the ratio of uniaxial
compressive stress (UCS) to tensile stress, is another widely used burst liability index [8].
A tangential stress criterion, the ratio between tangential stress around underground ex-
cavations (σθ), and UCS of rock (σc), can be employed to assess the risk of rock bursts [9].
Energy-based burst potential index was developed by Mitri et al. [10] to diagnose burst
proneness. However, many techniques have been developed in the last few decades to
predict or assess rockburst, but there has been no advancement or a widely accepted
technique preferred over other rockburst methods.

Over the past few decades, data mining techniques have been shown to be efficient in
getting complex non-linear relationships between predictor and response variables and may
be used to identify sites that are prone to rockburst events, as case history information is
increasingly available. A number of approaches have been suggested by several researchers
to predict the rockburst, such as Support Vector Machine (SVM) [11], Artificial Neural
Networks (ANNs) [12], Distance Discriminant Analysis (DDA) [13], Bayes Discriminant
Analysis (BDA) [14], and Fisher Linear Discriminant Analysis (LDA) [15], and moreover,
some systems are based upon hybrid (Zhou et al. [16]; Adoko et al. [17]; Liu et al. [18]) or
ensemble (Ge and Feng [19]; Dong et al. [20]) learning methods in long-term prediction
of rockburst and their prediction accuracies are compared. Zhao and Chen [21], recently
developed and compared a data-driven model based on a convolutional neural network
(CNN) to a traditional neural network. In rockburst prediction, this proposed CNN model
has a high potential compared to the conventional neural network. These algorithms used
a number of rockburst indicators as input features, and the size of their training samples
varied. While most of the aforementioned techniques have been effective in predicting
rockburst hazard, they do have shortcomings. For example, the optimal structure (e.g.,
number of inputs, hidden layers, and transfer functions) must be specified a priori in the
ANN method. This is usually accomplished by a process of trial and error. The black box
nature of the ANN model, as well as the fact that the relationship between the system’s
input and output parameters is described in terms of a weight matrix and biases that
are not available to the user, is another major limitation [22]. Table 1 summarizes the
main rockburst prediction studies that used machine learning (ML) methods with input
parameters and accuracy.

The majority of the established models (Table 1) are black boxes, meaning they do not
show a clear and understandable relationship between input and output. These studies
attempted to solve the problems of rockburst, but they were never entirely successful. In
certain instances, a particular procedure can be appropriate, but not in others. Notably,
precision ranges from 66.5 to 100%, which is a major variance in rockburst prediction.
Rockburst prediction is a complex and nonlinear process that is hindered by model and
parameter uncertainty, as well as limited by inadequate knowledge, lack of information
characterization, and noisy data. Machine learning has been widely recognized in min-
ing and geotechnical engineering applications for dealing with nonlinear problems and
developing predictive data-mining models [25–31].

In this study, the random tree and J48 algorithms have been specifically selected on
the basis of these considerations because they are primarily used in civil engineering but
have not yet been thoroughly evaluated with each other and because of their open-source
availability. The primary aim of this research was to reveal and compare the suitability of
random tree and J48 algorithms in underground projects for rockburst hazard prediction.
First, rockburst hazards classification cases are collected from the published literature.
Next, these two algorithms are used to predict the rockburst hazard classification. Finally,
their detailed performance is evaluated and compared with empirical models.
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Table 1. Study of the rockburst classification ML algorithm with influence factors and accuracy values.

Algorithm D σθ σc σt Wet σθ/σc σc/σt Accuracy (%) Dataset Reference

Support vector machine 7 4 4 4 4 7 7 100 16 Zhao [11]

Distance discriminant analysis 7 7 7 7 4 4 4 100 15 Gong and Li [13]

v-support vector regression 7 4 4 4 4 4 4 93.75 45 Zhu et al. [23]

AdaBoost 7 4 7 7 4 4 4 87.8–89.9 36 Ge and Feng [19]

Bayes discriminant analysis 7 7 7 7 4 4 4 100 21 Gong et al. [14]

Fisher linear discriminant
analysis 7 7 7 7 4 4 4 100 15 Zhou et al. [15]

Heuristic algorithms and
support vector machines 4 4 4 4 4 4 4 66.67–90 132 Zhou et al. [16]

Adaptive neuro fuzzy
inference system 7 4 4 4 4 4 4 66.5–95.6 174 Adoko et al. [17]

Random forest 7 4 4 4 4 7 7 100 46 Dong et al. [20]

Cloud model 7 4 4 4 4 4 4 90–100 162 Liu et al. [18]

Decision tree model 7 7 7 7 4 4 4 73–93 108
and 132 Pu et al. [24]

Artificial neural network and
convolutional neural network 7 4 4 4 4 7 7 89.29–100 165 Zhao and Chen

[21]

Note: D = depth, m; σθ = maximum tangential stress of surrounding rock, MPa; σθ /σc = stress concentration factor; σc/σt = rock brittleness
(B); σc = uniaxial compressive strength of rock, MPa; σt = uniaxial tensile strength of rock, MPa; Wet = strain energy storage index.

2. Materials and Methods
2.1. Influence Factors and Data Assemblage

Several factors such as the geological structures of the rock mass, the conditions of
geo-stress, rock mass strength, the method of excavation and excavation size, and rock
blasting are all related to the occurrence of rockbursts [9,15,32]. However, due to the
limitations present in the reported parameters in previous field studies, all variables cannot
be taken into account. Therefore, to create the new models, only parameters recorded in
all field studies are used here. Previous studies used uniaxial compressive and tensile
strength of the rock mass, maximum tangential stress of the surrounding rock, and strain
energy storage index as main parameters. The existing rockburst cases were collected
as supportive data for the development of the prediction model. This study used the
rockburst database from different types of underground projects from all over the world
previously collected by Pu et al. [24] and Zhou et al. [16] and recently referenced by Zhao
and Chen [21]. The dataset contains 165 rockburst events of underground engineering
projects which have four influence factors and a corresponding rank of rockburst. In
general, the projects chosen experienced the most significant rockburst activity.

The way data are divided into training and research sets has a major influence on the
results of data mining techniques [33]. The statistical analysis’ main goal was to ensure that
the subsets’ statistical properties were as similar as possible and thus represented the same
statistical population. To fairly compare the predictive performance of the proposed J48 and
random tree models in this study, the dataset used for the training (137 cases) and testing
(28 cases) was kept the same in the prediction of rockburst hazard. As per Cai et al. [34]
the rockburst database has four rankings to determine the risk for the rockburst. They
are as follows, with increasing severity: no rockburst (NR), moderate rockburst (MR),
strong rockburst (SR) and violent rockburst (VR). The specific grading criteria are shown in
Table 2 [34]. Figure 1 shows the distribution of rockburst data as a pie chart showing the
portion of four rockburst hazard forms in underground projects, classified as no rockburst
(NR, 31 cases), moderate rockburst (MR, 43 cases), strong rockburst (SR, 63 cases) and
violent rockburst (VR, 28 cases).
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Table 2. Grading criteria of rockburst intensity.

Rockburst
Grade No Rockburst Moderate

Rockburst
Strong

Rockburst
Violent

Rockburst

σθ/σc <0.3 0.3–0.5 0.5–0.7 >0.7
σc/σt >40 26.7–40 14.5–26.7 <14.5
Wet >5 3.5–5.0 2.0–3.5 <2.0

Figure 1. Distribution of observed rockburst hazard in underground projects.

The database contains maximum tangential stress of surrounding rock σθ (MPa),
uniaxial compressive strength σc (MPa), uniaxial tensile strength σt (MPa), and strain
energy storage index Wet. The histograms, cumulative distribution functions and descrip-
tive statistics (such as minimum and maximum values, mean and standard deviations)
of the selected rockburst parameters with the established J48 and random tree models
are provided in Figure 2 and Table 3 (the complete database is available in Appendix A,
Table A1). It should be noted that in ranges with more dense data, the established models
are more accurate.

Rockburst events typically occur in rock masses characterised by brittle behaviour (low
deformability), massive and relatively homogeneous structure, high intact rock strength
and high in-situ stress states. That said, it is hard to accept that rockburst events were
registered in some case-studies involving rock masses with low or very low values of
uniaxial compressive strength (see for instance case-studies no. 4, 6, 26, 27, 39, 44, 52, 53, 60,
67, 83, 90, 121, 137). Very probably, in these cases other factors such as large in-situ stress
attended to provide high energy releases.

Table 3. Descriptive statistics of the rockburst dataset.

Statistical
Parameter Dataset

Maximum Tangential
Stress of Surrounding

Rock, σθ (MPa)

Uniaxial
Compressive

Strength, σc (MPa)

Uniaxial Tensile
Strength, σt

(MPa)

Strain Energy
Storage Index,

Wet

Minimum
Training 2.6 18.32 0.38 0.85
Testing 11 18.32 0.38 1.6
Total 2.6 18.32 0.38 0.85

Maximum
Training 167.2 306.58 22.6 10.57
Testing 167.2 263 11.3 9.3
Total 167.2 306.58 22.6 10.57

Mean
Training 56.17 122.31 7.14 4.69
Testing 78.65 128.98 6.50 5.68
Total 59.99 13.44 7.03 4.86

Standard
deviation

Training 33.62 59.73 5.09 2.15
Testing 42.32 64.98 2.97 2.19
Total 36.11 60.5 4.79 2.18
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Figure 2. Cont.
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Figure 2. Histograms of the input parameters considered to predict the rockburst hazard: (a) Maximum tangential stress of
surrounding rock (σθ ; MPa), (b) Uniaxial compressive strength, (σc; MPa), (c) Uniaxial tensile strength (σt; MPa), (d) Strain
energy storage index (Wet).

2.2. Methodology
2.2.1. J48

The J48 algorithm is the implementation of the C4.5 algorithm [35]. Waikato Envi-
ronment for Knowledge Analysis (WEKA) software’s implementation of the C4.5 random
tree learner is the J48 algorithm (J48 also implements a later and slightly modified version
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named C4.5 revision 8, which was the last public version of this algorithm family before
C5.0 was released for commercial implementation) [36].

The random trees are generated with C4.5. A tree-like structure serves as a random
support system in the random tree. A root node, internal nodes, and leaf nodes build the
tree structure. The root node contains all of the input data. A random function is associated
with an internal node that may have two or more branches. The label class is represented
by the leaf node, which is the output of the input vector. The main advantage of random
trees is that they are simple to build and the resulting trees are easy to understand [37].
The C4.5 algorithm has recently been used to determine the potential for seismic soil
liquefaction [28,29] and landslide susceptibility [37]. The J48 random tree algorithm takes
the following steps [38].

Step 1: Compute the Entropy(S) of the training dataset S as follows:

Entropy(S) = −
K

∑
i=1

[(
f req(Ci, S)
|S|

)
log2

(
f req(Ci, S)
|S|

)]
(1)

where |S| is the number of samples in the training dataset, Ci is a dependent variable,
i = 1, 2, . . . , K, K is the number of classes for the dependent variable, and freq(Ci, S) is the
number of samples included in class Ci.

Step 2: Calculate the Information Gain X(S) for the partition’s X test attribute:

GainX(S) = Entropy(S)−
L

∑
i=1

[(
|Si|
|S|

)
Entropy(Si)

]
(2)

where L is the number of test outputs, X, Si is the subset of S corresponding to the output of
ith, and |Si| is the number of dependent variables of the subset Si. A subset that provides
maximum information gain will be selected as the threshold for a particular partition
attribute. The node branch will consist of the two partitions S and S–Si. The tree is a
leaf if the cases are from the same class; hence, the leaf is returned by defining the same
dependent variables (class).

Step 3: Calculate the Split Info (X) acquisition’s partition information value for S
partitioned to L subsets:

Split In f o(X) = −
L

∑
i=1

[
|Si|
|S| log2

|Si|
|S| +

(
1− |Si|
|S|

)
log2

(
1− |Si|
|S|

)]
(3)

Step 4: Calculate the Gain Ratio(X):

Gain Ratio(X) =
In f ormation GainX(S)

Split In f o(X)
(4)

Step 5: The root node will be the attribute with the highest gain ratio, and the same
calculation from step 1 to step 4 will be repeated for each intermediate node until all
instances are exhausted and it reaches the leaf node as defined in step 2.

2.2.2. Random Tree (RT)

RT splits the data set into sub-spaces and fits the constant to each sub-space. A single
tree model tends to be very unstable and provides lower prediction accuracy. However,
very accurate results can be obtained by bagging RT as a random tree algorithm [39]. RT
has a high degree of versatility and quick training capabilities [40]. More comprehensive
details of the RT can be found in Sattari et al. [41] and Kiranmai and Laxmi [42]. Table 4
presents the different variations between the J48 and random tree data mining algorithms.
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Table 4. Differences between J48 and random tree algorithms.

Properties J48 Random Tree

Attributes available at each decision node All Random Subset
Selection of attributes at each decision node Highest information gain among all Best among a random subset

Number of trees One One
Data samples used for training All All

Final result of Classification Based on the leaf node reached Based on the leaf node reached

3. Construction of Prediction Model

The construction method of the prediction model is presented in Figure 3. The data
is divided in two sub-datasets, i.e., training and testing. A training dataset of 137 cases
is chosen to train the model and the remaining 28 cases are used to test the model. A
hold-out technique is used to tune the hyper parameters of the model. The prediction
model is fitted using the optimal configuration of hyperparameters, based on the training
dataset. Different performance indexes such as classification accuracy (ACC), kappa
statistic, producer accuracy (PA), and user accuracy (UA) are used to evaluate model
performance. Last, the optimum model is calculated by evaluating the comprehensive
performance of these models. If the predicted performance of this model is appropriate,
then it can be adopted for deployment. In WEKA, the entire method of calculation is
carried out.

Figure 3. Construction process of prediction model.

3.1. Hyperparameter Optimization

Tuning is the process of maximizing a model’s performance and avoiding overfit-
ting or excessive variance. This is achieved in machine learning by choosing suitable
“hyperparameters”. Choosing the right set of hyperparameters is critical for model accu-
racy, but can be computationally challenging. Hyperparameters are different from other
model parameters in that they are not automatically learned by the model through training
methods, instead, these parameters must be set manually. Critical hyperparameters in
random tree and J48 algorithms are tuned to determine the optimum value of algorithm
parameters such as the minimum number of instances per leaf and the confidence factor.
For both algorithms, the trial and error approach is used to evaluate these parameters in a
particular search range in order to achieve the best classification accuracy. The search range
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of the same hyperparameters is kept consistent. Furthermore, according to the maximum
accuracy, the optimal values for each set of hyperparameters are obtained. In this analysis,
the optimum values for the J48 algorithm were found as: the minimum number of instances
was 1 and the confidence factor was 0.25, the tree size was 63, the number of leaves was 32,
and in the case of a random tree, the tree size was 103 and the minimum total weight of the
instances in a leaf was 1.

3.2. Model Evaluation Indexes

J48 and random tree algorithms are used as described in Section 2.2 in order to con-
struct a predictive model for the classification of a rockburst hazard. The uncertainty matrix
is a projected results visualization table where each row of the matrix represents the cases in
the actual class, while each column displays the cases in the predicted class. It is normally
constructed with m rows and m columns, where m is equal to the number of classes. The
accuracy, kappa, producer accuracy, and user accuracy found for each class of the confusion
matrix sample are used to test the predictive model’s efficacy. Let xij (i and j = 1, 2, . . . , m)
be the joint frequency of observations designated to class i by prediction and class j by
observation data, xi+ is the total frequency of class i as obtained from prediction, and x + j
is the total frequency of class j based on observed data (see Table 5).

Table 5. Confusion matrix.

Predicted
Actual

Total UA (%)
1 2 . . . m

1 x11 x21 . . . x1m x1+ (x11/x1+) × 100%
2 x21 x22 . . . x2m x2+ (x22/x2+) × 100%

. . . . . . . . . . . . . . . . . . . . .
m xm1 xm2 . . . xmm xm+ (xmm/xm+) × 100%

Total x+1 x+1 . . . x+m
PA (%) (x11/x+1) × 100% (x22/x+2) × 100% . . . (xmm/x+m) × 100%

Classification accuracy (ACC) is determined by summing correctly classified diagonal
instances and dividing them by the total number of instances. The ACC is given as:

ACC =

(
1
n

m

∑
i=1

xii

)
× 100% (5)

Cohen’s kappa index, which is a robust index that considers the likelihood of an event
classification by chance, measures the proportion of units that are correctly categorized
units proportions after removing the probability of chance agreement [43]. Kappa can be
calculated using the following formula:

Kappa =
n∑m

i=1 xii −∑m
i=1(xi+ · x+i)

n2 −∑m
i=1(xi+ · x+i)

(6)

where n is the number of instances, m is the number of class values, xii is the number
of cells in the main diagonal, and xi+, x+i are the cumulative counts of the rows and
columns, respectively.

Landis and Koch [44] suggested a scale to show the degree of concordance (see Table 6).
A kappa value of less than 0.4 indicates poor agreement, while a value of 0.4 and above
indicates good agreement (Sakiyama et al. [45]; Landis and Koch [44]). The producer’s
accuracy of class i (PAi) can be measured using Congalton and Green’s formula [46].

PAi =

(
xii

x+m

)
× 100% =

(
xii

∑m
i=1 xim

)
× 100% (7)
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and user’s accuracy of class i (UAi) can be found as:

UAi =

(
xii

xm+

)
× 100% =

(
xii

∑m
i=1 xmj

)
× 100% (8)

Table 6. Strength agreement measure related to kappa statistic.

Interpretation Almost
Perfect Substantial Moderate Fair Slight Poor

Kappa
statistic 0.81–1.00 0.61–0.80 0.41–0.60 0.21–0.40 0.00–0.20 −1.00–0.00

The J48 and random tree models are studied for the suitability of predicting rockburst.
Comparison is made with the traditional empirical criteria of the rockburst including
the Russenes criterion [47], the rock brittleness coefficient criterion [48], ANN [21], and
CNN [21] models using performance measures i.e., ACC, PA, UA, and kappa.

4. Results and Discussion

The performance of both models was tested to predict rockburst hazard using various
evaluation criteria as mentioned in Section 3. Based on the statistical assessment criteria, it
was observed that both models had very high predictive accuracy capability (J48: 92.857%;
Random tree: 100%). The result of the kappa coefficient showed that both of these models
are almost perfect but the random tree model performed best, owing to having the highest
kappa coefficient value (1.0), followed by the J48 (0.904). With comparisons of the results
from the four models, it is found that the prediction accuracy (ACC) and kappa coefficient
of random tree and CNN models are equivalent, which is higher than that of other models
shown in Table 7.

Table 7. Performance metrics of each model for test data.

Method ACC (%) Kappa

Russenes criterion [47] 42.867 0.222
Rock brittleness coefficient criterion [48] 53.571 0.352

ANN [21] 89.286 0.856
CNN [21] 100 1.000

J48 (present study) 92.857 0.904
Random tree (present study) 100 1.000

Note: Bold values indicate the highest value for each model.

In terms of the producer accuracy (PA) value, the random tree model also had the
highest PA (100%) for all ranks of rockburst, followed by the J48. PA and UA show that
some of the features are better classified than others (see Table 8). As can been seen from
the Table 8, in the J48 model, both “no rockburst” and “moderate rockburst” both have
at par PA values (100%) compared to “strong rockburst” (88.889%) and “no rockburst”
(83.333%). While in the J48 model, both “no rockburst” and “violent rockburst” have at par
UA values (100%) compared to “moderate rockburst” (88.889%) and “strong rockburst”
(87.5%). The results showed that there was a statistically significant difference between the
random tree and the J48 models, and it was found that the performance of the J48 is just
secondary to the random tree model in prediction of rockburst hazard.
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Table 8. Confusion matrices and performance measures based on testing dataset of rockburst.

Predicted
Observed

Total UA (%) Predicted
Observed

Total UA (%)
NR MR SR VR NR MR SR VR

Russenes criterion [47] CNN [21]
NR 2 0 0 0 2 100 NR 6 0 0 0 6 100
MR 1 1 1 1 4 25 MR 0 7 0 0 7 100
SR 0 4 6 2 12 50 SR 0 0 9 0 9 100
VR 3 2 2 3 10 30 VR 0 0 0 6 6 100

Total 6 7 9 6 28 Total 6 7 9 6 28
PA (%) 33.333 14.286 66.667 50 PA (%) 100 100 100 100

Rock brittleness coefficient criterion [48] J48 (present study)
NR 1 0 0 0 1 100 NR 6 0 0 0 6 100
MR 2 3 1 0 6 50 MR 0 7 1 0 8 87.5
SR 2 3 8 3 16 50 SR 0 0 8 1 9 88.889
VR 1 1 0 3 5 60 VR 0 0 0 5 5 100

Total 6 7 9 6 28 Total 6 0 0 0 6
PA (%) 16.667 42.857 88.889 50 PA (%) 100 100 88.889 83.333

ANN [21] Random Tree (present study)
NR 6 0 0 0 6 100 NR 6 0 0 0 6 100
MR 0 7 1 0 8 87.5 MR 0 7 0 0 7 100
SR 0 0 7 1 8 85.5 SR 0 0 9 0 9 100
VR 0 0 1 5 6 83.333 VR 0 0 0 6 6 100

Total 6 7 9 6 28 Total 6 7 9 6 28
PA (%) 100 100 77.778 83.333 PA (%) 100 100 100 100

Note: NR: no rockburst; MR: moderate rockburst; SR: strong rockburst; VR: violent rockburst.

To illustrate and verify the performances of J48 and random tree models, the prediction
capacity of these models is compared with the other models including the Russenes
criterion [47], the rock brittleness coefficient criterion [48], ANN [21], and CNN [21]. The
confusion matrix and the performance indices for traditional empirical criteria of the
rockburst including Russenes criterion [47], the rock brittleness coefficient criterion [48],
ANN [21], and CNN [21] models are presented in Table 8. The comparison of these models
reveals that J48 and random tree models can be applied efficiently, but the random model
exhibits the best and at par performance with the CNN [21] model and after that the J48
model. The random tree model can predict “no rockburst”, “moderate rockburst”, “strong
rockburst” and “violent rockburst” cases with overall accuracy of 100%.

Although existing models such as SVM do not provide explicit equations for profes-
sionals, the established J48 and random tree models (see Figure 4) can be used by civil
and mining engineering professionals with the aid of a spreadsheet to analyze potential
rockburst events without going into the complexities of model development. Furthermore,
the J48 and random tree approaches do not require data normalization or scaling, which is
an advantage over most other approaches.

In general, both of the established models performed well in the testing data phase,
while overall performance of the random tree model showed better performance (see
Tables 7 and 8) and it is shown that the random tree model is preferred over other models. It
was found that for a larger dataset with almost no sampling bias (i.e., disparity in class ratio
between population and sample) in the training and testing phases, predictive performance
should be further examined. Though the dataset (165) used in this study is small, the
J48 and random tree models can always be updated to yield better results, as new data
become available. Study results suggest that proposed models show improved predictive
performance compared to the majority of existing studies. This, in turn, will ensure the
reduction in the loss of property, human lives, and injuries from a practical viewpoint.
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Figure 4. Part of (a) J48 and (b) random tree models.
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5. Conclusions and Limitations

In underground mining and civil engineering projects, models for predicting rockburst
can be valuable tools. This study compared J48 and random tree models for predicting
rockburst. Four variables (σθ , σc, σt, and Wet) were selected as influence factors for pre-
dicting rockburst using a dataset of 165 rockburst events compiled from recent published
research, which was used to construct the decision tree models. The following conclusions
can be drawn, based on the results of the study:

1. The performance measures of the testing dataset for the J48 and random tree algo-
rithms conclude that it is rational and feasible to choose the maximum tangential
stress of surrounding rock σθ (MPa), the uniaxial compressive strength σc (MPa), the
uniaxial tensile strength σt (MPa), and the strain energy storage index Wet as indexes
for predicting rockburst.

2. The classification accuracy of J48 and random tree models in the test phase is 92.857%
and 100%, respectively, which shows that the random tree model is an accurate and
efficient approach to predicting the potential for rockburst classification ranks.

3. The kappa index of the developed J48 and random tree models is in the range of
0.904–1.000, which means that the correlation between observed and predicted values
is nearly perfect.

4. The comparison of models’ performances reveals that the random tree model gives
more reliable predictions and their application is easier owing to a clear graphical
outcome that can be used by civil and mining engineering professionals.

Although the proposed method yields adequate prediction results, certain limitations
should be discussed in the future.

(1) The sample size is restricted and unbalanced. The number and quality of datasets
have a significant impact on the prediction performance of random tree and J48 algorithms.
In general, the generalization and reliability of all data-driven models are affected by the
size of the dataset. Although the random tree and J48 algorithms perform well, larger
datasets can yield better prediction results. Furthermore, the dataset is unbalanced, partic-
ularly for samples with violent rockburst (17%) and samples with no rockburst (19%). As a
result, establishing a larger and more balanced rockburst database is essential.

(2) Other variables may have an effect on the prediction outcomes. Numerous factors
influence the risk of a rockburst, including rock properties, energy, excavation depth, and
support structure, among others. Although the four indicators used in this study can define
the required conditions for rockburst hazard assessment to some degree, some other indi-
cators, such as the buried depth of the tunnel (H), failure duration time, and energy-based
burst potential index, may also have an impact on rockburst hazard. As a consequence, it
is crucial to look into the effects of these variables on the prediction outcomes.
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Appendix A

Table A1. Rockburst database.

S. No.

Maximum
Tangential Stress of
Surrounding Rock,

σθ (MPa)

Uniaxial
Compressive

Strength, σc (MPa)

Uniaxial Tensile
Strength,
σt (MPa)

Strain Energy
Storage Index,

Wet

Rockburst Rank

1 26.9 62.8 2.1 2.4 MR
2 24.93 99.7 4.8 3.8 NR
3 57.6 120 5 5.1 SR

4 * 132.1 51.5 2.47 4.63 SR
5 17.4 161 3.98 2.19 MR
6 34.15 54.2 12.1 3.17 MR
7 60 135 15.04 4.86 MR
8 40.4 72.1 2.1 1.9 MR

9 * 55.4 176 7.3 9.3 SR
10 105.5 190 17.1 3.97 SR
11 62.4 235 9.5 9 VR

12 * 80 180 6.7 5.5 MR
13 29.8 132 11.5 4.6 SR
14 12.1 160 5.2 2.22 NR
15 58.2 83.6 2.6 5.9 VR
16 29.7 116 2.7 3.7 MR
17 49.5 110 1.5 5.7 SR
18 105 237.16 17.66 6.38 VR

19 * 11 105 4.9 4.7 NR
20 7.5 52 3.7 1.3 NR
21 19 153 4.48 2.11 MR
22 89 236 8.3 5 SR
23 56.1 131.99 9.44 7.44 SR
24 60.7 111.5 7.86 6.16 VR
25 33.6 156 10.8 5.2 SR
26 127.9 35.82 1.24 3.67 MR
27 25.49 54.2 2.49 3.17 MR
28 48 120 1.5 5.8 SR

29 * 92 263 10.7 8 MR
30 62.6 165 9.4 9 MR
31 89.56 170.28 12.07 5.76 SR

32 * 30 88.7 3.7 6.6 SR
33 18.8 178 5.7 7.4 NR
34 54.2 134 9.09 7.08 SR
35 91.3 225.6 17.2 7.3 VR
36 44.4 120 5 5.1 MR
37 90 170 11.3 9 SR

38 * 11.3 90 4.8 3.6 NR
39 35.8 67.8 3.8 4.3 SR
40 70.4 110 4.5 6.31 SR
41 50 130 6 5 SR

42 * 108.4 140 8 5 VR
43 34 149 5.9 7.6 MR

44 * 148.4 66.77 3.81 5.08 MR
45 56.8 112 2.2 5.2 SR
46 60 136.79 10.42 2.12 MR
47 19.7 142 4.55 2.26 MR
48 167.2 110.3 8.36 6.83 VR
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Table A1. Cont.

S. No.

Maximum
Tangential Stress of
Surrounding Rock,

σθ (MPa)

Uniaxial
Compressive

Strength, σc (MPa)

Uniaxial Tensile
Strength,
σt (MPa)

Strain Energy
Storage Index,

Wet

Rockburst Rank

49 30.1 88.7 3.7 6.6 VR
50 38.2 71.4 3.4 3.6 SR
51 61 171.5 22.6 7.5 MR
52 41.6 67.6 2.7 3.7 SR
53 19.5 30 2.67 2.03 SR
54 89.56 187.17 19.17 7.27 SR

55 * 60.7 111.5 7.86 6.16 VR
56 63.8 110 4.5 6.31 SR

57 * 62.4 235 9.5 9 VR
58 148.4 66.77 3.81 5.08 MR
59 62.6 165 9.4 9 MR
60 118.5 26.06 0.77 2.89 MR
61 90 220 7.4 7.3 MR

62 * 96.41 18.32 0.38 1.87 NR
63 40.6 66.6 2.6 3.7 SR
64 12.3 237.1 17.66 6.9 NR
65 55.6 114 2.3 4.7 SR

66 * 98.6 120 6.5 3.8 SR
67 30 30 2.67 2.03 VR
68 28.6 122 12 2.5 SR
69 70.3 129 8.73 6.43 SR
70 68 107 6.1 7.2 VR
71 29.1 94 2.6 3.2 MR
72 73.2 120 5 5.1 SR
73 105 304 9.12 5.76 SR
74 32.3 67.4 6.7 1.1 NR

75 * 34 150 5.4 7.8 NR
76 15.2 53.8 5.56 1.92 NR
77 39.4 65.2 2.3 3.4 SR
78 75 180 8.3 5 SR
79 11 105 4.9 4.7 NR
80 18.7 82 10.9 1.5 NR
81 14.96 99.7 4.8 3.8 NR

82 * 90 170 11.3 9 SR
83 13.5 30 2.67 2.03 MR

84 * 167.2 110.3 8.36 6.83 VR
85 62.5 175 7.25 5 SR

86 * 90 220 7.4 7.3 MR
87 20.9 160 5.2 2.22 NR
88 39 70.1 2.4 4.8 SR
89 63 115 1.5 5.7 SR
90 47.56 58.5 3.5 5 MR
91 157.3 91.23 6.92 6.27 VR
92 60 149.19 9.3 3.5 MR
93 56.9 123 2.7 5.2 SR
94 98.6 120 6.5 3.8 SR
95 81.4 110 4.5 6.31 VR
96 96.41 18.32 0.38 1.87 NR

97 * 70.3 129 8.73 6.43 SR
98 62.1 132 2.4 5 SR

99 * 38.2 53 3.9 1.6 NR
100 13.9 124 4.22 2.04 NR
101 54.2 134 9.1 7.1 SR
102 3.8 20 3 1.39 NR

103 * 89 236 8.3 5 SR
104 46.4 100 4.9 2 MR
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Table A1. Cont.

S. No.

Maximum
Tangential Stress of
Surrounding Rock,

σθ (MPa)

Uniaxial
Compressive

Strength, σc (MPa)

Uniaxial Tensile
Strength,
σt (MPa)

Strain Energy
Storage Index,

Wet

Rockburst Rank

105 23 80 3 0.85 MR
106 55.9 128 6.29 8.1 VR
107 11.3 90 4.8 3.6 NR
108 26.9 92.8 9.47 3.7 SR
109 105 171.3 22.6 7.27 VR
110 80 180 6.7 5.5 MR
111 59.82 85.8 7.31 2.78 SR
112 55.6 256.5 18.9 9.1 SR
113 35 133.4 9.3 2.9 MR
114 107.5 21.5 0.6 2.29 NR
115 59.9 96.6 11.7 1.8 MR
116 40.1 72.1 2.3 4.6 SR
117 21.8 160 5.2 2.22 NR
118 38.2 53 3.9 1.6 NR
119 57 180 8.3 5 SR
120 57.2 80.6 2.5 5.5 VR

121 * 127.9 35.82 1.24 3.67 MR
122 108.4 138.4 7.7 1.9 VR
123 30 88.7 3.7 6.6 SR

124 * 54.2 134 9.09 7.08 SR
125 105 128.61 13 5.76 VR
126 46.2 105 5.3 2.3 MR

127 * 157.3 91.23 6.92 6.27 VR
128 92 263 10.7 8 MR
129 55.6 114 2.3 4.7 SR
130 72.07 147.09 10.98 6.53 SR
131 39.4 69.2 2.7 3.8 SR
132 60 66.49 9.72 2.15 MR
133 48.75 180 8.3 5 SR

134 * 107.5 21.5 0.6 2.29 NR
135 89 128.6 13.2 4.9 VR

136 * 35 133.4 9.3 2.9 MR
137 132.1 51.5 2.47 4.63 SR
138 25.7 59.7 1.3 1.7 NR
139 55.4 176 7.3 9.3 SR
140 105.5 187 19.2 7.27 SR
141 43.4 123 6 5 SR
142 75 170 11.3 9 SR
143 4.6 20 3 1.39 NR
144 43.4 136.5 7.2 5.6 VR
145 30.3 88 3.1 3 MR
146 60 106.38 11.2 6.11 MR
147 108.4 140 8 5 VR

148 * 48.75 180 8.3 5 SR
149 69.8 198 22.4 4.68 MR
150 89.56 190.3 17.13 3.97 SR
151 105 306.58 13.9 6.38 VR
152 18.8 171.5 6.3 7 NR
153 105 304.21 20.9 10.57 VR
154 70.3 128.3 8.7 6.4 SR
155 27.8 90 2.1 1.8 NR
156 105.5 170 12.1 5.76 SR

157 * 43.4 136.5 7.2 5.6 VR
158 60 86.03 7.14 2.85 MR
159 11 115 5 5.7 NR
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Table A1. Cont.

S. No.

Maximum
Tangential Stress of
Surrounding Rock,

σθ (MPa)

Uniaxial
Compressive

Strength, σc (MPa)

Uniaxial Tensile
Strength,
σt (MPa)

Strain Energy
Storage Index,

Wet

Rockburst Rank

160 34 150 5.4 7.8 NR
161 45.7 69.1 3.2 4.1 SR
162 88.9 142 13.2 3.62 VR
163 30.9 82.56 6.5 3.2 MR
164 43.62 78.1 3.2 6 MR
165 2.6 20 3 1.39 NR

Note: Cases with * are testing samples.
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