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Abstract: In general dynamic scenes, blurring is the result of the motion of multiple objects, camera
shaking or scene depth variations. As an inverse process, deblurring extracts a sharp video sequence
from the information contained in one single blurry image—it is itself an ill-posed computer vision
problem. To reconstruct these sharp frames, traditional methods aim to build several convolutional
neural networks (CNN) to generate different frames, resulting in expensive computation. To vanquish
this problem, an innovative framework which can generate several sharp frames based on one CNN
model is proposed. The motion-based image is put into our framework and the spatio-temporal
information is encoded via several convolutional and pooling layers, and the output of our model
is several sharp frames. Moreover, a blurry image does not have one-to-one correspondence with
any sharp video sequence, since different video sequences can create similar blurry images, so
neither the traditional pixel2pixel nor perceptual loss is suitable for focusing on non-aligned data.
To alleviate this problem and model the blurring process, a novel contiguous blurry loss function is
proposed which focuses on measuring the loss of non-aligned data. Experimental results show that
the proposed model combined with the contiguous blurry loss can generate sharp video sequences
efficiently and perform better than state-of-the-art methods.

Keywords: motion based image; image deblurring; conventional neural networks; contiguous blurry
loss; spatio-temporal framework

1. Introduction

Blurry images can be caused for many reasons, including rapidly changing scenes or
motion blur, camera shaking and depth variations [1]. Unpleasant blurring can destroy
the reminiscence between people in photos and in real-life. In fact, a photo is not only an
instant in time as it is commonly referred to. A photo needs exposure over a certain period
of time to gather light from the scene; hence, there can be some motion occurring in the
scene while it is being captured as a single photo.

Image deblurring is a classical problem in the field of computer vision. Given a single
blurry image, deblurring is the process of estimating its corresponding sharp images. Past
methods focused on removing blur kernels arising from one translation [2]. Recently, far more
studies focused on recovering sharp images caused by depth variation and camera shaking in
dynamic environments [3]. The majority of these methods were blur model-based:

Ig=K-Ig+N 1)

in which Ip represents the blurry image and K denotes a mixed unknown blur kernel. I5 is
the corresponding sharp image, - represents the convolutional process and N is the often
concomitant additive noise.

In practice, it is hard to model a blur kernel for each pixel, which is regarded as an
ill-posed problem [4]. Some research works ascribe the blur merely to 3D convolution [5,6],
while ignoring camera shake and the possibility of having multiple fast moving objects
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in a dynamic scene captured as one photo. A blurry image captured as the result of such
scene dynamically is called a motion-blurred image and the estimation of a blur kernel
for the purpose of deconvolution is very problematic. Kim et al. [7] proposed a method
that estimates the latent images and locally linear motion. However, the estimated blur
kernels using their method are not accurate for abrupt motion [8]. Recently, convolutional
neural networks (CNN) have achieved remarkable success in the fields of computer vision,
including the deblurring problem. Some CNN-based methods utilize the unified blur
kernel (a procedure directly applicable to any image with any blur) to synthesize blurry
images for training [9-11], whereas other default methods estimate the blur kernel as a
local linear kernel [12].

In addition, the method of [13] is trained based on the pixel2pixel loss and perceptual
loss functions, which are proposed for aligning data. This is essentially different from our
approach, which is designed for non-aligned data, as one motion-blurred image does not
have one-to-one correspondence with a sharp video sequence. As Figure 1 shows, one
motion-blurred image can be created based on different sharp video sequences. To deal
with this problem, the contiguous blurry loss is proposed, which targets single blurred
images and their corresponding sharp video sequences. The key to contiguous blurry
loss is to treat both sharp and blurry images as collections of features. Our loss function
contains two parts, of which one ignores the spatial positions of the features and focuses on
measuring the similarity of sharp and blurry images on the basis of their similar features.
The other part complements the loss caused by spatial positions at the pixel2pixel level.

Overall, our contributions are summarized as follows.

¢  Firstly, we developed a new structure to train a single generative model to recover
sharp video frames from one motion-blurred image.

*  Secondly, we introduced a contiguous blurry loss to constrain the estimation process, ad-
dressing the nonalignment problem between blurry images and sharp video sequences.

e Thirdly, the experiment results show that our framework can generate sharp image
sequences and achieve state-of-the-art performance.

Figure 1. The process of generating blurry images. The second to sixth columns demonstrate
modeling the sharp video sequence under four different conditions, but they can generate identical
motion-blurred images, as shown in the seventh column. The blurry images in the first column are
the portrayal of the seventh column in reality.

2. Related Work

Our proposed method is related to image deblurring and video deblurring. In this
section, we will briefly review that content and common approaches.
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2.1. Image Deblurring

Image deblurring is an ill-posed computer vision problem. Traditional methods
usually optimize complex objective functions based on adding constraints to the blur
kernel. Kim et al. [14] proposed a segmentation-based method to jointly estimate blur
kernel and sharp images. However, the forward motions and depth variations are not
considered in their methods. In [7], a segmentation-free approach was put forward using a
locally linear optical flow field to model the blur kernel. However, in the real world, the
motions are complex, and thus this assumption does not hold. Pan et al. [14] presented
a soft segmentation approach to deal with the severe blur, but the initialization of their
method is based on user inputs.

Recently, deep learning methods have won tremendous success in the realms of com-
puter vision, such as object detection [15], image classification [16] and facial analysis [17].
For the low-level vision issues, many deep learning based models are also used, for ex-
ample, image denoising [18], super-resolution technology [19], image dehazing [20] and
image deblurring [8]. There are also many algorithms that try to estimate the blur kernel in
a non-uniform way or use a non-blind deblurred method to generate sharp frames based
on deep learning models. Sun et al. [12] calculated the motion blur of each block based
on a proposed NN-based model, and then obtained dense motion based on a Markovian
random field. Gong et al. [21] proposed a much deeper CNN model for the estimation
of motion flow. Both of them [12,21] are not trained in the way end-to-end, and their
deblurring processing is time-consuming. Beyond that, many end-to-end approaches are
also being studied to solve the image deblurring problem [8,22]. For the sake of using a
large receptive field, many have proposed multi-scale models. Nah et al. [8] proposed
complicated three-scale CNN models, and each of them contained 40 convolutional layers.
In addition, Zhang et al. [23] presented a theory of relativistic blur loss which combined
the learning-to-Blur GAN and learning-to-DeBlur GAN.

2.2. Video Deblurring

The goal of video deblurring is generate a sharp video from a blurry video. Some
approaches aim to combine multiple images directly in the spatial domain. In [24,25], the
algorithm selects the best pixels obtained from aligning multiple low-quality frames in one
sequence to reconstruct the final results. Cho et al. [26] utilized patch-based methods to im-
prove the robustness for moving objects. However, the method cannot solve the large depth
variations, and the procedure of patch matching is very time-consuming. Klose et al. [27]
fused pixels via using 3D reconstruction to project them into the reference coordinate sys-
tem. However, this method is fragile for highly dynamic videos. The aggregation methods
rely on the assumption that there are some sharp frames in general. Thus, sharp pixels can
be generated based on nearby frames. Delbracio et al. [28] demonstrated that aggregating
multiple images is beneficial to computationally highly efficient video deblurring. In [29],
adjacent frames were distorted according to optical flow. However, it did not achieve satis-
factory performance under the conditions of occlusions because of the computational limit
of optical flow. Recently, [30] built a correlation volume pyramid among all the pixel-pairs
between neighboring frames to construct distant pixel correspondences for fast motions.

Usually, all above approaches need the internal information contained in the whole
video to restore the sharp sequence frames, but what we have done is recover a sequence of
sharp frames form just one single blurred image. The most related to our task is [13]. They
proposed a deep learning network that reestablishes the time sequence via extracting frames
and generates a clear video sequence. However, this method is computationally extensive
because it generates seven continuing sharp frames via seven sub-models. Meanwhile,
the loss functions utilized in their methods are based on aligning data while ignoring the
characteristics of the motion-blur, whereas the recovery can be regraded as an non-aligning
process. These next sections firstly demonstrate the process of generating blurry images;
next we introduce our proposed framework and contiguous blurry loss functions.
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3. Approach

In this section, we first analyze how the blurry images are generated based on imaging
principles, and thus introduce the contiguous blurry loss, and then explain the composition
and proportion of the whole loss function. Finally, we proposed the architecture of our
learning network.

3.1. The Generation of Blurry Images

In most previous studies, blurry images were generated as (1) by convolving the
modeled blur kernel on one sharp image. However, the fountainhead of the blurry image
generated is the synthesis of information over time. Specifically, because a camera sensor
receives light all the time during exposure, sharp images stimulated at each moment
are superimposed, which results in blurred images. Then, the camera response function
transforms the integrated signal into a pixel value. Thus, the process of generating blurry
image can be approximated as an integration of signals from high-speed video frames
rather than a manually defined kernel.

The accumulation of motion blur can be approximately modeled as follows:

T— 1
T/ £)dt) Zs 2

Here, T is time of exposure and S(t) denotes the sensor signal of one sharp image
at time t. S[i] and M are the i-th captured sharp frame and the total number of frames,
respectively. ¢ denotes the operator which can transfer the sharp signal S(t) into an blurry
frame through the camera response function. Obviously, our target is to reestablish and
acquire sharp frames S[i] from the input blurry image B, which is a totally inverse process.

3.2. Loss Functions

Three types of loss function are mainly considered in our GAN-based model: adver-
sarial loss, content loss and contiguous loss.

Adversarial loss. To prompt G to generate sharp frames as close as possible to the
actual sharp images, the adversarial loss should be introduced to perfect models iteratively.
Correspondingly, in the training phase, Resnet-based model parameters will be updated
repeatedly, trying to muddle through in discriminator D. The following is the function
expression of adversarial loss:

£adversarial = log(l - D<G(Iblwry>)) ’ (3)

where D (G (I""*"Y) represents the probability that the restored frame is a sharp enough image.

Content loss. Many previous studies on video deblurring will have considered mean
square error (MSE) loss in solving objective optimization. On the grounds of the measure-
ment index MSE, we define the content loss function as follows:

hﬂ’ blur 2
ﬁcontent Z E S P I )x,y) ’ (4)
WH o |

where H and W denote the height and weight of the frame. I Shmp and G (1) x,y correspond
to the values of real sharp frame and deblurred frame generated from the ResNet-based
model, respectively, at locations (x,y).

Contiguous loss. As Figure 1 shows, a single motion-blurred image does not have
one-to-one correspondence with a sharp video sequence. Extracting a video sequence from
a blurry image is a non-aligned process, inspired by the work in [31], so an improved
contiguous blurry loss is introduced in this work.

In order to measure the similarity between images without aligning them, a novel
measurement is defined to settle this issue. The core idea of this measurement is to map
images into points (features) in higher dimensional space. Additionally, if two images are
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similar in the corresponding point sets in higher dimensions, they are considered to be
semblable. When a large proportion of features of an image have similar features to another
one, we can assume that the images are similar. On the contrary, when the features of one
image nearly have no resemblance to those of another image, we consider the images to
be different from each other. Following this observation, the measurement of contiguous
similarity between images can be formulated.

Given a pair of images for analysis, the original image x and its corresponding target
image y, they can be represented as sets of points, respectively: X = {x;} and Y = {y;}.
Set dj; as the cosine distances between x; and y;. As X and Y are the most matching features,
the value of d;; must be smaller than the cosine distance of points from other features Y,
and we assume those distances as dj;. In the work of reference [31], they defaulted to
dij << djt, but in practice, their values may be very close. For example, there are many
worker bees on the hive in one image, and the features of worker bees may be very similar.
If we apply the learned features to deblur directly, the network may confuse two worker
bees who are close to each other. Hence, we add two restrictions to avoid the occurrence of
error recognition and to ensure that d;; << dj, Vk # j.

Hence, the normalizing distance between the similar features x; and yj can be defined
as the following formula:

gy — 5)
v dix +€

for the preset constant € = 1 x 107°. Then we transform distance measurements into
similarities of features with the exponentiation operator:

1-d;
wij = exp ( 5 1) (6)

where 1 > 0 denotes the parameter of bandwidth. Finally, CX;; is introduced to represent
the contiguous similarity between features, which can be expressed in scaled invariant
versions of the standardized similarities as follows:

@)

To compute the similarity index between images is to seek out the most similar feature
x; for each feature y;, and then sum the similarity index over all y;. Specifically, feature
x; is considered to be similar to feature y; contextually if no other feature is found in Y
that is closer to it. In another case, if x; is not near enough to any particular y;, no matter
how far away x; is, its contiguous similarity to any y; is supposed to be comparatively low.
Therefore, this method has strong robustness to the shift of features caused by motion blur.
The similarity between features, CX;j, can be incorporated and integrated into the global
image context. Formally, define the number of features |Y| = |X| = N; then the contiguous
similarity between images can be deduced as follows:

CX(x,y) = CX(X,Y) = %Zm{ax CXij 8)
)

As mentioned above, due to the misalignment in the training data, the generated
blurred images mainly contain two losses, Leontent and Lygpersariar- On the other hand, it is
unsatisfactory to consider only the CX loss for unaligned data, as it is only associated with
mapping features but not their spatial locations in the image. For training our model more
appropriately, we integrate the spatial pixel coordinates and pixel-level RGB information
into the image features. In conclusion, the proposed contiguous blurry loss (CBL) can be
defined as:
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CXf(X,Y) Zmax CX:; (CXii+1) )

where CX;]- = |[(xi,yi) = (xj,¥j) |2 (xi,y;) and (x},y;) represent different spatial coordi-
nates of features.

In order to be consistent with the form of other losses, the function of contiguous
blurry loss can be converted to logarithmic form:

Leontiguous = Lcx, (x,y) = —1og(CX (x,y)(CX(x,y) + 1)) (10)

Weight Balance between Loss Functions.As G and D network are jointly trained in an
alternative way, the different loss functions should be merged in the form of weight fusion.
Integrating losses in our GAN-based model, the ultimate loss function can be defined
by following;:

L = Leontent + & - Eadversarial + .B ’ ﬁcontiguous . (11)

« and B are hyper-parameters introduced in the whole loss £ for balancing the content,
adversarial and contiguous blurry losses. When &« = 0 and B = 0, £ simplifies to the
content loss. In this specific case, the GAN-based model will degrade to a ResNet-based
model. With the increasing of the two parameters, the two corresponding loss functions
play more important roles during the training stage. Usually, « should take a relatively
small value, because the experimental results indicate that the performance of proposed
network will be degraded when « takes a larger value. In the next section, we will do
experiments to choose the befitting values of them.

3.3. The Model Architecture

GAN is a popular framework in the area of image enhancing tasks, such as super-
resolution [32], image deblurring and image denoising. To realize the inverse conversion
of blurry images, we developed a deblur network, a GAN-based model, on the basis of the
ResNet-based model. Hence, we first introduce our ResNet-based model, and then draw
forth the proposed GAN-based model. Both the ResNet-based and GAN-based models are
end-to-end systems.

3.3.1. ResNet-Based Model

In two-dimensional CNN operations, convolution is usually implemented on 2D
patterns or feature maps only for feature learning in spatial dimensions. As for our deep
residual networks, we also take this form to perform 2D convolutions in the convolution
stages to learn feature representations for extracting a video sequence through one blurred
image. The operation process of 2D convolution is to convolve 2D kernels/filters on the
blurry images. By doing so, the dynamic variations can be captured easily by mapping the
features in the convolution layers, which is conducive to the modeling of blur evolution
and further restoration of sharp frames.

Typically, 2D convolution operations can be formally expressed as

vy =o(y ol Z VE - gl i) (12)

m p=0 g=0

in which V;y represents the convolution value of j-th feature mapping at point (x, y) on the
i-th layer; (P;, Q;) means the 2D convolution kernel size. gZ'Zn is the inter-layer correlation

coefficient, which denotes from the (i — 1)-th layer, the m-th feature mapping connection
to the kernel (p, g)-th value. We selected the non-linearity activation function ReLU as ¢ (-),
whose performance is superior to other activation functions in various computer vision
tasks, e.g., tanh and sigmoid.

In this work, a ResNet-based model is constructed to define and implement 2D
convolution. This model consists of several residual blocks [16], wherein each contains
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two-layer convolutions, in addition to five other convolution layers. The design of the
architecture was derived from fully convolutional neural network (FCNN), which was
originally applied to semantic segmentation. However, in our ResNet-based model, unlike
FCNN, the spatial size of feature mapping remains constant. That is, the model has neither
up-sampling processes nor down-sampling processes. The specific configuration of our
model is in Table 1.

Table 1. The configuration of the ResNet-based model. It consists of 2 convolution layers (L1, L2),
13 residual blocks, another 2 convolution layers (L27, L28) with no jumper connections and 3 extra
(L29, L30 and L31) convolution layers. The residual blocks, represented by L(X) and L(X + 1), each
contain 2 convolution layers, where “X” can take 3, 5,7, 9, 11, 13, 15, 17, 19, 21, 23 and 25 of these
residual blocks.

Layers Kernel Size Output Channels Operations Skip Connection
L1 3x3x1 16 ReLU -
L2 3x3x1 64 ReLU L4,128
L3 3x3x1 64 ReLU -
L4 3x3x1 64 - L6
L5 3x3x1 64 ReLU -
L6 3x3x1 64 - L8
L7 3x3x1 64 ReLU -
L8 3x3x1 64 - L10
L9 3x3x1 64 ReLU -
L10 3x3x1 64 - L12
L11 3x3x1 64 ReLU -
L12 3x3x1 64 - L14
L13 3x3x1 64 ReLU -
L14 3x3x1 64 - L16
L15 3x3x1 64 ReLU -
L16 3x3x1 64 - L18
L17 3x3x1 64 ReLU -
L18 3x3x1 64 L20
L19 3x3x1 64 ReLU -
L20 3x3x1 64 - L22
L21 3x3x1 64 ReLU -
L22 3x3x1 64 - L24
L23 3x3x1 64 ReLU -
L24 3x3x1 64 - L26
L25 3x3x1 64 ReLU -
L26 3x3x1 64 - L28
L27 3x3x1 64 ReLU -
L28 3x3x1 64 - -
L29 3x3x1 256 ReLU -
L20 3x3x1 256 ReLU -
L31 3x3x1 21 - -

As shown in the Figure 2, the input to the ResNet-based model is a single motion-
blurred image generated from the previous operation. However, we should be aware that
we do not directly deblur in the original RGB space, but perform the actual deblurring
process in the grayscale space. In detail, RGB images are first converted into YCbCr space,
and the reason for choosing channel Y is that the illumination is the most salient feature of
an image. In reference to the architecture, the first and second layers begin with the 2D
convolution operation using the kernel size of 3 x 3 x 1. For further elaboration, in the first
layer, 2D kernels are used to perform convolution operations on three sets of consecutive
frames to form a group of feature mappings. Then in the second layer, the feature mappings
are convoluted by 2D filters to get higher-level feature mappings. In the later residual
and convolution layers, the size of convolution kernels is still set to 3 x 3 x 1 to keep the
temporal dimension in a computationally efficient dimension. The output of ResNet-based
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model is seven consecutive frames after deblurring. Finally, through the original Cb and
Cr channels, the output is colorful images converted from the gray-scale images.

.
= =

‘. ¥

| 4

Input Output
Figure 2. The ResNet-based framework for extracting a sharp video sequence. The input is a single

motion-blurred image. The output is seven sharp continuing frames. It consists of 15 blocks. Each
block has two/three convolutional layers and one/two ReLU activation functions. The details of the
architecture can be seen in Table 1.

3.3.2. GAN-Based Model

The GAN is a model training generative method proposed by [33]. The GAN network
comprises a pair of adversarial networks, one generator (G) and one discriminator (D).
The G is trained to synthesize very similar samples that can muddle up D, whereas D
aims to distinguish the synthesized samples and the real samples. They improve their
networks by confronting each other. Inspired by the strategy of adversarial training, a
GAN-based model is proposed in this work, in which G is used for deblurring images, and
D to distinguish the deblurry images from the subsistent sharp images. After alternate
training, if the output images of the generator are sharp enough, the deblurred image can
trick the discriminator.

By performing the deblurring procedure through the generative adversarial frame-
work, introducing the min-max optimization problem shown below is inevitable, which is
similar to the formulation in [33]:

mGin max V(G,D) = Ehprvaint [log(D(h))]

+E;,, [log(1 = D(G(0)) (1%
where i denotes a sharp frame image taken from real life, and /1 indicates a blurred image.
When training G and D models alternately, G aims to deceive D to misclassify synthetic
frames, whereas D is aimed at discriminating deblurry frames from subsistent sharp images.
The ultimate aim of model training is to perfect the G network, which can recover sharp
frames from the input blurry images.

As illustrated in the flow diagram Figure 3, the front part is the G model. Its framework
is shown in Figure 2 and its configuration is shown in Table 1. The latter part of Figure 3
is our D network, a CNN-based model, which was built according to the guidance for
CNN architecture construction presented by Radford et al. [34], and it resembles the VGG
network presented in [35]. Our D model consists of 16 convolution layers and one top
layer with a bidirectional soft-max classifier. From the bottom up, the number of channels
in convolution kernels increases from 64 up to 512; the top layer has 4096 channels. The
entire network is trained to recognize deblurred frames among all the sharp images. For
more information about the network configuration, please refer to Table 2.

Table 2. Configurations of our D model in the GAN-based model. ReLU denotes the activation
function and BN represents batch normalization.

Layers 1-2 3-6 7-11 12-16 17-18 19

kernel 3x3 3x3 3x3 3x3 FC FC

channels 64 128 256 512 4096 2
BN BN BN BN BN - -

ReLU ReLU ReLU ReLU ReLU - -
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Loss1

=) Sharp/Blurry?

Loss3

Discriminator

ResNet-based model

Figure 3. The GAN-based framework for extracting a sharp video sequence. The whole network architecture is composed

of one discriminator and one generator. The generator is the ResNet-based model, whose architecture can refer to Figure 2.

The discriminator is a VGG-like CNN, which consists of 16 convolutional layers and a two-class software layer. During the

training stage, the pixel2pixel loss (loss1), adversatial loss (loss2) and contiguous blurry loss (loss3) work together to update

the parameters of the ResNet-based mode.

4. Results

In this part, several experiments on the task of recovering sa harp frame sequence
from a single motion-blurred image are shown to demonstrate how effective the proposed
GAN-based model is and how close our contiguous blurry loss is to the real loss.

4.1. Datasets

Video Blurred Database. Su et al. [36] established a benchmark database which
captures at 240 fps with multifarious equipment, such as the Canon 7D, GoPro Hero
4 Black, iPhone 6s and so on. It collected from 71 videos, including 6708 synthetic blurry
frames with corresponding ground truth, and each video contains 100 frames of resolution
size 1280 x 720. We took 61 of them as training videos and the remaining 10 as testing
videos; the partitioning was consistent with previous studies by [36].

GoPro Database. In addition, we tested and evaluated the effectiveness of presented
model on the GoPro Database, which was built to study image deblurring specifically by
Nah et al. [8]. It is split into a training dataset and a test dataset, which contain 21 sharp
videos and 11 different sequences, respectively.

We contrast the performance of our proposed model with those of state-of-the-art
approaches in both qualitative and quantitative aspects.

4.2. Implementation Details and Parameter Settings

The video recording speed of our training databases was 240 frames per second,
and the general standard real-time video rate is 30 frames per second, so it was more
appropriate to split the blurred image into eight frames. However, the middle frame often
corresponds to the centroid of local blur, and splitting into odd frames is more conducive
to the rapid convergence of the model, so the blurred images were split into seven frames
in our experiment. In the ResNet-based model training, we initialized the weights first by
a Gaussian distribution with a zero mean and 0.01 standard deviation. Then, parameters
were updated with the mini-batch size of four in each iteration. In order to augment the
amount of sub-images for feature learning, we cut out a 128 x 128 patch spread all over
an image (1280 x 720), and flipped the frame randomly during the training phase in the
meanwhile. In this way, 712,193 patches can be generated per frame in the database [36]
in the ResNet-based model training, such that no features will be omitted. Only content
loss was used—the learning rate being 10~%. After about 1.5 x 10° iterations, the training
loss was no longer reduced; then we decreased the learning rate to 10~° in pursuit of
extra performance improvements. When training the GAN-based model, the optimal
algorithm was adopted to test the distribution of coefficients among different losses, and
the result indicate that setting the hyper-parameters « = 0.001 and 8 = 0.1 can provide
peak performance.
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4.3. The Effectiveness of the GAN-Based Model

The proposed GAN-based model is adept at learning the representations of spatio-
temporal features. For verifying the superiority of the proposed GAN-based model, we
assessed our model against other state-of-the-art models on the Video Blurred and Go-
Pro Database.

Table 3 records the PSNR values of different approaches using the Video Blurred
Database, and Table 4 shows the PSNR and SSIM values of different models on the GoPro
Database. It is evident from the two tables that compared to other models, ours (GAN-
based model) can achieve approximately 1-5% improvements of PSNR and SSIM values.
This just goes to show that the framework is more adept at learning spatio-temporal
features. By conducting these experimental comparisons, the effectiveness of GAN-based
model was verified.

Table 3. Performance contrast, in terms of PSNR values, to PSDEBLUR, WFA [28] and DBN [36] on the 10 testing videos of
Video Blurred Database. The optimum result of each video is displayed in bold, and the sub-optimal result is marked with

an underline. All results of GAN-based models were obtained without aligning.

1 2 3 4 5 6 7 8 9 10
INPUT 24.14 30.52 28.38 27.31 22.60 29.31 27.74 23.86 30.59 26.98
Methods
PSDEBLUR 24.42 28.77 25.15 27.77 22.02 25.74 26.11 19.71 26.48 24.62
WEFA [28] 25.89 32.33 28.97 28.36 23.99 31.09 28.58 24.78 31.30 28.20
DBN [36] 25.75 31.15 29.30 28.38 23.63 30.70 29.23 25.62 31.92 28.06
Our method 27.73 32.56 31.38 30.54 24.59 31.11 30.39 26.16 33.32 29.89

Our method (with CBL)

28.29 33.46 32.68 31.32 25.37 32.33 31.39 27.23 34.56 30.74

Table 4. Performance comparison on the GOPRO Database and an ablation study of our model after
different stages of training.

Method PSNR SSIM
Jin et al. [13] 26.98 0.8936
Nah et al. [8] 28.98 0.9135
Our method 29.12 0.9236
Our method (CBL) 29.62 0.9294

4.4. The Effectiveness of Contiguous Blurry Loss

In this subsection, the capacity of the proposed model when adding contiguous blurry
loss (CBL) is investigated to see whether it is better than not adding CBL.

Quantitative results on the experimental datasets are presented in Tables 3 and 4.
Obviously, our model containing CBL outperformed the model without CBL in quantitative
terms, though slightly (about 1% improvement).

The GAN-based generator model was designed to generate frames whose pixel values
are similar, whereas D, with the adversarial loss, together with the discriminator drive G,
is used to restore photo-realistic frames. The purpose of introducing contiguous blurry loss
is to alleviate the problem of training data being unaligned. The GAN-based model and
the three losses complement each other and achieve better results.

Figures 4—6 display three sets of exemplar results on the GoPro Database. Images
in the first column on the left are the input motion-blurred images: the first of the three
images is the original blurred image, and the next two images show details of the first
picture framed by color boxes. The following columns on the right side of the vertical
line are the shape frames generated by Jin et al. [13] and ours. Please note that the upper
row has the results of [13], and bottom row corresponds to the proposed model. It can
be clearly seen in the details of Figure 4 that the edge contours of the car and pillar are
clearer in the sharp video sequence generated by our method. In Figure 5, the sharp video



Symmetry 2021, 13, 630 110f 16

sequence generated by [13] has a pronounced sense of graininess. From the comparison
of Figure 6, it can be seen that the details of the window and the edge of the yellow box
are sharpened more in our sharp video sequence than that of [13]. In general, through the
qualitative comparison in Figures 46, the results of our model’s deblurring are obviously
more photo-realistic than those of [13].

Figure 4. Photo of shopping street for qualitative comparison. The input images are shown in the
first column. The following seven columns show the results of the method by Jin et al. [13] (top row)
and ours (second row).

Figure 5. Flowers photo for qualitative comparison. The input images are shown in the first column.
The following seven columns show the results of the method by Jin et al. [13] (top row) and ours
(second row).
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Figure 6. Photo of street view for qualitative comparison. The input images are shown in the first
column. The 2nd/8th columns show the results of the method by Jin et al. [13] (top) and ours (down).

4.5. A Comparison with Other Approaches

In order to inspect the performance of the proposed model in depth, we conducted
a series of experiments to contrast the effectiveness of the proposed model with other
state-of-the-art methods using Video Blurred Database and GoPro Database.

In the experiment using Video Blurred Database, methods PSDEBLUR (deblurred
results using PHOTOSHOP software), WFA (multiple frames as input) [28] and DBN [36]
were compared with our proposed model.

In [36], they compared DBN with other state-of-the-art methods, and achieved op-
timum effectiveness with Video Blurred Database, so we compare the PSNR values of
the proposed model with those of DBN and other state-of-the-art approaches on the
10 testing videos of Video Blurred Database. Table 3 indicates that the results of PSNR
values for our proposed model are superior to those of the other listed models on the Video
Blurred Database.

In the experiment on GoPro Database, the proposed model was compared with the
state-of-the-art models designed in [8,13]. The method of Jin et al. is also a model based on
CNN, and it achieved the most advanced results in [13], but it utilizes seven sub-models
to extract the sharp video sequences from a single motion-blurred image, which means
relatively high computational complexity. Table 4 indicates that the proposed model trained
on GoPro Database can achieve preferable results to [13]. In addition, experimental results
demonstrate that our model containing CBL is superior to other methods both on Video
Blurred Database and GoPro Database.

4.6. Different Frames
4.6.1. Optimum Parameters

It is necessary to study how do hyper-parameters a and  affect the effectiveness of
the proposed model. According to the empirical values of hyper-parameters in the GAN
model’s loss function, the range of a decreases in magnitude from 0 to 0.00001, whereas
the value range of g is increased by 0.05 arithmetically from 0 to 0.25. The values of « and
B were varied to compare the corresponding PSNR values on GoPro Database. Our model
can achieve optimum performance when « and § are set to 0.001 and 0.1, respectively.
Figure 7 shows the performance comparisons of our method in terms of PSNR by varying
the « when § was fixed in 0.1. Similarly, Figure 8 shows the performance comparisons of
our method in terms of PSNR by varying the § when a was fixed in 0.001.
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Figure 7. Performance comparisons of our method in terms of PSNR by varying the a on the first set
of Video Blurred Database.
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Figure 8. Performance comparisons of our method in terms of PSNR by varying the 8 on the first set
of Video Blurred Database.
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4.6.2. Motion Interpolation

Furthermore, the proposed model can recover number of frames by applying the G
model to output frames. Every two adjacent frames of the seven output frames can form
six groups, and each group can be averaged to produce a new blurry image, which can be
fed into our generator to generate seven new frames again. For instance, we can recover
4 x 7 = 28 sharp frames, as shown in Figure 9. Back and forth, a blurred image can get
the explosive number of frames, which means the model has the potential to interpolate
subsequent frames with high accuracy. By exploiting the information embedded in motion
blur [37], our model can be employed to disassemble a motion-blurred image into multiple
frames, which can break through the limitations of the device to get an intelligent high-
frame-rate video in the future. It also can be used in many applications, such as video
editing and temporal super-resolution of videos.



Symmetry 2021, 13, 630

14 of 16

Figure 9. An example of the interpolation of subtle motion: 28 frames were extracted by the proposed
method based on the input image.

5. Discussion

Blur is the result of the motion of multiple objects, camera shaking or scene depth
variations. As a reversal process, restoring deblurred images from blurred images is a
typical ill-posed computer vision problem. As the blurred image does not correspond to its
sharp video sequence one-to-one, neither the traditional pixel2pixel nor perceptual loss is
suitable for processing non-aligned data. Therefore, it is not ideal to simply superimpose
the blur as a 3D kernel, or to train the neural network on a specific frame (which does not
have the same uniqueness).

To solve this problem, this paper considers combining three loss training models to
learn and integrate to generate sharp image sequences. The contiguous blurry loss ignores
the spatial positions of the features and focuses on measuring the similarity of sharp and
blurry images on the basis of their similar features. The adversarial loss and content loss
complement the loss caused by spatial positions at the pixel2pixel level. The adversarial
loss can enhance the accuracy of the output of each network. The content loss refers to the
pixel2pixel loss of each layer of feature map, which can learn the manifold space where the
image is located.

Due to the feature set learning for the non aligned data, we can obviously see from the
experimental results that the proposed model can segment the edges of some objects more
sharply, and the generated deblurred images have no sense of particles compared with
other methods, and the features and details of objects can be better restored. The model
can be used not only in the task of deblurring, but also in the task of rain removal through
the relearning of a sharp image sequence [38]. In addition, the artificial high-frame-rate
video can be obtained by the application of high-precision interpolation.

6. Conclusions

In this paper, the method of adversarial training was modified to extract the sharp
frames of a video sequence from one motion-blurred image. Specifically, a novel model
based on GAN was proposed, which can generate multiple sharp frames on the basis of one
CNN model. In addition, in order to alleviate the problem that one blurred image does not
corresponding one-to-one to a sharp video sequence, as different video sequences can create
almost identical blurry images, a new contiguous blurring loss method was proposed,
which mainly measures the loss of unaligned data. Experimental results demonstrated
that the combination of the proposed network and the contiguous blurry loss can generate
sharp video sequences and improve the shortcomings of existing methods.
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