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Abstract: When early failures in rolling bearings occur, we need to be able to extract weak fault
characteristic frequencies under the influence of strong noise and then perform fault diagnosis.
Therefore, a new method is proposed: complete ensemble intrinsic time-scale decomposition with
adaptive Lévy noise (CEITDALN). This method solves the problem of the traditional complete
ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN) method not being able
to filter nonwhite noise in measured vibration signal noise. Therefore, in the method proposed in this
paper, a noise model in the form of parameter-adjusted noise is used to replace traditional white noise.
We used an optimization algorithm to adaptively adjust the model parameters, reducing the impact
of nonwhite noise on the feature frequency extraction. The experimental results for the simulation
and vibration signals of rolling bearings showed that the CEITDALN method could extract weak
fault features more effectively than traditional methods.

Keywords: rolling bearing; adaptive signal processing; feature extraction; optimization algorithm;
fault diagnosis

1. Introduction

Rolling bearings are the most commonly used and extremely vulnerable core sup-
porting components in rotating machinery. If they fail, they directly affect the safe and
stable operation of the whole unit [1–4]. Fault detection through analyzing the vibration
signals of rolling bearings is currently one of the most common methods used for bear-
ing analysis. By installing an acceleration sensor near the bearing housing, the vibration
signal generated by the rotating rolling bearing is collected and analyzed to determine
the condition of the bearing. Affected by many environmental factors (such as vibration
caused by the non-linearity of bearing stiffness, vibration caused by the corrugation of
machining surface, vibration caused by the eccentricity of bearings, etc.) during the signal
acquisition process, the fault signal of rotating machinery usually contains a large amount
of noise. Meanwhile, the fault information is difficult to identify due to its unobvious early
default characteristics. Additionally, the rotating machinery fault signal usually shows
non-smooth, non-linear characteristics, because the dynamic signal will be non-smooth
when a bearing fault occurs during operation, such as friction, cracks, oil film vortex, oil
film oscillation, etc. Therefore, non-smoothness can characterize the presence of faults.
Meanwhile, when a fault occurs and develops, the damping, stiffness, and elastic force of
the bearing change, and the dynamic signal also exhibits nonlinear characteristics. The tra-
ditional time-domain analysis methods and Fourier transform-based analysis methods can
capture only the overall statistical characteristics of the signal, but not the time-frequency
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detail characteristics of the signal, and cannot handle nonlinear, non-stationary signals.
With the continuous development of signal processing technology, modern time-frequency
analysis methods have made great progress in their ability to extract fault features from
non-stationary, non-linear signals [5–7].

There are many weak signal processing methods available, and wavelet transform
(WT) is often effective in analyzing non-stationary and non-linear signals [8,9]. However,
WT has some shortcomings, such as the choice of certain wavelet basis functions. In recent
years, some adaptive signal decomposition methods have been applied to the analysis
of the vibration signals of bearings, such as empirical mode decomposition (EMD) [10]
and local mean decomposition (LMD) [11]. Intrinsic time-scale decomposition (ITD) is
another adaptive signal decomposition method that was proposed by Frei and Osorio [12]
and first applied in medical diagnosis. ITD uses linear interpolation to construct the
baseline signal, instead of averaging the envelope using cubic spline interpolation as in
EMD. As a result, ITD has a clear advantage in terms of operational efficiency. Each
proper rotational component (PRC) retains almost all of the polar information of the
original signal. As a result, ITD is now widely used to extract the fault characteristics
of rolling bearings, as the ITD process happens to be a demodulation process. On the
basis of the above advantages, scholars introduced the ITD method from the medical field
into mechanical signal fault diagnosis. For example, Lin and Chang proposed a rolling
bearing fault diagnosis method based on an enhanced kurtosis spectrum and intrinsic
time-scale decomposition [13]. Duan and Yao et al. proposed to apply intrinsic time-scale
decomposition to the fault diagnosis of gearboxes under variable operating conditions [14].
Xing and Qu et al. proposed a gear fault diagnosis method with variable working conditions
based on intrinsic time-scale and singular value decomposition [15]. Zhang and Liu et al.
proposed a diesel engine fault diagnosis method with complete ensemble intrinsic time-
scale decomposition [16]. Hu and Xiang proposed the application of the ensemble intrinsic
time-scale decomposition of fan gear [17]. Tong and Cao et al. proposed an improved
intrinsic time-scale decomposition with wavelet packet transform and singular-value
decomposition to perform fault diagnosis on rolling bearings [18]. Liu and Zhang et al.
proposed using intrinsic time-scale decomposition to diagnose diesel-engine faults [19].
Bi and Ma et al. proposed detecting gasoline-engine knock using the improved intrinsic
time-scale decomposition of complete integration [20]. Yu and Liu proposed sparse coding
based on intrinsic time-scale decomposition to diagnose weak bearing faults [21]. Yuan and
Peng proposed smooth intrinsic time-scale decomposition for the fault diagnosis of rolling
bearings [22]. Lei and Zhou et al. used intrinsic time-scale decomposition to monitor
tool wear during milling [23]. Ma and Zhan et al. proposed complete ensemble intrinsic
time-scale decomposition with adaptive noise (CEITDAN), which was applied to the
feature extraction of rolling bearings [24]. According to the research findings of previous
ITD methods in the process of signal decomposition based on ITD research. Through the
analysis of previous studies, their proposed methods improve the problem of the modal
blending of ITD methods, expand the application scope of ITD methods, and improve the
effect of feature extraction, but there are still certain shortcomings, such as the fact that
a certain amount of nonwhite noise components are still retained in the signals after the
noise reduction in these methods. They did not find an effective method to filter out the
nonwhite noise components in the signal (e.g., industrial frequency interference, colored
noise caused by a drive motor, etc.), which can be contained between the feature frequencies
and interfere with the extraction of the feature frequencies, making it difficult to locate
them accurately. Additionally, the existence of these noises will cause the calculation of
feature parameters such as the entropy value to have large errors, thus reducing the fault
diagnosis accuracy.

For the current bearing fault signal processing method for use after noise reduction,
where there is still a residual nonwhite noise component interference problem, this paper
is inspired by the literature [25] and aims to propose a fault diagnosis method for the
signal-to-noise ratio (SNR) −25 dB. This paper aims to improve the noise reduction after
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the nonwhite noise interference fault diagnosis, reducing the problem of fault diagnosis
accuracy. Therefore, this article proposes a method that involves using variable-parameter
analog noise (i.e., Lévy noise) to replace traditional white noise. This can effectively filter
out noise in the decomposition process and improve the influence of the nonwhite noise
part of noise on feature frequency extraction; this is called complete ensemble intrinsic
time-scale decomposition with adaptive Lévy noise (CEITDALN). Lévy noise is a digital
noise model that contains four parameters. Changes in the parameters can cause dramatic
changes in the noise model [26]. Therefore, in order to avoid the difficulty of artificially
setting parameters, this paper proposes an improved coyote algorithm to adaptively adjust
the noise intensity coefficient and Lévy noise parameters in the CEITDALN method. The
energy of the maximal center frequency band of the kurtosis spectrum was used as the
objective function of the optimization algorithm to achieve the best feature extraction.

The rest of the article is organized as follows: Section 2 introduces related works such
as CEITDAN and the theory of the coyote optimization algorithm. Section 3 introduces
CEITDALN and the improved coyote optimization algorithm. Section 4 uses analog
signals to verify the effectiveness of the proposed method and introduces the engineering
application platform. Through the above platform, the effectiveness of the proposed
method is further proved. Section 5 concludes this article.

2. Related Work
2.1. CEITDAN

CEITDAN’s decomposition method superimposes a component decomposed by ITD
from white noise with a certain signal-to-noise ratio (we add a white noise whose standard
deviation is normalized and whose noise amplitude can be adjusted adaptively, thus
ensuring that the SNR of each decomposition stage is fixed) onto the original signal
and uses the average residue component obtained by the ITD to obtain the first rotation
component. It then subtracts the first rotation component from the original signal.

The residual component is obtained, white noise is added to the residual compo-
nent, and the same operation is performed until the residual component is a monotonic
function or there are less than three extreme points. A proper rotation component can
accurately define the instantaneous information of the signal and is repeated several times
in this manner.

Step 1. The first round of noise addition: ωi
n(t)(i = 1, 2, · · · , I) is the first-order

proper rotation component decomposed by ITD from white noise with a certain SNR (here,
we use the coefficient β0 = ε0std(x)/std

(
ω(i)

)
to control the SNR of each unchanged

decomposition stage), where I is the number of noise additions superimposed onto the
original signal x(t). The average value is used as the residue component of the method;
then, the first-order component of the origin signal is obtained as follows:

r1(t) =
1
I

I

∑
i=1

L1

[
β0wi(t) + x(t)

]
(1)

n is the corresponding order of ITD white noise. β0 is used as β0 = ε0std(x)/std(ω(i)),
β0 is the noise-adding amplitude coefficient, εi is the quotient of standard deviation,
Lk[A(t)] represents the residue component obtained by the ITD of signal A(t), and A(t) is
the signal with white noise. The proper components at this time are as follows:

PRC1 = x(t)− r1(t) (2)

Step 2. The second round of noise addition: The second-order PRCs of white noise
ωi(t) are superimposed onto r1(t), and the first-order components of the mixed signal are
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obtained by ITD. The average is used as the second residue component of this method’s
residue component, as follows:

r2(t) =
1
I

I

∑
i=1

L1

[
β0L1

(
wi(t)

)
+ r1(t)

]
(3)

The second-order proper component obtained at this time is as follows:

PRC2 = r1(t)− r2(t) (4)

Step 3. TheM-th round of noise addition: The (m− 1)-th-order PRCs of white noise
ωi(t) are superimposed onto the remaining terms rm−1(t). Then, the first-order component
of the signal with adaptive white noise is obtained by ITD, and the average value is taken
as the m-th-order residue component of the method, as follows:

rm(t) =
1
I

I

∑
i=1

L1

[
βm−1Lm−1

(
ωi(t)

)
+ rm−1(t)

]
, ∃Lm−1

[
εωi(t)

]
(5)

The PRC obtained at this point is:

PRm = rm−1(t)− rm(t) (6)

Step 4. Repeat Steps 1 to 3 several times until the residual component is a monotonic
function or the number of extreme points in this residual component is fewer than three.
The final remaining term is as follows:

rM(t) = rM−1(t)− PRM (7)

At this point, the entire CEITDAN decomposition process ends.
The final shifted terms are as follows:

x(t) =
M

∑
m=1

PRm + rM(t) (8)

The flowchart of this method is shown in Figure 1:

2.2. Group Optimization Algorithm Theory

The coyote optimization algorithm (COA) was proposed by Pierezan et al. [27] in
2018. It is a new intelligent optimization algorithm that simulates the phenomena of
coyotes living in groups, including their growth, life, and death and being driven away
and accepted by groups. It obtains better optimization results in the optimization of
benchmark functions. The COA divides a population into several subgroups through
random grouping, determines the alpha wolf and cultural trend of the subgroup, and
randomly selects two coyotes. These four factors influence coyote growth. It reforms the
growth process through coyote social adaptability. The birth of a coyote is affected by
two randomly selected parent coyotes and environmental variation. In terms of social
adaptability, if a newborn coyote is better than an old and poor coyote, the old coyote dies.
Otherwise, the newborn coyote dies. According to a certain probability among subgroups,
some coyotes are driven out of the group and accepted by other groups, thereby changing
the coyote grouping status through the continuous evolution of this process of growth,
death, driving away, and acceptance. It obtains the coyote that is most suitable for the
social environment as the best solution to an optimization problem.
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In the COA, each coyote represents a candidate solution. Each solution vector is
composed of the social state factor of the coyote. These status factors include coyote
internal factors and external factors. Each state factor represents a decision variable, and
D state factors constitute a solution vector containing D decision variables. Every coyote
is measured in terms of its social adaptability. The COA is mainly divided into four
steps: randomly initializing the coyote group and randomly grouping them, the coyotes
growing up in the group, the life and death of the coyotes, and coyotes being driven away
and accepted.

Step 1: Parameters such as coyote population Np, number of coyote individuals per
group Nc, dimension D, and termination condition n f evalMax were set.

Step 2: Randomly initialize the coyote pack; the i-th coyote individual in pack p at
time t is defined as:

xp,t
c,j = lbj + rj

(
ubj − lbj

)
(9)

xp,t
c =

(
xp,t

c,1, xp,t
c,2, xp,t

c,3, · · · , xp,t
c,D

)
(10)

where ubj and lbj denote the upper and lower bounds of the j-th dimensional values,
respectively, and rj is a randomly generated real number in the range of [0, 1].

Step 3: Evaluation of coyote adaptability:

f itp,t
i = f

(
xp,t

i

)
(11)

where f itp,t
i ∈ R, xp,t

i implies in the coyote’s adaptation to the environment (cost of the
objective function f itp,t

i ).
Step 4: Coyotes sometimes break away or are expelled from their original pack,

forming a pack shift; the probability of the occurrence of this is defined as Pe:

Pe = 0.005N2
c , Nc ≤ 14 (12)
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Step 5: Find the head wolf alphap,t in the current pack and calculate the cultural trend
cultp,t of the current coyote pack:

alphap,t =
{

xp,t
i ‖arg{i=1,2,··· ,Nc}min f

(
xp,t

i

)}
(13)

cultp,t
j =

Op,t
Nc+1

2 ,j
, Nc is odd

Op,t
Nc
2 ,j

+ Op,t
Nc+1

2 ,j
, other

(14)

where Op,t
Nc+1

2 ,j
denotes the median of the j-th dimensional variable for all coyotes within

the p group at moment t when Nc is odd.
Step 6: Simulating the birth-at-death practice in genetics, the age (in years) of the coy-

ote was written as agep,t
c . The birth of a new coyote (

(
pupp,t)) was written as a combination

of the social status of both parents (randomly selected) plus environmental influences:

pupp,t
j =


xp,t

m1,j randj < Ps or j = j1
xp,t

m1,j, randj ≥ Ps + Pa or j = j2
Rj, randj, other

(15)

where m1 and m2 are random coyotes from within the p wolf pack, j1 and j2 are two
random dimensions of the problem, and Rj and randj are both random numbers within
[0, 1] generated by uniform probability. The discrete probability (Ps) and the association
probability (Pa) affect the cultural diversity of individuals in the coyote pack. Ps and Pa are
defined as:

Ps =
1
D

, Pa =
(1− Ps)

2
(16)

Assuming that ω indicates that the coyotes in the group are less adaptive than the
pups and that φ represents the number of coyotes in the current group, if φ is 1 and ω
holds—i.e., if the number of coyotes in a group is 1 and the pups are more adaptive than
only one coyote—the pups survive and the oldest coyote in the group dies; in the remaining
cases, the pups die.

Step 7: Calculate the effect of the head wolf and group cultural trends on the renewal
of individuals within the coyote pack corresponding to the current moments δ1 and δ2:

δ1 = alphap,t − xp,t
cr1 , δ2 = cultp,t − xp,t

cr2 (17)

where cr1 and cr2 represent the random coyotes in the current pack, respectively.
Step 8: All coyote individuals in the coyote pack were updated in turn to obtain new

coyote individuals new_xp,t
i , the size of the adaptation of the new coyote to the original

coyote was selected by merit, and the optimal coyote xp,t+1
i was retained:

new_xp,t
i = xp,t

i + r1δ1 + r2δ2, (18)

xp,t+1
i =

{
new_xp,t

i , f
(

new_xp,t
i

)
< f

(
xp,t

i

)
xp,t

i , other
(19)

where r1 and r2 are uniform probability generated real numbers in the range of [0, 1]
representing the magnitude of the weight of individual coyotes influenced by the cultural
trend of alpha wolves versus the group.

Step 9: Update the ages of individual coyotes by simulating the growth of individuals
over time.

Step 10: Judge the termination condition, and if it is reached, output the social state of
the coyote with the best adaptation ability; otherwise, return to Step 3 to continue.



Symmetry 2021, 13, 617 7 of 26

The above steps show that COA has the following advantages: (a) COA has a good
search model and framework. The coyotes are randomly divided into multiple subgroups.
After all the coyotes grow up, cultural exchanges are carried out through repelling and
acceptance. Compared with algorithms such as particle swarm optimization (PSO), this
search model and framework has stronger exploration capabilities. (b) COA guides the
growth of coyotes through wolves and cultural trends. The algorithm has a strong local
search ability. (c) The emergence of newborn COA coyotes comes from the combined effect
of two randomly selected parent coyotes and random variations in the social environment,
meaning that the algorithm has a certain global search capability. (d) COA updates each
coyote in the group. Compared with the similar structure of SFLA, the COA update
method is simple. (e) COA is randomly grouped after initialization. The coyotes in the
group are randomly driven out and accepted, so that there is an exchange of information
between groups.

3. Proposed Method
3.1. Improved CEITDAN Based on Lévy Noise

The core idea of the CEITDAN algorithm is to add groups of white noise. During the
decomposition process, the noise component in the noisy signal is cancelled out to achieve
the purpose of noise reduction. However, the signal noise obtained by actual engineering
is more complicated. There is both white and colored noise. Therefore, when white noise in
the noisy signal does not exist as the main noise component, it is still difficult to extract the
characteristic frequency after filtering by this method. For this reason, this article proposes
a new noise addition. Instead of a single white noise, digital noise is added that can be
adjusted to different noise types by changing parameters, improving the filtering effect,
named complete ensemble intrinsic timescale decomposition with adaptive Lévy noise.

Lévy noise is also called stable noise [28]. Since the distribution and probability
density functions of Lévy noise do not have explicit expressions, the characteristic function
of the distribution of Lévy noise is as follows:

ϕ(t) =
{

exp
[
−σ|t|

(
1 + iβ 2

π sign(t) log|t|
)
+ iµt

]
, α = 1

exp
[
−σα|t|α

(
1− iβsign(t) tan πα

2
)
+ iµt

]
, α 6= 1

(20)

where α ∈ (0, 2] is the characteristic index. The smaller α is, the more obvious the noise
impulse and tailing characteristics are. α = 1 is the Cauchy distribution and α = 2 is the
Gaussian distribution; β ∈ [−1, 1] is the symmetry parameter that determines the symmetry
of the noise distribution. When β = 0, the distribution is symmetrical; σ ∈ [0,+∞) is the
dispersion coefficient that represents the range of the Lévy distribution—that is, the degree
of dispersion. µ ∈ (−∞,+∞) is the position parameter that is used to determine the center
of the distribution. In this paper, on the basis of the Chambers–Mallows–Stuck (CMS)
method, the Lévy stable random variable can be expressed by the following formula:

When α 6= 1,

X = Dα,β,σ ×
sin
(
α
(
V + Cα,β

))
(cos V)1/α

×
[

cos
(
V − α

(
V + Cα,β

))
W

]1/α−1

+ µ (21)

In the above formula, V is uniformly distributed in the interval (−π/2, π/2) and
W obeys an exponential distribution with an average value of 1. Cα,β and Dα,β,σ can be
calculated according to the following formula:

Cα,β =
arctan(β tan(πα/2))

α
(22)

Dα,β,σ = σ[cos(arctan(β tan(πα/2)))]−1/α (23)
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When α = 1,

X =
2σ

π

[(π

2
+ βV

)
tan V − β ln

(
(π/2)W cos V

π/2 + βV

)]
+ µ (24)

The proposed method in this paper is based on the above-mentioned Lévy noise.
Therefore, the CEITDAN method was rewritten as follows.

Let the PR component calculated by pooled averaging be PRk. Ej(·) is the j-th PR
component, Noi is the Lévy noise and satisfies a normal distribution, and x(t) is the original
signal. The CEITDALN algorithm proceeds as follows:

(1) Using ITD to decompose each xi(t) = x(t) + Noi, followed by averaging the first
residual component, the first residual component, r1, is:

r1 =
1
I

I

∑
i=1

ri1 (25)

(2) By eliminating r1 from the most primitive signal, the first PR signal PR1(t) is obtained as:

PR1 = x(t)− r1(t) (26)

(3) Construct the set residual signal r1(t)+ ε1E1(Noi(t)), (i = 1, 2, · · · , I) and decompose
it to obtain PR2 as:

r2 =
1
I

I

∑
i=1

E1(r1(t) + ε1E1(Noi(t))) (27)

PR2 = x(t)− r2(t) (28)

(4) When k = 2, 3, · · · , K, analogous to the above calculation, find rk(t) and then find PRk+1:
rk(t) = rk−1(t)− PRk

rk+1 = 1
I

I
∑

i=1
E1(rk + εkEk(Noi(t)))

(29)

(5) The algorithm terminates when the RK(t)-pole is less than 3. The final decomposition
results in:

x(t) =
K

∑
k=1

PRk + RK(t) (30)

In the following, the time complexity of the proposed method is analyzed for this
paper. Firstly, the problem size of the method is L. The time complexity of the method
is denoted as T. According to the definition of the Cox–de Boor recursion, 2L additive
operations and 3L multiplicative operations are required for all the baseline functions, and
L additive operations are required for the debase lining, so the time complexity of the
proposed method is n[O+(10L) + O×(11L)], where O+() and O×() denote the addition of
time complexity and multiplication time complexity, respectively; n is the number of PRCs.

3.2. Improved COA Based on GBO Optimization

As the coyote algorithm was proposed recently, there are still the problems mentioned
above. Therefore, the gradient-based optimizer (GBO) method proposed in [29] was
introduced into the coyote optimization algorithm. The gradient search rule (GSR) in the
GBO method can speed up the convergence speed of the coyote optimization algorithm
and enhance the exploration trend. The local escaping operator (LEO) can effectively solve
the problem of local optimal solutions. Therefore, this article proposes using the GBO
method to improve the COA method and named it GBO-COA.

The GBO method comes from a combination of the gradient method and the pop-
ulation optimization algorithm. It explores the search domain by specifying the search
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direction by Newton’s method and using gradient search rules and local escape operators.
In the gradient search rule, better search and better positions are achieved by controlling the
movement of vectors. The method uses GSR to increase the speed of convergence. Consid-
ering that many of the optimization probabilities in Newton’s gradient-based method [30]
cannot be solved by differential calculations, the numerical gradient method is used instead
of the direct function derivation method. The solution of GSR requires the calculation of
both the first derivatives according to the Newtonian method in [31] and the Taylor series.
Additionally, there is the following central difference formula [32]:

f ′(x) =
f (x + ∆x)− f (x− ∆x)

2∆x
(31)

According to Newton’s method and Formula (31), the new (xn+1) can be defined as:

xn+1 = xn −
2∆x× f (xn)

f (xn + ∆x)− f (xn − ∆x)
(32)

In the GBO algorithm, adjacent locations are replaced by two other vectors in the
population. The GSR is modified using an adaptive factor ρ1 to improve the ability of GBO
to balance global and local searches.

ρ1 = 2× randn× α− α (33)

α =

∣∣∣∣β× sin
(

3π

2
+ sin

(
β× 3π

2

))∣∣∣∣ (34)

β = βmin + (βmax − βmin)×
(

1−
( m

M

)3
)2

(35)

In Formulas (33) to (35), βmin and βmax are 0.2 and 1.2, respectively; m is the number
of iterations and M is the total number of iterations. In order to balance global and local
search capabilities, parameter ρ1 changes were based on the change in sine function α.
This parameter is dynamically adjusted at each iteration and can be set to a larger value at
the early iterations in order to increase the population diversity. Then, as the number of
iterations increases, the value is gradually reduced to speed up convergence. The generated
solution should be able to explore the search space around the corresponding best solution.
This helps the GSR method to get rid of any local optima, as it increases the diversity of the
population to search for the best solution obtained. Thus, GSR follows as:

GSR = randn× ρ1 ×
2∆x× xn

(xworst − xbest + ε)
(36)

∆x = rand(1 : N)× step (37)

step =

(
xbest − xm

r1
)
+ δ

2
(38)

δ = 2× rand×
(∣∣∣∣ xm

r1 + xm
r2 + xm

r3 + xm
r4

4
− xm

n

∣∣∣∣) (39)

where ε is a decimal number in the range of [0, 0.1]. xworst and xbest are the worst and
best solutions obtained in the optimization process, respectively. rand(1 : N) is an N-
dimensional random number; r1, r2, r3, and r4 are different integers randomly selected
from r4. step is the step size, affected by xbest and xm

r1.
The GBO algorithm uses the best space and moves the current space xn in the

(xbest − x) direction as the direction movement (DM). Therefore, an appropriate local search
trend was generated in this process that could improve the speed of the GBO algorithm.

DM = rand× ρ2 × (xbest − xn) (40)
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where rand is the random number of [0, 1] and ρ2 is a random parameter that guarantees
that each space has non-synchronization length.

In summary, the optimal space xm
n is:

X1m
n = xm

n − GSR + DM (41)

The GBO algorithm also used LEO operators to improve the efficiency in solving
complex problems. This operator can effectively change the position of xm+1

n to produce a
solution Xm

LEO. In the xbest, solutions included X1m
n and X2m

n , two random schemes xm
r1 and

xm
r2, and a randomly generated scheme (xk

m). The generation of solution Xm
LEO is as follows

in Algorithm 1:

Algorithm 1. Generation of solution Xm
LEO

If rand < pr
If rand < 0.5
xm

LEO = xm+1
n + f1 ×

(
u1 × xbest − u2 × xm

k
)
+ f2 × ρ1 ×

(
u3 × (X2m

n − X1m
n ) + u2 ×

(
xm

r1 − xm
r2
))

/2
Xm+1

n = Xm
LEO

Else
xm

LEO = xbest + f1 ×
(
u1 × xbest − u2 × xm

k
)
+ f2 × ρ1 ×

(
u3 × (X2m

n − X1m
n ) + u2 ×

(
xm

r1 − xm
r2
))

/2
Xm+1

n = Xm
LEO

END
END

In the above formula, f1 is the uniform random number of [−1, 1]; f2 is the random
number that obeys the normal distribution; the average is 0; the standard deviation is 1; ρ1
is the probability; and u1, u2, and u3 are three random numbers. The formula definition is:

u1 =

{
2× rand, i f µ1 < 0.5

1, otherwise
(42)

u2 =

{
rand, i f µ1 < 0.5

1, otherwise
(43)

u3 =

{
2× rand, i f µ1 < 0.5

1, otherwise
(44)

where rand is a random number in the range of [0, 1] and µ1 is a constant in the range
of [0, 1].

The traditional COA has shown strong optimization capabilities in solving optimiza-
tion problems [27]. However, the COA method also suffers from the following deficiencies.
For example, the following problems exist in solving complex optimization problems.
(a) The growth process of coyotes in COA is influenced by the difference between the
calculated group alpha and the group breeding trend, and the convergence of the algorithm
is slow when two coyotes are randomly selected in the group. (b) Guided by the group
alpha wolf and the group culture trends, it may appear that the group alpha wolf and
the group culture trends are locally optimal solutions, causing the algorithm to fall into a
local optimum. (c) COA uses a dynamic greedy algorithm. To a certain extent, it speeds
up the convergence speed, but the probability of falling into a local optimum increases.
The GSR and LEO used by the GBO algorithm can improve the detection ability of COA
very well. Considering the advantages and disadvantages of the COA and GBO methods,
this paper proposes using the GBO method instead of the COA method to calculate the
growth, life, and death of coyotes in order to improve the convergence speed and solve
the local optimum stagnation problem. In contrast, the GBO method can produce smooth
transitions in the exploration phase, thereby improving the speed of convergence and the
ability to avoid local optima. Therefore, the combination of GBO and COA can improve
the performance of COA. Figure 2 shows the flowchart of GBO-COA.
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3.3. Proposed Method

This paper proposes an adaptive intrinsic time-scale decomposition algorithm based
on Lévy noise instead of white noise. Parameters were optimized using the improved
coyote optimization algorithm, avoiding the drawbacks caused by the artificial setting of
parameters. The method flow is shown in Figure 3.

CEITDALN includes an improved coyote optimization algorithm to adaptively adjust
Lévy noise parameters and add noise intensity parameters. The most important aspect
in the adaptive algorithm is defining a suitable objective function [33]. Therefore, the
CEITDALN method generates multiple components in the process of decomposing the
signal. If mode components are analyzed and decomposed one by one, this wastes a
great amount of time. Therefore, traditional time domain parameters and other objective
functions are not applicable in this method, and it is necessary to select an objective function
that can judge multiple mode components after decomposition. By consulting the related
literature, this paper proposes a brand-new objective function: calculating the spectral
kurtosis of the input signal [34]. The center frequency band is found, and the energy of
the center frequency band of the decomposed component is calculated. Maximal energy is
taken as the optimization target.
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4. Results
4.1. Case A: Numerical Simulation Analysis

In this section, the CEEMDAN, CEITDAN and CEITDALN methods are used to
decompose the analogue signals of bearing faults to compare the effectiveness of the CEIT-
DALN method proposed in this paper in filtering. In order to objectively evaluate the
effectiveness of the CEITDALN method, two metrics—the orthogonality measure and the
energy conservation measure—were introduced to quantitatively evaluate the decomposi-
tion performance of the different methods [35,36]. Theoretically, the mode components of
different decomposition algorithms should all be completely orthogonal. The orthogonality
index is equal to zero. However, due to computer errors and environmental disturbances,
the orthogonality index cannot be zero [35]. Therefore, in practical analysis, the closer
the orthogonality index is to zero, the more desirable the decomposition result is. In
addition, the decomposition result should satisfy the law of energy conservation, and
the energy conservation exponent should be equal to 1. However, in practice, the same
from computer errors can lead to some loss of signal energy, so the value of the energy
conservation exponent should be close to 1 in practical applications, indicating less signal
loss in the decomposition, while when the ECI is greater than 1, it indicates the presence of
spurious components [37]. Here, we compare these three methods using the orthogonal
index (OI), root mean square error (RMSE), energy conservation index (ECI) and improved
SNR (ISNR). The definitions of OI, ECI, and ISNR are as follows.

OI = Average
|〈modn(t), modw(t)〉|
‖modn(t)‖2‖modw(t)‖2

, n 6= w (45)

ECI = ∑T
t=0 ∑m

n=1|modn(t)|2

∑T
t=0|x(t)− rm(t)|2

(46)

where x(t) represents the original signal, modn(t) represents the i-th mode component
decomposed by different methods, and rm(t) indicates residual error.

This paper also uses the improved SNR to compare the superiority of the method
proposed in this paper in the envelope spectrum, calculated as follows:

ISNR = 1− lg
(

S( fi)

NN − S( fi)

)
(47)
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where ISNR is the improved signal-to-noise ratio. NN stands for total regional power, and
its calculation formula is as follows:

NN =
MM
∑
jj

(∣∣X(k jj
)∣∣2), 0 ≤ jj ≤ i, i < MM (48)

where MM is appropriately selected according to the number of sampling points and the
size of the sampling rate.

In order to verify the effectiveness of the proposed method, a bearing failure model
was used to simulate the generated shock signal. The structure of the simulation signal is
as follows [24]: 

x(t) = s(t) + n(t) = ∑
i

Aih(t− iT − τi) + n(t)

Ai = A0 sin(2π frt + ϕA) + CA
h(t) = e−Ct cos(2π fnt + ϕm)

(49)

where s(t) is the periodic fault shock; fr is the frequency conversion, and fr = 86 Hz; CA is
1; C is the attenuation coefficient (C = 760); fn is the resonance frequency ( fn = 3000 Hz);
and fi is the characteristic frequency of the inner ring fault ( fi = 1/T = 130 Hz). τi
is the slight sliding of the i − th shock with respect to period T, after which the sliding
follows a normal distribution with a mean of 0 (standard deviation is 0.5% of the frequency
conversion). n(t) is Gaussian white noise with an SNR of −35 dB, and fs is the sam-
pling frequency ( fs = 8192 Hz). The number of analysis data points was 8192, as shown in
Figure 4. Figure 5 shows the decomposition result of CEEMDAN, CEITDAN, and CEITDALN.
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Figure 5 shows that the CEEMDAN method decomposed a total of 12 mode compo-
nents, and CEITDAN and CEITDALN decomposed 10 rotation components. Fewer model
components can save subsequent analysis time for decomposition results. More accurate
mode components show that the number of false components was reduced. Figure 6
shows the kurtosis spectrum required in the fault diagnosis scheme proposed in this paper
to extract the center frequency of the signal. We extracted the signal component on the
basis of the central frequency for reconstruction. The results in Figure 6 show that the
center frequency was consistent with the analog signal, so it could be used for a follow-up
analysis. Figure 7 shows the center frequency of the different rotation components in the
decomposition result of the CEITDALN method. The center frequencies of the first three
components accounted for the largest proportion. Therefore, the first three components
were selected for signal reconstruction, and the envelope spectrum was drawn.
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Figures 8–10 are the envelope spectra of the signals obtained by the CEEMDAN,
CEITDAN, and CEITDALN methods, respectively. In the above figure, fn-1 is the fault
characteristic frequency, fn-2 is twice the fault characteristic frequency, and the rest can
be deduced by analogy. The CEEMDAN and CEITDAN methods had similar denoising
capabilities to strong noisy signals. However, the difference between the peak value of the
fault characteristic frequency position and the noise peak value of the CEITDAN method
was slightly larger than that of the CEEMDAN method. The CEITDALN method had
the largest difference and the most obvious fault characteristic frequency. At the same
time, the filtering effect of the high-frequency part was obvious compared with those of
the CEEMDAN and CEITDAN methods. This did not affect the extraction of the fault
characteristic frequency because the proposed method has good application prospects in
fault diagnosis.
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In order to further compare the advantages and disadvantages of the three methods,
OI, ECI, and ISNR were compared with the signal output SNR, as shown in Table 1. Table 1
shows that all the indicators of the proposed method were better than those of the other
methods. Therefore, the effectiveness of the proposed method is proven.

Table 1. Comparison table of indicators for different decomposition algorithms.

− ECI OI RMSE ISNR Output SNR

CEITDAN 0.5915 0.2876 0.2870 −31.4192 1.7978
CEEMDAN 0.5512 0.7666 0.3223 −31.26 1.7135
CEITDALN 0.8155 0.0491 0.2539 −28.4227 6.2229

Figure 11 illustrates the improvement effect of the proposed COA. The method for
optimizing the fitness value and the number of iteration steps was used for comparison. The
smaller the optimization fitness value is, the faster the method’s optimization speed is, and
the easier it is to quickly achieve convergence. Therefore, the GBO-COA method proposed
in this paper is better than the traditional COA method, as the proposed method performed
well in the simulation results and can be used in engineering practice to decompose strong
noisy signals and perform fault diagnosis.
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4.2. Case B: Experiment Analysis

In this section, we describe the fault signal acquisition and the test equipment used
(Figure 12). The test platform part consists of the test bench and control system, which is
mainly composed of the tested bearings, accompanying test bearings, test spindle, bearing
outer ring fixture, drive unit, and loading system. During the test, there are four sets
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of bearings, divided into two sets of bearings under test and two sets of accompanying
bearings. Two sets of loading systems apply loads to the test bearings, respectively. The
drive unit provides the power for the whole test bench, and the loading system provides
radial force for the test bearings, which causes the spindle to drive the bearings to rotate and
obtains the vibration signal of the bearings during the rotation process through vibration
sensors. The drive unit can provide the bearing speed in the range of 1000 rpm~20,000 rpm,
which is continuous. The loading system has a loading range of 0~6 KN and a loading
accuracy of ±2% and is continuously adjustable. The operating limit temperature of the
test bench is 250 ◦C [38].
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Table 2 shows the test bearing parameters. The sampling frequency was 18,400 Hz,
and the data length was 8192 points. The bearing rotation speed was 3000 rpm. On the
basis of Table 2, the fault characteristic frequency of the inner loop was calculated as
Equation (50), and the result was 407 Hz. Due to computer error, the inner loop fault
frequency in the envelope spectrum was 408 Hz.

Bearing inner race (BPFL) = (N/2) fr[1 + (d/D) cos α] (50)

where N is the number of rolling bodies, fr is the inner ring rotation frequency, d is the
rolling body diameter, D is the pitch diameter, and α is the contact angle.

Table 2. Test bearing parameters.

Ball Number Pitch Diameter Roller Diameter Contact Angle

14 46 7.5 0

Figure 13 shows that the CEEMDAN method decomposed a total of 13 mode com-
ponents. The CEITDAN and CEITDALN methods decomposed 10 mode components,
respectively. This is consistent with the previous part of the analog signal results, because
the three types are relatively stable in decomposing strong noise signals. The CEEMDAN
method led to the appearance of false modes due to envelope fitting. The CEITDAN and
CEITDALN methods showed better results in terms of signal decomposition. Figure 14
shows the kurtosis spectrum required by CEITDALN in the decomposition process to
extract the center frequency and optimize the parameters. Figure 15 shows the percentage
of the center frequency contained in the different rotation components of the CEITDALN
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method. Different from the analog signal, the second rotation component accounted for
the largest proportion of the center frequency in the actual engineering signal. However,
the results of the first three components were consistent with those of the analog signal.
Figures 16–18 show the signal envelope spectrum after decomposition by the CEEMDAN,
CEITDAN, and CEITDALN methods, respectively. In the above figure, fn-1 is the fault
characteristic frequency, fn-2 is twice the fault characteristic frequency, and the rest can
be deduced by analogy. Figures 16 and 17 show that, after the signal processing of the
CEEMDAN and CEITDAN methods, the fault characteristic frequency could be observed.
However, the difference between the peak values of the characteristic frequency and of
the noise was small. High-frequency noise was not completely filtered out, and there was
some retention. In the CEITDALN method shown in Figure 18, all the high-frequency noise
was filtered out and the peak difference was the largest. The extraction of characteristic
frequencies was the most obvious. In engineering applications, it is generally only neces-
sary to observe the fault characteristic frequency of onefold frequency. A more intuitive
consideration of the filtering method involves the degree of noise filtering. The results
shown by the method in this paper can be used in engineering practice.
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In order to objectively compare the three methods, this section still uses the same
indicators as those in the analog signal section. However, due to the actual signal, the input
SNR and output SNR could not be accurately calculated. Therefore, only four indicators—
OI, ECI, ISNR, and RMSE—were used, as shown in Table 3. The results were consistent
with those of analog signals, and the proposed method showed a strong applicability in
index comparison. Figure 19 shows the comparison between the improved COA and the
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traditional COA algorithms in optimizing the fitness value. Although the basic value was
improved, the improved method proposed in this paper maintained the characteristic of
faster convergence compared with the traditional method.
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Table 3. Comparison table of indicators for different decomposition algorithms.

− ECI OI RMSE ISNR

CEITDAN 0.6563 0.4754 0.3164 −27.1110
CEEMDAN 0.5964 0.8453 0.3584 −27.0868
CEITDALN 0.8345 0.0698 0.2783 −25.3680

In order to more fully reflect the effectiveness of the proposed method in this paper, we
use the same experimental platform for troubleshooting different bearing faults, including
outer ring faults. The outer ring fault characteristic frequency was calculated as shown in
Equation (51). The experimental bearing outer ring failure characteristic frequency was
calculated as 292 Hz.

Bearing outer race (BPFL) = (N/2) fr[1− (d/D) cos α] (51)

where N is the number of rolling bodies, fr is the inner ring rotation frequency, d is the
rolling body diameter, D is the pitch diameter, and α is the contact angle.
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According to the previous comparison of the CEITDAN and CEEMDAN methods,
it can be seen that the proposed method has a better effect, but in order to have more
convincing experimental results, this paper introduces wavelet threshold noise reduction
to compare with the proposed method, and considering that the fault diagnosis results are
more strict on time requirements, it is also necessary to add a time complexity index to
evaluate the different methods. The results are as follows.

Figure 20 shows the decomposition results of the three methods for the bearing outer ring
fault signal. From the figure, it can be seen that the signal decomposition effect of the proposed
method in this paper is better than the other two, which is consistent with the performance
of the simulated signal and the experimental signal of the inner ring fault in the previous
paper. Figure 21 shows the time domain diagram of the signal after wavelet threshold noise
reduction, and a subsequent envelope spectrum transformation of the noise reduction signal
will be performed to obtain the fault characteristic frequency. Figure 22 shows the center
band energy of the cliff spectrum used in the proposed method. It can be seen that the 2nd
mode component contains the greatest center band energy, so this component is selected
for the signal envelope spectrum transformation to obtain the fault characteristic frequency.
Figures 23–26 show the results of the envelope spectrum transformation for different methods.
In the above figure, fn-1 is the fault characteristic frequency, fn-2 is twice the fault characteristic
frequency, and the rest can be deduced by analogy. In Figures 23–25, it can be seen that the
filtering effect is not satisfactory, the difference between the fault characteristic frequency
and the noise is small, and it is difficult to extract the fault characteristic frequency quickly
and accurately. However, the gap between the peak of the characteristic frequency and the
peak of the noise is large in Figure 26, and the high-frequency noise is completely filtered
out cleanly, showing the same better application effect as the previous paper. Table 4 shows
a summary table of the comparison indexes of different methods, and it is obvious from
the table that the proposed method in this paper has a better effect than other methods in
practical applications.

In summary, the method proposed in this paper maintained a good applicability in
engineering practice, solving the problem of excessive signal noise and the influence of
nonwhite noise on fault diagnosis. In the traditional decomposition method, the frequency
bands of nonwhite noise are mostly concentrated in a specific frequency band. Therefore,
it is necessary to analyze the decomposition results. We filtered out mode components
that were not white noise. In the proposed method, nonwhite noise could be partially
offset and preprocessed in the decomposition process, reducing the proportion of nonwhite
noise components in the decomposition results. This improves the signal-to-noise ratio
and diagnosis accuracy and has a strong practicability and operability.



Symmetry 2021, 13, 617 22 of 26

Symmetry 2021, 13, x FOR PEER REVIEW 24 of 29 
 

 

difference between the fault characteristic frequency and the noise is small, and it is diffi-
cult to extract the fault characteristic frequency quickly and accurately. However, the gap 
between the peak of the characteristic frequency and the peak of the noise is large in Fig-
ure 26, and the high-frequency noise is completely filtered out cleanly, showing the same 
better application effect as the previous paper. Table 4 shows a summary table of the com-
parison indexes of different methods, and it is obvious from the table that the proposed 
method in this paper has a better effect than other methods in practical applications. 

  
(a) (b) 

 
(c) 

Figure 20. Comparison results of three decomposition methods: (a) CEEMDAN, (b) CEITDAN, and (c) CEITDALN. Figure 20. Comparison results of three decomposition methods: (a) CEEMDAN, (b) CEITDAN, and (c) CEITDALN.

Symmetry 2021, 13, x FOR PEER REVIEW 25 of 29 
 

 

 
Figure 21. Time domain diagram after wavelet threshold noise reduction. 

 
Figure 22. Energy ratio of the center frequency band. 

A
m

pl
itu

de
(m

m
/s2 )

 
Figure 23. CEEMDAN envelope spectrum. 

Figure 21. Time domain diagram after wavelet threshold noise reduction.



Symmetry 2021, 13, 617 23 of 26

Symmetry 2021, 13, x FOR PEER REVIEW 25 of 29 
 

 

 
Figure 21. Time domain diagram after wavelet threshold noise reduction. 

 
Figure 22. Energy ratio of the center frequency band. 

A
m

pl
itu

de
(m

m
/s2 )

 
Figure 23. CEEMDAN envelope spectrum. 

Figure 22. Energy ratio of the center frequency band.

Symmetry 2021, 13, x FOR PEER REVIEW 25 of 29 
 

 

 
Figure 21. Time domain diagram after wavelet threshold noise reduction. 

 
Figure 22. Energy ratio of the center frequency band. 

A
m

pl
itu

de
(m

m
/s2 )

 
Figure 23. CEEMDAN envelope spectrum. Figure 23. CEEMDAN envelope spectrum.

Symmetry 2021, 13, x FOR PEER REVIEW 26 of 29 
 

 

A
m

pl
itu

de
(m

m
/s2 )

ΔA
1

 
Figure 24. CEITDAN envelope spectrum. 

A
m

pl
itu

de
(m

m
/s2 )

ΔA
1

 
Figure 25. Wavelet threshold noise reduction envelope spectrum. 

A
m

pl
itu

de
(m

m
/s2 )

 
Figure 26. CETIDALN envelope spectrum. 

  

Figure 24. CEITDAN envelope spectrum.



Symmetry 2021, 13, 617 24 of 26

Symmetry 2021, 13, x FOR PEER REVIEW 26 of 29 
 

 

A
m

pl
itu

de
(m

m
/s2 )

ΔA
1

 
Figure 24. CEITDAN envelope spectrum. 

A
m

pl
itu

de
(m

m
/s2 )

ΔA
1

 
Figure 25. Wavelet threshold noise reduction envelope spectrum. 

A
m

pl
itu

de
(m

m
/s2 )

 
Figure 26. CETIDALN envelope spectrum. 

  

Figure 25. Wavelet threshold noise reduction envelope spectrum.

Symmetry 2021, 13, x FOR PEER REVIEW 26 of 29 
 

 

A
m

pl
itu

de
(m

m
/s2 )

ΔA
1

 
Figure 24. CEITDAN envelope spectrum. 

A
m

pl
itu

de
(m

m
/s2 )

ΔA
1

 
Figure 25. Wavelet threshold noise reduction envelope spectrum. 

A
m

pl
itu

de
(m

m
/s2 )

 
Figure 26. CETIDALN envelope spectrum. 

  

Figure 26. CETIDALN envelope spectrum.

Table 4. Comparison table of indicators for different decomposition algorithms.

− ECI OI RMSE ISNR

CEITDAN 0.6912 0.3716 0.3056 −29.7182
CEEMDAN 0.6132 0.7985 0.3379 −29.0913

Wavelet Threshold Method − − 0.3089 −29.9812
CEITDALN 0.8487 0.0591 0.2694 −27.3680

5. Conclusions

This study solves the problem of the traditional CEITDAN method not being able
to offset the effects of strong and nonwhite noise. The method proposed in this paper
was verified by analog and actual engineering signals. This paper compares the proposed
method and the traditional method using both qualitative analysis (the number of feature
frequencies extracted from the envelope spectrum and the degree of noise interference
included) and quantitative analysis (ECI, OI, RMSE and ISNR), and finds that the proposed
method outperforms the traditional method in the fault diagnosis process. The results show
that this method has a good performance because it has a certain reference and validity
for signal processing and fault diagnosis. The CEITDALN method proposed in this paper
changes the traditional decomposition algorithm by adding white noise to groups, adding
analog noise in the form of adjustable parameter transformation noise. This can better
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cancel noise in strong noise signals in the process of signal decomposition. The proportion
of nonwhite noise in the signal decomposition result was reduced, reducing the impact
of nonwhite noise on the accuracy of the decomposition results. The method performs
well in both analog and measured signals and can be further used in signal processing
and fault diagnosis in actual projects. In the future, we will conduct in-depth research on
the endpoint effects of the ITD method itself to solve the problem of curve distortion and
further improve the accuracy and visualization of signal decomposition.
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