

Article

A New Representation of Semiopenness of *L*-fuzzy Sets in *RL*-fuzzy Bitopological Spaces

Ibtesam Alshammari ¹, Omar H. Khalil ^{2,†} and A. Ghareeb ^{3,*,‡}

- ¹ Department of Mathematics, Faculty of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia; iealshamri@uhb.edu.sa or iealshamri@hotmail.com
- ² Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; o.khalil@mu.edu.sa
- ³ Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
- Correspondence: a.ghareeb@sci.svu.edu.eg or nasserfuzt@hotmail.com
- + Current address: Department of Mathematics, Faculty of Science in Al-Zulfi, Majmaah University, Al Majmaah 11952, Saudi Arabia.
- ‡ Current address: Department of Mathematics, College of Science, Al-Baha University, Al-Baha 65799, Saudi Arabia.

Abstract: In this paper, we introduce a new representation of semiopenness of *L*-fuzzy sets in *RL*-fuzzy bitopological spaces based on the concept of pseudo-complement. The concepts of pairwise *RL*-fuzzy semicontinuous and pairwise *RL*-fuzzy irresolute functions are extended and discussed based on the (i, j)-*RL*-semiopen gradation. Further, pairwise *RL*-fuzzy semi-compactness of an *L*-fuzzy set in *RL*-fuzzy bitopological spaces are given and characterized. As *RL*-fuzzy bitopology is a generalization of *L*-bitopology, *RL*-bitopology, *L*-fuzzy bitopology, and *RL*-fuzzy topology, the results of our paper are more general.

Keywords: *RL*-fuzzy bitopology; (*i*, *j*)-*RL*-semiopen gradation; pairwise *RL*-fuzzy semicontinuous; pairwise *RL*-fuzzy irresolute; pairwise *RL*-fuzzy semi-compactness

1. Introduction

In 1963, Levine [1] introduced the notion of semiopen set and its corresponding associated function in the realm of general topology. Afterwards, Azad [2] extended this notion and its related functions to the setting of L-topology. Thakur and Malviya [3] introduced and studied the concepts of (i, j)-semiopen and (i, j)-semiclosed L-fuzzy sets, pairwise fuzzy semicontinuous, and pairwise fuzzy semiopen functions in L-bitopology in the case of L = [0, 1]. In [4], Shi introduced the notion of L-fuzzy semiopen and preopen gradations in L-fuzzy topological spaces. Furthermore, he introduced the notions of L-fuzzy semicontinuous functions, L-fuzzy precontinuous functions, L-fuzzy irresolute functions, and L-fuzzy pre-irresolute functions, and discussed some of their elementary properties. Shi's operators have been found very useful in defining other gradations and also in studying many topological characteristics. In 2011, Ghareeb [5] used L-fuzzy preopen operator to introduce the degree of pre-separatedness and the degree of preconnectedness in L-fuzzy topological spaces. Many characterizations of the degree of preconnectedness are discussed in L-fuzzy topological spaces. Later, Ghareeb [6] introduced the concept of L-fuzzy semi-preopen operator in L-fuzzy topological spaces and studied some of its properties. The concepts of L-fuzzy SP-compactness and L-fuzzy SP-connectedness in L-fuzzy pretopological spaces are introduced and studied [7]. Further, a new operator in L-fuzzy topology introduced in [8] to measure the F-openness of an L-fuzzy set in L-fuzzy topological spaces. Moreover, the new operator is used to introduce a new form of F-compactness. Recently, we used the new operators to generalize several kinds of functions between L-fuzzy topological spaces [9–12].

Citation: Alshammari, I.; Khalil, O.H.; Ghareeb, A. A New Representation of Semiopenness of *L*-fuzzy Sets in *RL*-fuzzy Bitopological Spaces. *Symmetry* **2021**, *13*, 611. https://doi.org/10.3390/ sym13040611

Academic Editor: José Carlos R. Alcantud

Received: 16 March 2021 Accepted: 2 April 2021 Published: 6 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Recently, Li and Li [13] defined and studied the concept of RL-topology as an extension of L-topology. Moreover, RL-compactness by means of an inequality and RL-continuous mapping are introduced and discussed in detail. In [14], they presented RL-fuzzy topology on an L-fuzzy set as a generalization of RL-topology and L-fuzzy topology. Some relevant properties of RL-fuzzy compactness in RL-fuzzy topological spaces are further investigated. Later on, Zhang et al. [15] defined the degree of Lindelöf property and the degree of countable RL-fuzzy topology in the sense of Kubiak and Šostak is a special case of RLfuzzy topology, the degree of RL-fuzzy compactness and the degree of Lindelöf property are extensions of the corresponding degrees in L-fuzzy topology.

The purpose of this paper is to introduce the (i, j)-RL-semiopen gradation in RL-fuzzy bitopological spaces based on the concept of pseudo-complement of L-fuzzy sets. We also define and characterize pairwise RL-fuzzy semicontinuous, pairwise RL-fuzzy irresolute functions, and pairwise RL-fuzzy semi-compactness. Our results are more general than those of the corresponding notions in L-bitopology, RL-bitopology, RL-fuzzy topology, L-fuzzy bitopology.

2. Preliminaries

In this section, we give some basic preliminaries required for this paper. By $(L, \vee, \wedge, ')$, we denote a complete DeMorgan algebra [16,17] (i.e., *L* is a completely distributive lattice with an order reversing involution ', where \vee and \wedge are join and meet operations, respectively), $X \neq \emptyset$ is a set, and L^X is the family of each *L*-fuzzy sets defined on *X*. The largest and the smallest members in *L* and L^X are denoted by \top , \bot , and \top_X , \bot_X , respectively. For each any two *L*-fuzzy sets $B \in L^X$, $C \in L^Y$, and any mapping $f : X \longrightarrow Y$, we define $f_L^{\rightarrow}(B)(y) = \vee \{B(x) : f(x) = y\}$ for all $y \in Y$ and $f_L^{\leftarrow}(C)(x) = \vee \{B(x) : f_L^{\rightarrow}(B) \leq C\} = C(f(x))$ for all $x \in X$. For each $\alpha, \beta \in L, \alpha \prec \beta$ means that the element α is wedge below β in *L* [18], i.e., $\alpha \prec \beta$ if for every arbitrary subset $\mathcal{D} \subseteq L, \forall \mathcal{D} \geq \beta$ implies $\alpha \leq \gamma$ for some $\gamma \in \mathcal{D}$. An element $\alpha \in L$ is said to be co-prime if $\alpha \leq \beta \lor \gamma$ implies that $\alpha \leq \beta$ or $\alpha \leq \gamma$ and α is said to be prime if and only if α' is co-prime. The family of non-zero co-prime (resp. non-unit prime) members in *L* is denoted by J(L) (resp. P(L)). By $\alpha(\beta) = \vee \{\alpha \in L : \alpha \prec \beta\}$ and $\beta(\beta) = \vee \{\alpha \in L : \alpha' \prec \beta'\}$, we denote the greatest minimal family and the greatest maximal family of β , respectively. $\alpha^*(\alpha) = \alpha(\alpha) \cap J(L)$ and $\beta^*(\alpha) = \beta(\alpha) \cap P(L)$ for all $\alpha \in L$.

An *L*-fuzzy set $A \in L^X$ is called *valuable* if $A \leq A'$. The collection of valuable *L*-fuzzy sets on *X* is denoted by \mathscr{V}_X^L . In other words, $\mathscr{V}_X^L = \{A \in L^X : A \leq A'\}$. For each $A \in \mathscr{V}_X^L$, we define the collection $\mathscr{F}_X^L(A)$ by $\mathscr{F}_X^L(A) = \{B \in L^X : B \leq A\}$. In fact, $\mathscr{F}_X^L(A)$ introduces the powerset of *L*-fuzzy set $A \in L^X$. Let $A \in \mathscr{V}_X^L$ and $B \in \mathscr{V}_Y^L$, the restriction of f_L^{\rightarrow} on *A*, i.e., $f_L^{\rightarrow}|_A : \mathscr{F}_X^L(A) \longrightarrow L^Y$ provided that $D \in \mathscr{F}_X^L(A) \mapsto f_L^{\rightarrow}(D)$, is said to be the restriction of *L*-fuzzy function (*RL*-fuzzy function, in short) from *A* to *B*, given by $f_{L,A}^{\rightarrow} : A \longrightarrow B$ if $f_L^{\rightarrow}(A) \leq B$. The inverse of an *L*-fuzzy set $C \in \mathscr{F}_Y^L(B)$ under $f_{L,A}^{\rightarrow}$ is defined by $f_{L,A}^{\leftarrow}(C) = \bigvee \{D \in \mathscr{F}_X^L(A) : f_L^{\rightarrow}(D) \leq C\}$. It is clear that $f_{L,A}^{\leftarrow}(C) = A \land f_L^{\leftarrow}(C)$. The *pseudo-complement* of *B* relative to *A* [13,14], denoted by $\langle_I^A B$, is given by:

$$\zeta_L^A B = \begin{cases} A \wedge B', & \text{if } B \neq A, \\ \bot_X, & \text{if } B = A. \end{cases}$$

where $A \in \mathscr{V}_X^L$ and $B \in \mathscr{F}_X^L(A)$. Some properties of pseudo-complement operation \langle_L^A are listed in the following proposition:

Proposition 1. [13,14] If $A \in \mathscr{V}_X^L$, $B, C \in \mathscr{F}_X^L(A)$, and $\{B_i\}_{i \in I} \subseteq \mathscr{F}_X^L(A)$, then:

- (1) $\langle {}^{A}_{L}B = A \text{ if and only if } B \leq A'.$
- (2) $B \leq C$ implies $\langle {}^{A}_{L}C \leq \langle {}^{A}_{L}B \rangle$.
- (3) $\langle {}^{A}_{L} \wedge_{i \in I} B_{i} = \bigvee_{i \in I} \langle {}^{A}_{L} B_{i}.$

(4)
$$\langle_L^A \bigvee_{i \in I} B_i \leq \bigwedge_{i \in I} \langle_L^A B_i \text{ and } \langle_L^A \bigvee_{i \in I} B_i = \bigwedge_{i \in I} \langle_L^A B_i \text{ if } \bigvee_{i \in I} B_i \neq A$$

Lemma 1. [13] Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, $f_{L,A}^{\rightarrow} : A \longrightarrow B$ be RL-fuzzy function, and $D \in \mathscr{F}_X^L(A)$. Then for any $\mathcal{U} \subseteq \mathscr{F}_X^L(A)$, we have

$$\bigvee_{y \in Y} \left(f_{L,A}^{\to}(D)(y) \wedge \bigwedge_{E \in \mathcal{U}} E(y) \right) = \bigvee_{x \in X} \left(D(x) \wedge \bigwedge_{E \in \mathcal{U}} f_{L,A}^{\leftarrow}(E)(x) \right).$$

Equivalently [15],

$$\bigwedge_{y \in Y} \left({{{{\zeta}_{L}^{A} f_{L,A}^{\rightarrow}(D)(y) \vee \bigvee_{E \in \mathcal{P}} E(y)}} \right) = \bigwedge_{x \in X} \left({{{\zeta}_{L}^{A} D(x) \vee \bigvee_{E \in \mathcal{P}} f_{L,A}^{\leftarrow}(E)(x)}} \right).$$

An *L*-topology [16,17,19] (*L*-t, for short) τ is a subfamily of L^X which contains \bot_X , \top_X and is closed for any suprema and finite infima. Moreover, (X, τ) is called an *L*-topological space on *X*. Further, members of τ are called open *L*-fuzzy sets and their complements are called closed *L*-fuzzy sets. A mapping $f : (X, \tau_1) \longrightarrow (Y, \tau_2)$ is called *L*-continuous if and only if $f_L^{\leftarrow}(C) \in \tau_1$ for any $C \in \tau_2$. The notion of *L*-topology was generalized by Kubiak [20] and Šostak [21] independently as follows:

Definition 1. [20–22] An L-fuzzy topology on the set X is the function $\tau : L^X \longrightarrow L$, which satisfies the following conditions:

- (O1) $\tau(\perp_X) = \tau(\top_X) = \top$.
- (O2) $\tau(A \wedge B) \geq \tau(A) \wedge \tau(B)$, for each $A, B \in L^X$.
- (O3) $\tau(\bigvee_{i \in I} A_i) \ge \bigwedge_{i \in I} \tau(A_i)$, for each $\{A_i\}_{i \in I} \subseteq L^X$.

The pair (X, τ) is called an L-fuzzy topological space (L-fts, for short). The value $\tau(A)$ and $\tau^*(A) = \tau(A')$ represent the degree of openness and the degree of closeness of an L-fuzzy set A, respectively. A function $f : (X, \tau_1) \longrightarrow (Y, \tau_2)$ is called L-fuzzy continuous iff $\tau_1(f_L^{\leftarrow}(C)) \ge \tau_2(C)$ for any $C \in L^Y$.

One of the attempts to generalize *L*-topological spaces was the definition of *RL*-topology \varkappa on an *L*-fuzzy set *A* by Li and Li [13] as follows:

Definition 2. [13] Let $A \in \mathscr{V}_X^L$. A relative L-topology (RL-t, for short) \varkappa on an L-fuzzy set A, is a subfamily of $\mathscr{F}_X^L(A)$, that satisfies the following statements:

- (1) $A \in \varkappa$ and $B \in \varkappa$, for each $B \leq A'$.
- (2) $B_1 \wedge B_2 \in \varkappa$, for any $B_1, B_2 \in \varkappa$.
- (3) $\bigvee_{i \in I} B_i \in \varkappa$, for any $\{B_i\}_{i \in I} \subseteq \varkappa$.

The pair (A, \varkappa) is said to be a relative L-topological space on A (RL-ts, for short). The elements of \varkappa are called relative open L-fuzzy sets (RL-open fuzzy set, for short) and an L-fuzzy set B is called relative L-closed fuzzy set (RL-closed fuzzy set, for short) if and only if $\langle_L^A B \in \varkappa$. The collection of all RL-closed fuzzy sets with respect to \varkappa is denoted by $\langle_L^A \varkappa$, i.e., $\langle_L^A \varkappa = \{C : \langle_L^A C \in \varkappa\}$. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, and (A, \varkappa_1) , (B, \varkappa_2) be two RL-ts's. The relative L-fuzzy function $f_{L,A}^{\rightarrow} : A \longrightarrow B$ is said to be an RL-continuous iff $f_{L,A}^{\leftarrow}(C) \in \langle_L^A \varkappa_1$ for any $C \in \langle_L^A \varkappa_2$. Equivalently, $f_{L,A}^{\rightarrow} : A \longrightarrow B$ is said to be an RL-continuous iff $f_{L,A}^{\leftarrow}(C) \in \varkappa_1$ for any $C \in \varkappa_2$. A triple $(A, \varkappa_1, \varkappa_2)$ consisting of an L-fuzzy set $A \in \mathscr{V}_X^L$ endowed with RL-topologies \varkappa_1 and \varkappa_2 on A is called an RL-bitopological space (RL-bts, for short). For any $B \in \mathscr{F}_X^L(A)$, \varkappa_i -RL-open (resp. closed) fuzzy set refers to the open (resp. closed) L-fuzzy set in (A, \varkappa_i) , for i = 1, 2. It is clear that we get L-topology and L-bitopology as a special case if $A = \top_X$.

The following two definitions extend the notions of (strong) β_{α} -cover, Q_{α} -cover, (strong) α -shading, (strong) α -remote collection [23] to the setting of *RL*-topological spaces:

Definition 3. For any $A \in \mathscr{V}_X^L$, RL-topology \varkappa on $A, B \in \mathscr{F}_X^L(A)$, and $\alpha \in L_{\perp}$, a collection $\mathcal{U} \subseteq \mathscr{F}_X^L(A)$ is called:

- (1) β_{α} -cover of *B* if for any $x \in X$, it follows that $\alpha \in \beta(\langle {}^{A}_{L}B(x) \lor \lor \lor_{A \in \mathcal{U}} A(x))$ and \mathcal{U} is called strong β_{α} -cover of *B* if $a \in \beta(\land_{x \in X}(\langle {}^{A}_{L}B(x) \lor \lor \lor_{A \in \mathcal{U}} A(x)))$.
- (2) Q_{α} -cover of B if for any $x \in X$, it follows that $\binom{A}{L}B(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \geq \alpha$.

Definition 4. For any $A \in \mathscr{V}_X^L$, RL-topology \varkappa on A, $\alpha \in L_{\top}$ and $B \in \mathscr{F}_X^L(A)$, a collection $\mathcal{A} \subseteq \mathscr{F}_X^L(A)$ is called:

- (1) α -shading of B if for any $x \in X$, $({}^{A}_{L}B(x) \lor \bigvee_{A \in \mathcal{A}} A(x)) \not\leq \alpha$.
- (2) strong α -shading of B if $\bigwedge_{x \in X} (\langle A B(x) \lor \bigvee_{A \in \mathcal{A}} A(x)) \not\leq \alpha$.
- (3) α -remote collection of B if for any $x \in X$, $(B(x) \land \bigwedge_{D \in \mathcal{A}} D(x)) \not\geq \alpha$.
- (4) strong α -remote collection of B if $\bigvee_{x \in X} (B(x) \land \bigwedge_{D \in \mathcal{A}} D(x)) \not\geq \alpha$.

Theorem 1. [13] For any RL-ts (A, \varkappa) , the following statements are true:

- (1) $A \in \langle {}^{A}_{L} \varkappa$ and $B \in \langle {}^{A}_{L} \varkappa$ for all $B \leq A'$.
- (2) $B_1 \vee B_2 \in \langle A_L \varkappa$ for each $B_1, B_2 \in \langle A_L \varkappa$,
- (3) $\bigwedge_{i \in I} B_i \in \langle_L^A \varkappa$ for each $\{B_i : i \in I\} \subseteq \langle_L^A \varkappa$.

Definition 5. [14] Let $A \in \mathscr{V}_X^L$. An RL-fuzzy topology on A is a function $\varkappa : \mathscr{F}_X^L(A) \longrightarrow L$ such that \varkappa satisfying the following conditions:

(R1) $\varkappa(A) = \top$, for each $B \leq A'$, $\varkappa(B) = \top$. (R2) $\varkappa(B_1 \wedge B_2) \geq \varkappa(B_1) \wedge \varkappa(B_2)$, for each $B_1, B_2 \in \mathscr{F}_X^L(A)$. (R3) $\varkappa(\bigvee_{i \in I} B_i) \geq \bigwedge_{i \in I} \varkappa(B_i)$, for each $\{B_i\}_{i \in I} \subseteq \mathscr{F}_X^L(A)$.

The pair (A, \varkappa) is said to be an RL-fuzzy topological space (RL-fts, for short) on A. For any $B \in \mathscr{F}_X^L(A)$, the gradation $\varkappa(B)$ (resp. $\varkappa({A \atop L}B)$) can be viewed as the openness degree (resp. closeness degree) of B relative to \varkappa , respectively. Further, $\varkappa(B) = \top$ (resp. $\varkappa({A \atop L}B) = \top$) confirms the RL-openness (resp. RL-closeness) of an L-fuzzy set B. Obviously if $A = \top_X$, then RL-fuzzy topology on A degenerates into Kubiak-Šostak's L-fuzzy topology, that is, RL-fuzzy topology on A is a generalization of L-fuzzy topology. If (A, \varkappa) is an RL-topological space and $\chi_{\varkappa} : \mathscr{F}_X^L(A) \longrightarrow L$ is a function given by $\chi_{\varkappa}(B) = \top$ if $B \in \varkappa$, and $\chi_{\varkappa}(B) = \bot$ if $B \notin \varkappa$, then (A, χ_{\varkappa}) represents a special RL-fts, i.e., (A, \varkappa) can also be seen as RL-fts.

Theorem 2. [14] For each $A \in \mathscr{V}_X^L$ and RL-fts (A, \varkappa) on A. The function $\langle_L^A \varkappa : \mathscr{F}_X^L(A) \longrightarrow L$ given by $\langle_L^A \varkappa(B) = \varkappa(\langle_L^A B)$ for any $B \in \mathscr{F}_X^L(A)$, satisfies the following conditions:

- (1) $\langle {}^{A}_{L}\varkappa(A) = \top$, for each $B \leq A'$, $\langle {}^{A}_{L}\varkappa(B) = \top$.
- (2) $\langle {}^{A}_{L}\varkappa(B_{1}\vee B_{2}) \geq \langle {}^{A}_{L}\varkappa(B_{1}) \wedge \langle {}^{A}_{L}\varkappa(B_{2}), \text{ for each } B_{1}, B_{2} \in \mathscr{F}^{L}_{X}(A).$
- (3) $\langle {}^{A}_{I} \varkappa (\bigwedge_{i \in I} B_{i}) \ge \bigwedge_{i \in I} \langle {}^{A}_{I} \varkappa (B_{i}), \text{ for each } \{B_{i}\}_{i \in I} \subseteq \mathscr{F}_{X}^{L}(A).$

 $\langle_L^A \varkappa$ is said to be an RL-fuzzy cotopology (RL-cft, for short) on A and the pair $(A, \langle_L^A \varkappa)$ is said to be an RL-fuzzy cotopological space (RL-cfts, for short).

Definition 6. [14] Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, and (A, \varkappa_1) , (B, \varkappa_2) be two RL-fuzzy topological spaces on A and B, respectively. The relative L-fuzzy function $f_{L,A} : A \longrightarrow B$ is said to be an RL-fuzzy continuous iff

 $\varkappa_1(f_{L,A}^{\leftarrow}(C)) \geq \varkappa_1(C),$

equivalently,

 $\varkappa_1(\langle {}^A_L f_{L,A}^{\leftarrow}(C)) \ge \varkappa_1(\langle {}^B_L C),$

for each $C \in \mathscr{F}_Y^L(B)$. If $(A, \langle_L^A \varkappa_1)$ and $(B, \langle_L^B \varkappa_2)$ are the associated RL-fuzzy cotopological spaces of (A, \varkappa_1) and (B, \varkappa_2) respectively, then $f_{L,A}^{-1}$ is said to be an RL-fuzzy continuous iff

$$\langle {}^{A}_{L}\varkappa_{1}(f_{L,A}^{\leftarrow}(C)) \geq \langle {}^{B}_{L}\varkappa_{2}(C),$$

for each $C \in \mathscr{F}_X^L(B)$.

Shi [24] introduced *L*-fuzzy closure operators in *L*-fuzzy topological spaces. In the following definition, we introduce its equivalent form in *RL*-fuzzy topological spaces.

Definition 7. Let $A \in \mathscr{V}_X^L$, and (A, \varkappa) be an RL-fts on A. The function $Cl^{\varkappa} : \mathscr{F}_X^L(A) \to L^{J(\mathscr{F}_X^L(A))}$ defined by

$$Cl^{\varkappa}(B)(x_{\lambda}) = \bigwedge_{x_{\lambda} \leq D \geq B} \langle {}^{A}_{L} \Big(\varkappa(\langle {}^{A}_{L}D) \Big)$$

for each $x_{\lambda} \in J(\mathscr{F}_X^L(A))$ and $B \in \mathscr{F}_X^L(A)$ is called an RL-fuzzy closure operator induced by \varkappa .

Definition 8. [14] For any $A \in \mathscr{V}_X^L$ and an RL-fts (A, \varkappa) on A, an L-fuzzy set $B \in \mathscr{F}_X^L(A)$ is called an RL-fuzzy compact with respect to \varkappa if for any $\mathcal{P} \subseteq \mathscr{F}_X^L(A)$, the following inequality holds:

$$\bigvee_{D\in\mathcal{P}}\varkappa({}^{A}_{L}D)\vee\bigvee_{x\in X}\left(B(x)\wedge\bigwedge_{D\in\mathcal{P}}D(x)\right)\geq\bigwedge_{\mathcal{R}\in 2^{\mathcal{P}}}\bigvee_{x\in X}\left(B(x)\wedge\bigwedge_{D\in\mathcal{R}}D(x)\right).$$

Theorem 3. [14] If $A = \top_X$, then following statements hold:

- (1) $\langle {}^{A}_{L}B = B', B \in \mathscr{F}^{L}_{X}(A) \Leftrightarrow B \in L^{X}.$
- (2) RL-fuzzy compactness is reduced to L-fuzzy compactness.
- (3) B is RL-fuzzy compact if and only if B is L-fuzzy compact.

Theorem 4. [14] For any $A \in \mathscr{V}_X^L$ and an RL-ft \varkappa on A, we have following conclusions:

(1) If B₁, B₂ ∈ 𝒫^L_X(A) and B₁, B₂ are RL-fuzzy compact, then B₁ ∨ B₂ is RL-fuzzy compact.
(2) If B₁, B₂ ∈ 𝒫^L_X(A) such that B₁ is an RL-fuzzy compact and B₂ is an RL-closed fuzzy set, then B₁ ∧ B₂ is an RL-fuzzy compact.

3. The Gradation of Semiopenness in RL-fuzzy Bitopological Spaces

A system $(A, \varkappa_1, \varkappa_2)$ consisting of an *L*-fuzzy set $A \in \mathscr{V}_X^L$ with two *RL*-fuzzy topologies \varkappa_1 and \varkappa_2 on *A* is called an *RL*-fuzzy bitopological space. Throughout this paper *i*, j = 1, 2 where $i \neq j$ and if *P* is any topological property then \varkappa_i -*P* refers to the property *P* with respect to the *RL*-fuzzy topology \varkappa_i . An *L*-fuzzy set $B \in \mathscr{F}_X^L(A)$ of an *RL*-bitopological space $(A, \varkappa_l, \varkappa_2)$ is called an (i, j)-*RL*-semiopen if there exists an *L*-fuzzy set $C \in \varkappa_i$ such that $C \leq B \leq Cl^{\varkappa_j}(C)$.

Definition 9. Let $A \in \mathscr{V}_X^L$ and $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space on A. For any $B \in \mathscr{F}_X^L(A)$, define a function (i, j)- $\mathcal{S} : \mathscr{F}_X^L(A) \to L$ by

$$(i,j)-\mathcal{S}(B) = \bigvee_{C \leq B} \left\{ \varkappa_i(C) \land \bigwedge_{x_\lambda \prec B} \bigwedge_{x_\lambda \not\leq D \geq C} \zeta_L^A \left(\varkappa_j(\zeta_L^A D) \right) \right\}$$

Then (i, j)-S(B) is called an (i, j)-RL-semiopenness gradation of B induced by \varkappa_i and \varkappa_j such that $i \neq j$, where (i, j)-S(B) represents the degree to which B is (i, j)-RL-semiopen and (i, j)- $S^*(B) = (i, j)$ - $S({A \atop L}B)$ represents the degree to which B is (i, j)-RL-semiclosed.

Based on the above definition and Definition 7, we can state the following corollary:

Corollary 1. Let $A \in \mathcal{V}_X^L$ and $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space on A. Then for each $B \in \mathscr{F}_X^L(A)$, we have

$$(i,j)-\mathcal{S}(B) = \bigvee_{C \leq B} \left\{ \varkappa_i(C) \land \bigwedge_{x_\lambda \prec B} Cl^{\varkappa_j}(C)(x_\lambda) \right\}.$$

Theorem 5. Let $A \in \mathscr{V}_X^L$, \varkappa_1 , $\varkappa_2 : \mathscr{F}_X^L(A) \to \{\bot, \top\}$ be RL-topologies on A, and (i, j)- $S : \mathscr{F}_X^L(A) \to \{\bot, \top\}$ be the gradation of (i, j)-RL-semiopenness induced by \varkappa_i and \varkappa_j such that $i \neq j$. Then (i, j)- $S(B) = \top$ iff B is an (i, j)-RL-semiopen.

Proof. The proof can be obtained simply from the following inequality:

$$(i,j)-\mathcal{S}(B) = \top \quad \text{iff } \bigvee_{C \leq B} \left\{ \varkappa_i(C) \land \bigwedge_{x_\lambda \prec B} Cl^{\varkappa_j}(C)(x_\lambda) \right\} = \top \\ \text{iff } \exists C \leq B \text{ such that } \varkappa_i(C) = \top \text{ and } \bigwedge_{x_\lambda \prec B} Cl^{\varkappa_j}(C)(x_\lambda) = \top \\ \text{iff } \exists C \leq B \text{ such that } \varkappa_i(C) = \top \text{ and for each } x_\lambda \prec B, \ Cl^{\varkappa_j}(C)(x_\lambda) = \top \\ \text{iff } \exists C \in \varkappa_i \text{ such that } C \leq B \leq Cl^{\varkappa_j}(C) \\ \text{iff } B \text{ is } (i.j)-RL\text{-semiopen.} \end{array}$$

Theorem 6. Let $A \in \mathscr{V}_X^L$, $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space on A, and (i, j)-S be the gradation of (i, j)-RL-semiopenness induced by \varkappa_i and \varkappa_j such that $i \neq j$. Then for each $B \in \mathscr{F}_X^L(A)$, we have $\varkappa_i(B) \leq (i, j)$ -S(B).

Proof. The proof can be obtained simply from the following inequality:

$$(i,j)-\mathcal{S}(B) = \bigvee_{\substack{C \leq B}} \left\{ \varkappa_i(C) \land \bigwedge_{\substack{x_\lambda \prec B}} Cl^{\varkappa_j}(C)(x_\lambda) \right\} \geq \varkappa_i(B) \land \bigwedge_{\substack{x_\lambda \prec B}} Cl^{\varkappa_j}(B)(x_\lambda) \\ = \varkappa_i(B) \land \top = \varkappa_i(B).$$

Corollary 2. Let $A \in \mathscr{V}_X^L$, $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space on A, and (i, j)- \mathcal{S} be the gradation of (i, j)-RL-semiopenness induced by \varkappa_i and \varkappa_j such that $i \neq j$. Then for each $B \in \mathscr{F}_X^L(A)$, we have ${}_L^A \varkappa_i(B) \leq (i, j)$ - $\mathcal{S}^*(B)$.

Theorem 7. If $A \in \mathscr{V}_X^L$, $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space on A, and (i, j)- \mathscr{S} be the gradation of (i, j)-RL-semiopenness induced by \varkappa_i and \varkappa_j such that $i \neq j$, then (i, j)- $\mathscr{S}\begin{pmatrix}\bigvee B_i\\i \in I\end{pmatrix}$ $\geq \bigwedge_{i \in I} (i, j)$ - $\mathscr{S}(B_i)$ for each $\{B_i\}_{i \in I} \subseteq \mathscr{F}_X^L(A)$.

Proof. Let $\alpha \in L$ and $\alpha \prec \bigwedge_{i \in I} (i, j) \cdot S(B_i)$, then there exists $C_i \leq B_i$ such that $\alpha \prec \varkappa_i(C_i)$ and $\alpha \prec \bigwedge_{\substack{x_\lambda \prec B_i \ x_\lambda \not\leq D \geq C_i}} \bigwedge_L (\varkappa_i(\bigwedge_L^A D))$ for any $i \in I$. Hence $\alpha \leq \bigwedge_{i \in I} \varkappa_i(C_i) \leq \varkappa_i (\bigvee_{i \in I} C_i)$ and $\alpha \leq \bigwedge_{i \in I} \bigwedge_{x_\lambda \prec B_i \ x_\lambda \not\leq D \geq C_i} \bigwedge_L (\varkappa_i(\bigwedge_L^A D))$. Since $\{x_\lambda : x_\lambda \prec \bigvee_{i \in I} B_i\} = \bigcup_{i \in I} \{x_\lambda : x_\lambda \prec B_i\}$, we have

$$(i,j)-\mathcal{S}\left(\bigvee_{i\in I}B_i\right) = \bigvee_{C\leq \bigvee_{i\in I}B_i}\left\{\varkappa_i(C)\wedge\bigwedge_{x_\lambda\prec\bigvee_{i\in I}B_i}\bigwedge_{x_\lambda\not\leq D\geq C}\zeta_L^A\left(\varkappa_j(\zeta_L^A D)\right)\right\}$$

$$\geq \varkappa_{i}\left(\bigvee_{i\in I}C_{i}\right) \wedge \bigwedge_{i\in I}\bigwedge_{x_{\lambda}\prec B_{i}}\bigwedge_{x_{\lambda}\not\leq D\geq \bigvee_{i\in I}C_{i}} \zeta_{L}^{A}\left(\varkappa_{j}(\zeta_{L}^{A}D)\right)$$

$$\geq \varkappa_{i}\left(\bigvee_{i\in I}C_{i}\right) \wedge \bigwedge_{i\in I}\bigwedge_{x_{\lambda}\prec B_{i}}\bigwedge_{x_{\lambda}\not\leq D\geq C_{i}} \zeta_{L}^{A}\left(\varkappa_{j}(\zeta_{L}^{A}D)\right)$$

$$\geq \alpha.$$

This shows that (i, j)- $\mathcal{S}\left(\bigvee_{i \in I} B_i\right) \ge \bigwedge_{i \in I} (i, j)$ - $\mathcal{S}(B_i)$. \Box

Corollary 3. Let $A \in \mathscr{V}_X^L$, $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space on A, and (i, j)-S be the gradation of (i, j)-RL-semiopenness induced by \varkappa_i and \varkappa_j such that $i \neq j$. Then (i, j)- $S^*\left(\bigwedge_{i \in I} B_i\right) \geq \bigwedge_{i \in I} (i, j)$ - $S^*(B_i)$ for any $\{B_i\}_{i \in I} \subseteq \mathscr{F}_X^L(A)$.

4. Pairwise Fuzzy Semicontinuous Functions Between RL-fuzzy Bitopological Spaces

Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, and $(A, \varkappa_1, \varkappa_2)$, $(B, \varkappa_1^*, \varkappa_2^*)$ be *RL*-fbts's on *A* and *B*, respectively. An *RL*-fuzzy function $f_{L,A} : A \longrightarrow B$ is said to be pairwise *RL*-fuzzy continuous (resp. open) iff $f_{L,A} : (A, \varkappa_1) \longrightarrow (B, \varkappa_1^*)$ and $f_{L,A} : (A, \varkappa_2) \longrightarrow (B, \varkappa_2^*)$ are *RL*-fuzzy continuous (resp. open).

Definition 10. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, $(A, \varkappa_1, \varkappa_2)$ and $(B, \varkappa_1^*, \varkappa_2^*)$ be RL-fbts's on A and B, respectively, and (i, j)- S_1 , (i, j)- S_2 their corresponding gradations of (i, j)-RL-semiopenness. An RL-fuzzy function $f_{L,A} : A \longrightarrow B$ is called:

- (1) pairwise RL-fuzzy semicontinuous iff $\varkappa_i^*(C) \leq (i, j) S_1(f_{L,A}^{\leftarrow}(C))$ holds for each $C \in \mathscr{F}_X^L(B)$.
- (2) pairwise RL-fuzzy irresolute iff (i, j)- $S_2(C) \leq (i, j)$ - $S_1(f_{L,A}(C))$ holds for each $C \in \mathscr{F}_X^L(B)$.

Corollary 4. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, $(A, \varkappa_1, \varkappa_2)$ and $(B, \varkappa_1^*, \varkappa_2^*)$ be RL-fbts's on A and B, respectively, and (i, j)- S_1 , (i, j)- S_2 their corresponding gradations of (i, j)-RL-semiopenness. Then:

(1) $f_{L,A}$ is pairwise RL-fuzzy semicontinuous iff $\langle_L^B \varkappa_i^*(C) \leq (i,j) - \mathcal{S}_1^*(f_{L,A}^{\leftarrow}(C))$ for each $C \in \mathscr{F}_X^L(B)$.

(2) $f_{L,A}$ is pairwise RL-fuzzy irresolute iff (i, j)- $S_2^*(C) \le (i, j)$ - $S_1^*(f_{L,A}^{\leftarrow}(C))$ for each $C \in \mathscr{F}_X^L(B)$.

Theorem 8. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, $(A, \varkappa_1, \varkappa_2)$ and $(B, \varkappa_1^*, \varkappa_2^*)$ be RL-fbts's on A and B, respectively, and (i, j)- S_1 , (i, j)- S_2 their corresponding gradations of (i, j)-RL-semiopenness. Then:

(1) $f_{L,A} : (A, \varkappa_1, \varkappa_2) \to (B, \varkappa_1^*, \varkappa_2^*)$ is pairwise RL-fuzzy semicontinuous iff $f_{L,A} : (A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]}) \to (B, \varkappa_{1[\alpha]}^*, \varkappa_{2[\alpha]}^*)$ is pairwise RL-semicontinuous for each $\alpha \in J(L)$. (2) $f_{L,A} : (A, \varkappa_1, \varkappa_2) \to (B, \varkappa_1^*, \varkappa_2^*)$ is pairwise RL-fuzzy irresolute iff $f_{L,A} : (A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]}) \to (B, \varkappa_{1[\alpha]}^*, \varkappa_2^*)$ is pairwise RL-fuzzy irresolute iff $f_{L,A} : (A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]}) \to (B, \varkappa_{1[\alpha]}^*, \varkappa_{2[\alpha]}^*)$ is pairwise RL-fuzzy irresolute iff $f_{L,A} : (A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]}) \to (B, \varkappa_{1[\alpha]}^*, \varkappa_{2[\alpha]})$ is pairwise RL-irresolute for each $\alpha \in J(L)$.

Proof.

(1) Let $C \in \varkappa_{i}^{*}[\alpha]$ for each $C \in \mathscr{F}_{X}^{L}(B)$ and $\alpha \in J(L)$, then $\varkappa_{i}^{*}(C) \geq \alpha$. Since $f_{L,A}$: $(A, \varkappa_{1}, \varkappa_{2}) \rightarrow (B, \varkappa_{1}^{*}, \varkappa_{2}^{*})$ is pairwise *RL*-fuzzy semicontinuous, then (i, j)- $S_{1}(f_{L,A}^{\leftarrow}(C)) \geq \varkappa_{i}^{*}(C) \geq \alpha$, i.e., (i, j)- $S_{1}(f_{L,A}^{\leftarrow}(C)) \geq \alpha$. Therefore $f_{L,A}^{\leftarrow}(C)$ is (i, j)-*RL*-semiopen *L*-fuzzy set in $(A, \varkappa_{1}[\alpha], \varkappa_{2}[\alpha])$. Hence $f_{L,A} : (A, \varkappa_{1}[\alpha], \varkappa_{2}[\alpha]) \rightarrow (B, \varkappa_{1}^{*}[\alpha], \varkappa_{2}[\alpha])$ is pairwise *RL*-semicontinuous function. Conversely, let $\varkappa_i^*(C) \ge \alpha$ for each $C \in \mathscr{F}_X^L(B)$ and $\alpha \in J(L)$, then $C \in \varkappa_{i[\alpha]}^*$. By the pairwise semicontinuity of $f_{L,A} : (A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]}) \to (B, \varkappa_{1[\alpha]}^*, \varkappa_{2[\alpha]})$, we have $f_{L,A}^{\leftarrow}(C)$ is (i, j)-*RL*-semiopen with respect to $(A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]})$. Accordingly, (i, j)- $S_1(f_{L,A}^{\leftarrow}(C)) \ge \alpha$ for each $\alpha \in J(L) \cap J(\varkappa_i^*(C))$, where $J(\varkappa_i^*(C)) = \{\alpha \in J(L) | \alpha \le \varkappa_i^*(C)\}$. It follows that (i, j)- $S_1(f_{L,A}^{\leftarrow}(C)) \ge V J(\varkappa_i^*(C)) = \varkappa_i^*(C)$.

(2) Suppose that C is (i, j)-RL-semiopen L-fuzzy set in $(B, \varkappa_{1[\alpha]}^{*}, \varkappa_{2[\alpha]}^{*})$, then (i, j)- $S_{2}(C) \geq \alpha$. Since $f_{L,A} : (A, \varkappa_{1}, \varkappa_{2}) \rightarrow (B, \varkappa_{1}^{*}, \varkappa_{2}^{*})$ is pairwise RL-fuzzy irresolute, then (i, j)- $S_{1}(f_{L,A}^{\leftarrow}(C)) \geq (i, j)$ - $S_{2}(C) \geq \alpha$, so (i, j)- $S_{1}(f_{L,A}^{\leftarrow}(C)) \geq \alpha$, therefore $f_{L,A}^{\leftarrow}(C)$ is (i, j)-RL-semiopen L-fuzzy set in $(A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]})$. So that $f_{L,A} : (A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]}) \rightarrow (B, \varkappa_{1[\alpha]}^{*}, \varkappa_{2[\alpha]})$ is pairwise RL-irresolute.

Conversely, let (i, j)- $S_2(C) \ge \alpha$ for each $\alpha \in J(L)$, then C is an (i, j)-RL-semiopen in $(B, \varkappa_1^*[\alpha], \varkappa_2^*[\alpha])$. Since $f_{L,A} : (A, \varkappa_1_{[\alpha]}, \varkappa_2_{[\alpha]}) \to (B, \varkappa_1^*[\alpha], \varkappa_2_{[\alpha]})$ is pairwise RLirresolute, then $f_{L,A}^{\leftarrow}(C)$ is (i, j)-RL-semiopen in $(A, \varkappa_1_{[\alpha]}, \varkappa_2_{[\alpha]})$. Accordingly, (i, j)- $S_1(f_{L,A}^{\leftarrow}(C)) \ge \alpha$ for any $\alpha \in J(L) \cap J((i, j)$ - $S_2(C))$, where J((i, j)- $S_2(C)) =$ $\{\alpha \in J(L) | \alpha \le (i, j)$ - $S_2(C)\}$. It follows that (i, j)- $S_1(f_{L,A}^{\leftarrow}(C)) \ge \bigvee J((i, j)$ - $S_2(C)) =$ (i, j)- $S_2(C)$.

Theorem 9. Let $A \in \mathcal{V}_X^L$, $B \in \mathcal{V}_Y^L$, and $(A, \varkappa_1, \varkappa_2)$, $(B, \varkappa_1^*, \varkappa_2^*)$ be RL-fbts's on A and B, respectively. If an RL-fuzzy function $f_{L,A} : A \longrightarrow B$ is pairwise RL-fuzzy continuous, then $f_{L,A}$ is also pairwise RL-fuzzy semicontinuous.

Proof. Let $f_{L,A} : A \longrightarrow B$ be pairwise *RL*-fuzzy continuous, then $\varkappa_i^*(C) \le \varkappa_i(f_{L,A}^{\leftarrow}(C))$ for each $C \in \mathscr{F}_X^L(B)$ and i = 1, 2. By Theorem 6, we have

$$\varkappa_i^*(C) \le \varkappa_i(f_{L,A}^{\leftarrow}(C)) \le (i,j) \cdot \mathcal{S}_1(f_{L,A}^{\leftarrow}(C)),$$

for each $C \in \mathscr{F}_X^L(B)$. Therefore $f_{L,A}$ is pairwise *RL*-fuzzy semicontinuous. \Box

Theorem 10. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, and $(A, \varkappa_1, \varkappa_2)$, $(B, \varkappa_1^*, \varkappa_2^*)$ be two RL-fbts's on A and B, respectively. If $f_{L,A} : (A, \varkappa_1, \varkappa_2) \longrightarrow (A, \varkappa_1^*, \varkappa_2^*)$ is pairwise RL-fuzzy irresolute, then $f_{L,A}$ is pairwise RL-fuzzy semicontinuous.

Proof. Let $f_{L,A} : (A, \varkappa_1, \varkappa_2) \longrightarrow (B, \varkappa_1^*, \varkappa_2^*)$ be pairwise *RL*-fuzzy irresolute, then (i, j)- $S_2(C) \le (i, j)$ - $S_1(f_{L,A}^{\leftarrow}(C))$ for each $C \in \mathscr{F}_X^L(B)$. By Theorem 6, we have $\varkappa_i(C) \le (i, j)$ - $S_2(C) \le (i, j)$ - $S_1(f_{L,A}^{\leftarrow}(C))$. Therefore $f_{L,A}$ is pairwise *RL*-fuzzy semicontinuous. \Box

Theorem 11. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, $C \in \mathscr{V}_Z^L$, and $(A, \varkappa_1, \varkappa_2)$, $(B, \varkappa_1^*, \varkappa_2^*)$, $(C, \varkappa_1^{**}, \varkappa_2^{**})$ be *RL-fbts's on A, B, and C, respectively. If* $f_{L,A} : (A, \varkappa_1, \varkappa_2) \longrightarrow (B, \varkappa_1^*, \varkappa_2^*)$ is pairwise *RL-fuzzy semicontinuous and* $g_{L,B} : (B, \varkappa_1^*, \varkappa_2^*) \longrightarrow (C, \varkappa_1^{**}, \varkappa_2^{**})$ is pairwise *RL-fuzzy continuous, then* $(g \circ f)_{L,A} : (A, \varkappa_1, \varkappa_2) \longrightarrow (C, \varkappa_1^{**}, \varkappa_2^{**})$ is pairwise *RL-fuzzy semicontinuous.*

Proof. Straightforward. \Box

5. Pairwise Fuzzy Semi-Compactness in RL-fuzzy Bitopological Spaces

Definition 11. For any $A \in \mathscr{V}_X^L$ and RL-fbt $(\varkappa_1, \varkappa_2)$ on A, an L-fuzzy set $B \in \mathscr{F}_X^L(A)$ is said to be a pairwise RL-fuzzy semi-compact with respect to $(\varkappa_1, \varkappa_2)$ if for each $\mathcal{R} \subseteq \mathscr{F}_X^L(A)$, the following inequality holds:

$$\bigwedge_{D\in\mathcal{R}}(i,j)-\mathcal{S}(D)\wedge\bigwedge_{x\in X}\left(\langle_{L}^{A}B(x)\vee\bigvee_{D\in\mathcal{R}}D(x)\right)\leq\bigvee_{\mathcal{Q}\in 2^{(\mathcal{R})}}\bigwedge_{x\in X}\left(\langle_{L}^{A}B(x)\vee\bigvee_{D\in\mathcal{Q}}D(x)\right),$$

where $2^{(\mathcal{R})}$ refers to the collection of all finite subcollection of \mathcal{R} .

Theorem 12. Let $A \in \mathscr{V}_X^L$ and RL-fbt $(\varkappa_1, \varkappa_2)$ on A. An L-fuzzy set $B \in \mathscr{F}_X^L(A)$ is said to be a pairwise RL-fuzzy semi-compact with respect to $(\varkappa_1, \varkappa_2)$ if for each $W \subseteq \mathscr{F}_X^L(A)$, it follows that

$$\bigvee_{D\in\mathcal{W}}(i,j)-\mathcal{S}({}^{A}_{L}D)\vee\bigvee_{x\in X}\left(B(x)\wedge\bigwedge_{D\in\mathcal{W}}D(x)\right)\geq\bigwedge_{\mathcal{H}\in 2^{(\mathcal{W})}}\bigvee_{x\in X}\left(B(x)\wedge\bigwedge_{D\in\mathcal{H}}D(x)\right).$$

Proof. Straightforward. \Box

Theorem 13. If $A \in \mathscr{V}_X^L$, $(\varkappa_1, \varkappa_2)$ be an *RL*-fbt on *A*, and $B \in \mathscr{F}_X^L(A)$, then the next statements are equivalent:

- (1) *B* is a pairwise *RL*-fuzzy semi-compact.
- (2) For all $\alpha \in J(L)$, every strong α -remote collection \mathcal{R} of B such that $\bigwedge_{D \in \mathcal{R}} (i, j) \cdot \mathcal{S}^*(D) \leq \alpha'$ has a finite subcollection \mathcal{H} which is a (strong) α -remote collection of B.
- **(3)** For all $\alpha \in J(L)$, every strong α -remote collection \mathcal{R} of B such that $\bigwedge_{D \in \mathcal{R}} (i, j) \cdot \mathcal{S}^*(D) \leq \alpha'$, there exists a finite subcollection \mathcal{H} of \mathcal{R} and $\beta \in \boldsymbol{\beta}^*(\alpha)$ such that \mathcal{H} is a (strong) β -remote collection of B.
- **(4)** For all $\alpha \in P(L)$, every strong α -shading \mathcal{U} of B such that $\bigwedge_{D \in \mathcal{U}} (i, j) \cdot \mathcal{S}(D) \not\leq \alpha$ has a finite subcollection \mathcal{V} which is a (strong) α -shading of B.
- **(5)** For all $\alpha \in P(L)$, each strong α -shading \mathcal{U} of B such that $\bigwedge_{D \in \mathcal{U}} (i, j) \cdot \mathcal{S}(D) \leq \alpha$, there exists a finite collection \mathcal{V} of \mathcal{U} and $\beta \in \boldsymbol{\beta}^*(\alpha)$ such that \mathcal{V} is a (strong) β -shading of B.
- **(6)** For all $\alpha \in J(L)$ and $\beta \in \boldsymbol{\beta}^*(\alpha)$, each Q_{α} -cover \mathcal{U} of B such that (i, j)- $\mathcal{S}(D) \geq \alpha$ (for each $D \in \mathcal{U}$) has a finite subcollection \mathcal{V} which is a Q_{β} -cover of B.
- (7) For all $\alpha \in J(L)$ and any $\beta \in \boldsymbol{\beta}^*(\alpha)$, Q_{α} -cover \mathcal{U} of B such that (i, j)- $\mathcal{S}(D) \geq \alpha$ (for each $D \in \mathcal{U}$) has a finite subcollection \mathcal{V} which is a (strong) $\boldsymbol{\beta}_{\alpha}$ -cover of B.

Proof. Straightforward. \Box

Theorem 14. Let $A \in \mathscr{V}_X^L$, $(\varkappa_1, \varkappa_2)$ be an *RL*-fbt on A, $B \in \mathscr{F}_X^L(A)$, and $\beta(\alpha \land \beta) = \beta(\alpha) \land \beta(\beta)$ for all $\alpha, \beta \in L$, then the next statements are equivalent:

- (1) *B* is pairwise *RL*-fuzzy semi-compact.
- (2) For all $\alpha \in J(L)$, every strong β_{α} -cover \mathcal{U} of B such that $\alpha \in \beta(\bigwedge_{D \in \mathcal{U}}(i, j) \mathcal{S}(D))$ has a finite subcollection \mathcal{V} which is a (strong) β_{α} -cover of B.
- (3) For all $\alpha \in J(L)$, every strong $\boldsymbol{\beta}_{\alpha}$ -cover \mathcal{U} of \mathcal{B} such that $\alpha \in \boldsymbol{\beta}(\bigwedge_{D \in \mathcal{U}}(i, j) \cdot \mathcal{S}(D))$, there exists a finite subcollection \mathcal{V} of \mathcal{U} and $\beta \in J(L)$ with $\alpha \in \boldsymbol{\beta}^*(\beta)$ such that \mathcal{V} is a (strongly) $\boldsymbol{\beta}_{\beta}$ -cover of \mathcal{B} .

Proof. Straightforward.

Definition 12. Let $A \in \mathscr{V}_X^L$, $(A, \varkappa_1, \varkappa_2)$ be an RL-bitopological space, $\alpha \in J(L)$, and $B \in \mathscr{F}_X^L(A)$. An L-fuzzy set B is called an α -pairwise RL-fuzzy semi-compact iff for any $\beta \in \boldsymbol{\beta}(\alpha)$, Q_{α} -(i, j)-RL-semiopen cover \mathcal{U} of B has a finite subcollection \mathcal{V} which is a Q_{β} -(i, j)-RL-semiopen cover of B.

Theorem 15. Let $A \in \mathscr{V}_X^L$, and $(A, \varkappa_1, \varkappa_2)$ be an RL-bitopological space. An L-fuzzy set $B \in \mathscr{F}_X^L(A)$ is pairwise RL-fuzzy semi-compact iff B is α -pairwise fuzzy semi-compact for any $\alpha \in J(L)$.

Proof. Let *B* be a pairwise *RL*-fuzzy semi-compact, then for any $\alpha \in L_{\top}$, $\beta \in \boldsymbol{\beta}(\alpha)$ and \mathcal{U} be any Q_{α} -(i, j)-*RL*-semiopen cover of *B*, we have

$$\bigwedge_{x \in X} \left(\langle_L^A B(x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\langle_L^A B(x) \lor \bigvee_{D \in \mathcal{V}} D(x) \right),$$

and $\alpha \leq \bigwedge_{x \in X} ({\mathcal{A}_L^A B(x) \lor \bigvee_{D \in \mathcal{U}} D(x)})$, so that

$$\alpha \leq \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{x\in X} \left(\langle_L^A B(x) \lor \bigvee_{D\in \mathcal{V}} D(x) \right).$$

By $\beta \in \boldsymbol{\beta}(\alpha)$, we have

$$\beta \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\langle_{L}^{A} B(x) \lor \bigvee_{D \in \mathcal{V}} D(x) \right).$$

Then there is $\mathcal{V} \in 2^{(\mathcal{U})}$ with $\beta \leq \bigwedge_{x \in X} (\langle {}^{A}_{L} B(x) \lor \bigvee_{D \in \mathcal{V}} D(x))$. This proves that \mathcal{V} is Q_{β} -(i, j)-RL-semiopen cover of B.

Conversely, suppose that each Q_{α} -(i, j)-RL-semiopen cover \mathcal{U} of B has a finite subcollction \mathcal{V} which is a Q_{β} -(i, j)-RL-semiopen cover of B for all $\beta \in \boldsymbol{\beta}(\alpha)$. Hence, $\alpha \leq \bigwedge_{x \in X} \left(\begin{pmatrix} A \\ L \\ B \end{pmatrix} (x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right)$ yields to $\beta \leq \bigwedge_{x \in X} \left(\begin{pmatrix} A \\ L \\ B \end{pmatrix} (x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right)$. Therefore $\alpha \leq \bigwedge_{x \in X} \left(\begin{pmatrix} A \\ L \\ B \end{pmatrix} (x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right)$ implies that $\beta \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\begin{pmatrix} A \\ L \\ B \end{pmatrix} (x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right)$. So $\alpha \leq \bigwedge_{x \in X} \left(\begin{pmatrix} A \\ L \\ B \end{pmatrix} (x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right)$ implies that

$$\bigvee_{\beta \in \boldsymbol{\beta}(\alpha)} \beta \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\langle_{L}^{A} B(x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right),$$

i.e,

$$\alpha \leq \bigwedge_{x \in X} \left(\langle_L^A B(x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right),$$

implies that

$$\alpha \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \bigg(\langle_L^A B(x) \lor \bigvee_{D \in \mathcal{U}} D(x) \bigg).$$

Hence

$$\bigwedge_{x \in X} \left(\langle {}^{A}_{L} B(x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\langle {}^{A}_{L} B(x) \lor \bigvee_{D \in \mathcal{V}} D(x) \right)$$

Theorem 16. Let $A \in \mathscr{V}_X^L$, and $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space. An L-fuzzy set $B \in \mathscr{F}_X^L(A)$ is a pairwise RL-fuzzy semi-compact in $(A, \varkappa_1, \varkappa_2)$ if and only if B is an α -pairwise RL-fuzzy semi-compact in $(A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]})$ for all $\alpha \in J(L)$.

Proof. Let $B \in \mathscr{F}_X^L(A)$ be a pairwise *RL*-fuzzy semi-compact in $(A, \varkappa_1, \varkappa_2)$, then for each collection $\mathcal{U} \subseteq \mathscr{F}_X^L(A)$, we have

$$\bigwedge_{D \in \mathcal{U}} (i,j) \cdot \mathcal{S}(D) \wedge \bigwedge_{x \in X} \left(\langle_{L}^{A} B(x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\langle_{L}^{A} B(x) \lor \bigvee_{D \in \mathcal{V}} D(x) \right).$$

Then for all $\alpha \in J(L)$ and $\mathcal{U} \subseteq ((i, j)-\mathcal{S})_{[\alpha]}$, we have that

$$\alpha \leq \bigwedge_{x \in X} \left(\langle_L^A B(x) \lor \bigvee_{D \in \mathcal{U}} D(x) \right) \Rightarrow \alpha \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\langle_L^A B(x) \lor \bigvee_{D \in \mathcal{V}} D(x) \right).$$

Hence, for every $\beta \in \boldsymbol{\beta}(\alpha)$, there is $\mathcal{V} \in 2^{(\mathcal{U})}$ with $\beta \leq \bigwedge_{x \in X} (\langle {}^{A}_{L}B(x) \lor \bigvee_{D \in \mathcal{V}} D(x))$. i.e., for all $\alpha \in J(L)$ and $\beta \in \boldsymbol{\beta}(\alpha)$, every Q_{α} -(i, j)-RL-semiopen cover \mathcal{U} of B in $(A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]})$

has a finite subcollection \mathcal{V} which is a Q_{α} -(i.j)-RL-semiopen cover. Then for every $\alpha \in J(L)$, B is α -pairwise RL-fuzzy semi-compact in $(A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]})$.

Conversely, suppose that for every $\alpha \in J(L)$, B is α -pairwise RL-fuzzy semi-compact in $(A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]})$ and let $\alpha \leq \bigwedge_{D \in \mathcal{U}}(i, j)$ - $\mathcal{S}(D) \land \bigwedge_{x \in X}(\langle_{L}^{A}B(x) \lor \bigvee_{D \in \mathcal{U}}D(x))$ for every $\mathcal{U} \subseteq \mathscr{F}_{X}^{L}(A)$, then $\alpha \leq \bigwedge_{D \in \mathcal{U}}(i, j)$ - $\mathcal{S}(D)$ and $\alpha \leq \bigwedge_{x \in X}(\langle_{L}^{A}B(x) \lor \bigvee_{D \in \mathcal{U}}D(x))$, i.e, $\mathcal{U} \subseteq ((i, j)$ - $\mathcal{S})_{[\alpha]}$ and $\alpha \leq \bigwedge_{x \in X}(\langle_{L}^{A}B(x) \lor \bigvee_{D \in \mathcal{U}}D(x))$. Hence for all $\beta \in \boldsymbol{\beta}(\alpha)$, there is $\mathcal{V} \in 2^{(\mathcal{U})}$ with

$$\beta \leq \bigwedge_{x \in X} \left(\langle_L^A B(x) \lor \bigvee_{D \in \mathcal{V}} D(x) \right).$$

So that

$$\alpha \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\left\langle {}^{A}_{L} B(x) \lor \bigvee_{D \in \mathcal{V}} D(x) \right. \right)$$

Then *B* is a pairwise *RL*-fuzzy semi-compact in $(A, \varkappa_1, \varkappa_2)$. \Box

Lemma 2. Let $A \in \mathscr{V}_X^L$, and $(A, \varkappa_1, \varkappa_2)$ be an RL-bitopological space, $\alpha \in J(L)$, and $B, C \in \mathscr{F}_X^L(A)$. If B is α -pairwise RL-fuzzy semi-compact and C is (i, j)-RL-semiclosed, then $B \wedge C$ is α -pairwise RL-fuzzy semi-compact.

The next theorem is an immediate consequence from Lemma 2:

Theorem 17. Let $A \in \mathscr{V}_X^L$, and $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space, and $B, C \in \mathscr{F}_X^L(A)$. If B is a pairwise RL-fuzzy semi-compact and (i, j)- $\mathscr{S}^*(C) = \top$, then $B \wedge C$ is a pairwise RL-fuzzy semi-compact.

Lemma 3. Let $A \in \mathscr{V}_X^L$, and $(A, \varkappa_1, \varkappa_2)$ be an RL-bitopological space, $\alpha \in J(L)$, and $B, C \in \mathscr{F}_X^L(A)$. If B, C are α -pairwise RL-fuzzy semi-compact, then $B \vee C$ is α -pairwise RL-fuzzy semi-compact.

Theorem 18. Let $A \in \mathscr{V}_X^L$, and $(A, \varkappa_1, \varkappa_2)$ be an RL-fuzzy bitopological space, and $B, C \in \mathscr{F}_X^L(A)$. If B, C are pairwise RL-fuzzy semi-compact, then $B \vee C$ is pairwise RL-fuzzy semi-compact.

Proof. Straightforward. \Box

Lemma 4. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, and $(A, \varkappa_1, \varkappa_2)$, $(B, \varkappa_1^*, \varkappa_2^*)$ be RL-bts's on A and B, respectively, $\alpha \in J(L)$, $D \in \mathscr{F}_X^L(A)$, and $f_{L,A} : A \longrightarrow B$ be a pairwise RL-irresolute mapping. If D is α -pairwise fuzzy semi-compact in $(A, \varkappa_1, \varkappa_2)$, then $f_{L,A}^{\rightarrow}(D)$ is α -pairwise fuzzy semi-compact in $(B, \varkappa_1^*, \varkappa_2^*)$.

Theorem 19. Let $A \in \mathscr{V}_X^L$, $B \in \mathscr{V}_Y^L$, and $(A, \varkappa_1, \varkappa_2)$, $(B, \varkappa_1^*, \varkappa_2^*)$ be two RL-fbts's on A and B, respectively, $D \in \mathscr{F}_X^L(A)$, and $f_{L,A} : A \longrightarrow B$ be a pairwise RL-fuzzy irresolute mapping. If D is a pairwise RL-fuzzy semi-compact in $(A, \varkappa_1, \varkappa_2)$, then $f_{L,A}^{\rightarrow}(D)$ is a pairwise RL-fuzzy semi-compact in $(B, \varkappa_1^*, \varkappa_2^*)$.

Proof. Let *D* be a pairwise *RL*-fuzzy semi-compact in $(A, \varkappa_1, \varkappa_2)$. Based on Theorem 16, we have *D* is α -pairwise fuzzy semi-compact in $(A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]})$ for all $\alpha \in J(L)$. By Theorem 16, $f_{L,A} : (A, \varkappa_{1[\alpha]}, \varkappa_{2[\alpha]}) \rightarrow (B, \varkappa_{1[\alpha]}^*, \varkappa_{2[\alpha]}^*)$ is pairwise *RL*-irresolute. Therefore by using Lemma 4, $f_{L,A}^{\rightarrow}(D)$ is α -pairwise *RL*-fuzzy semi-compact in $(B, \varkappa_{1[\alpha]}^*, \varkappa_{2[\alpha]}^*)$. Then $f_{L,A}^{\rightarrow}(D)$ is pairwise *RL*-fuzzy semi-compact in $(B, \varkappa_{1[\alpha]}^*, \varkappa_{2[\alpha]}^*)$.

6. Conclusions

The idea of *RL*-fuzzy bitopological spaces extends the idea of *RL*-fuzzy topological spaces and as well as the idea of *L*-fuzzy topological spaces in Kubiak-Šostak's sense. If we restrict the newly defined concepts by assuming that *A* equal to T_X , we get *L*-fuzzy

bitopological spaces. On the other hand, if we consider the case of i = j, we get *L*-fuzzy topological spaces in Kubiak-Šostak's sense [20,21].

In this paper, we initiated the idea of (i, j)-*RL*-semiopen gradation of *L*-fuzzy sets in *RL*-fuzzy bitopological spaces based on the concept of pseudo-complement. We studied different properties regarding the degree of (i, j)-*RL*-semiopenness of *L*-fuzzy set. Moreover, we elaborated pairwise *RL*-fuzzy semicontinuous and pairwise *RL*-fuzzy irresolute functions and discussed some of their elementary properties based on the (i, j)-*RL*-semiopen gradation. Further, the pairwise *RL*-fuzzy semi-compactness of an *L*-fuzzy set in *RL*-fuzzy bitopological spaces is defined and explained.

In the future, we are focusing on representing several kinds of openness as gradation in *RL*-fuzzy bitopology and use it to extend the corresponding kinds of continuity, separation, connectedness, and compactness.

Author Contributions: The Authors have equally contributed to this paper. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research, University of Hafr Al Batin for funding this work through the research group project No: G-104-2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

- 1. Levine, N. Semi-Open Sets and Semi-Continuity in Topological Spaces. Am. Math. Mon. 1963, 70, 36–41. [CrossRef]
- 2. Azad, K. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. *J. Math. Anal. Appl.* **1981**, *82*, 14–32. [CrossRef]
- 3. Thakur, S.S.; Malviya, R. Semi-open sets and semi-continuity in fuzzy bitopological spaces. *Fuzzy Sets Syst.* **1996**, *79*, 251–256. [CrossRef]
- 4. Shi, F.G. Semiopenness and preopenness in *L*-fuzzy topological spaces. J. Nonlinear Sci. Appl. 2021, in press.
- 5. Ghareeb, A. Preconnectedness degree of L-fuzzy topological spaces. Int. J. Fuzzy Log. Intell. Syst. 2011, 11, 54–58. [CrossRef]
- 6. Ghareeb, A. L-fuzzy semi-preopen operator in L-fuzzy topological spaces. Neural Comput. Appl. 2012, 21, 87–92. [CrossRef]
- Ghareeb, A.; Shi, F.G. SP-compactness and SP-connectedness degree in L-fuzzy pretopological spaces. J. Intell. Fuzzy Syst. 2016, 31, 1435–1445. [CrossRef]
- 8. Ghareeb, A. A new form of F-compactness in L-fuzzy topological spaces. Math. Comput. Model. 2011, 54, 2544–2550. [CrossRef]
- 9. Al-Omeri, W.F.; Khalil, O.H.; Ghareeb, A. Degree of (*L*, *M*)-fuzzy semi-precontinuous and (*L*, *M*)-fuzzy semi-preirresolute functions. *Demonstr. Math.* **2018**, *51*, 182–197. [CrossRef]
- 10. Ghareeb, A.; Al-Omeri, W.F. New degrees for functions in (*L*, *M*)-fuzzy topological spaces based on (*L*, *M*)-fuzzy semiopen and (*L*, *M*)-fuzzy preopen operators. *J. Intell. Fuzzy Syst.* **2019**, *36*, 787–803. [CrossRef]
- 11. Ghareeb, A. Degree of F-irresolute function in (*L*, *M*)-fuzzy topological spaces. *Iran. J. Fuzzy Syst.* **2019**, *16*, 189–202.
- 12. Ghareeb, A.; Al-Saadi, H.S.; Khalil, O.H. A new representation of *α*-openness, *α*-continuity, *α*-irresoluteness, and *α*-compactness in *L*-fuzzy pretopological spaces. *Open Math.* **2019**, *17*, 559–574. [CrossRef]
- 13. Li, H.; Li, Q. RL-topology and the related compactness. J. Math. Res. Appl. 2019, 38, 636–642.
- 14. Li, H.; Li, Q. RL-fuzzy topology and the related fuzzy compactness. J. Shandong Univ. (Nat. Sci.) 2019, 54, 51–57. (In Chinese)
- Zhang, X.; Alshammri, I.; Ghareeb, A. Measurement of Countable Compactness and Lindelöf Property in *RL*-Fuzzy Topological Spaces. *Complexity* 2021, 2021, 6627372.
- 16. Guo-Jun, W. Theory of topological molecular lattices. *Fuzzy Sets Syst.* **1992**, *47*, 351–376. [CrossRef]
- 17. Ying-Ming, L.; Mao-Kang, L. Fuzzy Topology; World Scientific: Singapore, 1998.
- 18. Raney, G.N. A Subdirect-Union Representation for Completely Distributive Complete Lattices. *Proc. Am. Math. Soc.* **1953**, *4*, 518–522. [CrossRef]
- 19. Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190. [CrossRef]
- 20. Kubiak, T. On Fuzzy Topologies. Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, 1985.
- 21. Šostak, A.P. On a fuzzy topological structure. Rend. Circ. Mat. Palermo 1985, 11, 89–103.
- 22. Rodabaugh, S.E. Categorical Foundations of Variable-Basis Fuzzy Topology. In *Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory;* Höhle, U., Rodabaugh, S.E., Eds.; Springer: Boston, MA, USA, 1999; pp. 273–388.
- 23. Shi, F.G. A new form of fuzzy α-compactness. Math. Bohem. 2006, 131, 15–28. [CrossRef]
- 24. Shi, F.G. L-fuzzy interiors and L-fuzzy closures. Fuzzy Sets Syst. 2009, 160, 1218–1232. [CrossRef]